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Abstract

We present a simple approach for constructing geo-
metric partitions in a way that is easy to apply to

new problems. We avoid the use of VC-dimension
arguments, and, instead, base our arguments on a

notion we call the scaflold dimension, which sub-
sumes the VC-dimension and is simpler to apply. We
show how to easily construct (l/r)-nets and (l/r)-
approximations for range spaces with bounded scaf-
fold dimension, which immediately implies simple al-
gorithms for constructing (l/r)-cuttings (by straight-

forward recursive subdivision methods). More signif-
icant than simply being a conceptual simplification
of previous approaches, however, is that our methods

lead to asymptotically faster and more-efficient EREW
PRAM parallel algorithms for a number of compu-
tational geometry problems, including the develop-
ment of the first optimal-work NC algorithm for the
well-known 3-dimensional convex hull problem, which
solves an open problem of Amato and Preparata. In-

terestingly, our approach also yields a faster sequential
algorithm for the distance selection problem, by the

parametric searching paradigm, which solves an open

problem posed by Agarwal, Aronov, Sharir, and Suri,
and reiterated by Dickerson and Drysdale.

1 Introduction

One general type of geometric structure that has re-
ceived a considerable amount of attention of late is
the geometric partition [9, 10, 11, 14, 15, 34, 35, 36].

The general framework is that one is given a collection
X of n geometric objects in IRd, such as lines, and a

parameter r, and one wishes to construct a partition-

ing of the space into O(rd) constant-sized cells so that

each cell intersects as few objects as possible. As one
might expect, such a structure is especially suited to
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the recursive design of efficient geometric data struc-
tures and to the design of fast geometric divide-and-

conquer algorithms (e.g., see [1]).

This paper addresses the problem of constructing

such partitions. We are primarily interested in the par-

allel complexity of these constructions, but one should
keep in mind that any parallel algorithm will always
have an associated sequential algorithm, which is de-
rived from a simple simulation of the parallel method.
Thus, the discovery of a new parallel method implies
a new sequential method as well. Typically, this de-

rived sequential algorithm is more complicated than
the existing sequential methods, so it is often of lit-
tle interest. Nevertheless, there are some occasions
when the implied sequential method is conceptually

simpler than the previous sequential methods (e.g., see
[18, 45]), hence, is possibly of independent interest.
Indeed, as we show in this paper, such is the case for
geometric partitioning.

Before we describe our results, however, let us re-

view some of the previous work for this important
problem. As shown by Clarkson [14] and Haussler and
Welzl [29], and extended by Clarkson and Shor [15],

one can often apply random sampling to construct

a geometric partitioning of space so that each cell

intersects O((n log r)/r) objects on average. More-

over, Chazelle and Friedman [9] show that one can,

in fact, construct such a partitioning deterministically
in polynomial time, and Berger, Rompel, and Shor [7]
and Motwani, Naor, and Naor [39] show that one can
in certain situations achieve NC’ implementationsl of
Chazelle and Friedman’s algorithm. Unfortunately,
the running time of Chazelle and Friedman’s algo-

rithm is quite high, as are the time and processor
bounds of the implied parallel algorithms (they run

in 0(log4 n) time using a number of processors pro-
portional to the time bound of Chazelle and Fried-

man’s algorithm). In addition, all of these determinis-
tic methods employ the complicated conditional prob-
abilities technique (see Alon, Spencer, and Erdos [4])
to derandomize random sampling; hence, they do not
lead to conceptually simple algorithms.

One can improve the running time of the Chazelle
and Friedman algorithm for the case when the range
space determined by X and 7?, the set of combi-

1we ~~e NC to &nOt~ the ClaSS of problems solvable in

polylogaritlunic time using a polynomial number of proces-
sors [25, 30, 31].
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natorially distinct ways to intersect X by “cells,”
has bounded Vapnik-Chervonenkis (VC) dimension,
as shown by a number of results due to Matouiek
(e.g., [34, 35, 36]). Unfortunately, Matouiek’s algo-

rithms are even more complicated than the previous

methods, as his methods also use the conditional prob-
abilities technique, together with an intricate divide-

and-conquer strategy, and even call Chazelle and
Friedman’s algorithm as a subroutine. Moreover, since
they are formulated for range spaces with bounded

VC-dimension, they are quite cumbersome to apply,
since determining the VC-dimension of most range
spaces is often quite difficult.

All of these methods are based upon related no-
tions of (l/r)-approximations and ( I/r)-nets, which
are subsets of X used to construct good geometric

partitions for X. For any range R, a subset Y ~ X

(1/r) -approzirnates R if

Given a set 1? of ranges of X, we say Y is a
(1/r) -approz2rnat20n [34, 35] of (X, 7Z) if Y (l/r)-
approximates every range in 7?. Relaxing this require-

ment a bit, we say that Y is a (l/r)-net [29] of (X, R) if
Yfl R. # 0 for each R c 7? such that IR[ z lX1/r. This

is clearly a simpler notion, since a ( l/r)-approximation
is automatically a (l/r) -net. Note that X is a (l/n)-

approximation for (X, 7?). Recent results of Matou~ek,

Welzl, and Wernisch [37] give a tighter analysis of
the best achievable sizes for ( l/r) -approximations and
(l/r)-nets based upon discrepancy arguments. Al-
though their analysis uses the VC-dimension notion,
it can also be viewed as a first step towards the
avoidance of a strict reliance on this notion, as their
analysis is actually based upon a derived parameter

known as the shatter function [34, 35, 36, 37]. In-
deed, Chazelle and Matouiek [11] have very recently

produced a method for deterministically constructing

(l/r)-approximations and (l/r)-nets based upon these
new approaches [37] using shatter functions and dis-
crepancy bounds. Their methods are simpler than the

previous algorithms, but they still use the conditional
probability technique for derandomization and they
still rely on VC-dimension arguments (albeit now only
indirectly).

In this paper we give fast and efficient efficient par-
allel algorithms for constructing (l/r)-approximations,

2The VC. dimension of a range space (X, 7?) is usuallY de-

fied as the maximum size of a subset A of X such that
7ZIA = 2A (e.g., see [29, 34, 35, 36]). Thus, to show that some

(X, ‘R) has VC-dimension d one must prove that there exists a
subset A of size d such that ‘R 1A = 2A, and, for every subset B
of size d+ 1, Rljg # 2B.

3The interested reader is challenged to determine the VC-
dimension of the space where X is a set of line segments in
the plane and the ranges are the sets of segmeuts intersecting

arbitrary triangles.

(l/r)-nets, and geometric partitions. Our methods run

in 0(log2 n) time using an efficient number of proces-
sors in the EREW PRAM mode14. For example, given
n hyperplanes in IRd, and a parameter r, we show that,
in 0(log2 n) time using O(nrd- 1) work5, one can con-
struct a O(rd)-sized (l/r)-cutting [8, 9, 29, 34, 35, 36]

of llld, which is a decomposition of IRd into simplices
such that each simplex intersects at most n/r hyper-
planes.

Our methods avoid the inherently-sequential con-
ditional probabilities technique and are designed in
a framework that subsumes the cumbersome VC-

dimension notion in a manner that is simple to an-
alyze and apply. For these reasons, the sequential

methods derived from our parallel procedures are ac-

tually simpler than the previous sequential methods.

We achieve these simplifications (and our fast parallel
running times) by using the simple restricted indepen-

dence derandomization technique [4, 32, 33] to deran-
domize algorithms based on random sampling. The
only unfortunate aspect of using this technique is that
the necessary processor bounds are quite high. Still,
we show that one can significantly reduce the number
of processors needed to construct the partitions by us-
ing a simple divide-and-conquer strategy.

We show the utility of our methods by giving a
number of applications to well-known computational

geometry problems. For example, we show that one
can construct the convex hull of n points in IR3 in

O(log2 n) time using O(n log n) work on an EREW
PRAM, which is the first optimal-work iVC algorithm
for solving this problem. This solves an open prob-
lem of Amato and Preparata [5]. In addition, by an
application of the powerful parametric searching tech-
nique [3, 12, 16, 17, 19, 20], we show that our meth-
ods actually improve the sequential complexity for the
problem of selecting the k-th smallest distance deter-

mined by n points in the plane [2, 24]. Our method

runs in 0(n4f3 logs’3 n) time in the worst case, which
matches the expected time complexity of the previous
randomized method due to Agarwal et al. [2]. This

solves an open problem of Agarwal et al., which was
reiterated by Dickerson and Drysdale [24].

2 Our Framework

Our framework is to model the geometric partitioning
problem in a fashion resembling the model introduced
by Chazelle and Friedman [9], which is a synthesis of
the model introduced by Clarkson and Shor [14, 15]

4This is the synchronous parallel model where processor
share a common main memory that does not allow for concur-
rent access (it is an Sxclusive-=ad, $xclusive--mite storage).

5The work performed by a parallel algor~hm is the prod-
uct of the running time and the number of processors needed,

It corresponds to the running time of the derived sequential
algorithm.
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and the model introduced by Haussler and Welzl [29]

and Matou5ek [34, 35, 36]. Let X be a set of n (geo-
metric) objects and let (X, R) be a range space for X,
i.e., ‘R is a set of subsets of X, each of which is called

a range. In addition to X and ‘R, we also assume we

are given a function 7 that maps each subset Y ~ X

to a subset of 2X so that F(X) = 7?. We call 7 the

generator function for the range space (X, %?), and we
let [7(Y) [ denote the number of ranges it generates
for Y. A range space such as (X, ‘R) has scaffold di-

mension d if d is the smallest integer such that l~(Y)l
is O(]Yld) for any Y ~ X.

As an example, consider the range space (X, 7?)
where X is a set of n points in general position in the
plane and 7? is the set of all combinatorially distinct
ways of intersecting the points of X with a disk. It is
easy to show that each R G 1? can be defined in terms

of at most three points of X, which generate R. It is
therefore easy to see that this range space has scaffold
dimension 3. Determining the VC-dimension of this

range space is more of a challenge, which we leave to
the interested reader.

Given a range space with bounded scaffold di-
mension, our goal is to find small-sized (l/r)-
approximations and (l/r) -nets of X for 1 < r < n.

3 Probabilistic Preliminaries

Our approach to constructing small-sized (l/r)-
approximations and (l/r)-nets of range spaces with
bounded scaffold dimension is to derandomize a
straightforward probabilistic algorithm, Approx,
which is based upon the random sampling tech-
nique [14]. We do this using the restricted indepen-
dence technique [4, 32, 33], which assumes Approx
uses random variables that are only k-wise indepen-

dent, for some constant k. Thus, before we give our

methods, let us review these concepts.

3.1 Random Sampling

The type of random sample we assume in this paper
is that one is given a parameter s < n, and, for each
xi E X, one defines a random variable xi Such that

Xi = 1 with probability s/n and one uses the rule that
Xi EYif Xi= 1 [7]. In this case one is guaranteed a
setoflYl=Xl +X2+. ,. +X. unique elements, but
its size may not be equal to s, although it is easy to

see, by the linearity of expectation, that E( IY 1) = s.

3.2 k-Wise Independence

In order to apply the restricted independence tech-
nique, we must restrict our set X of random variables

to be only k-wise independent, i.e., the variables in any
subset ~ $ X are guaranteed to be mutually indepen-
dent only If ]Yl < k. Given a set X of n objects and

an integer parameter s, we define a k-wise indepen-
dent expected s-sample of X to be a sample determined
by n k-wise independent indicator random variables,

[~) = 1 with probabilityxjk),x\V, . . . . X\k), where Xi

P = s/n.

Unfortunately, restricting our attention to k-wise

independent indicator random variables prevents us
from directly using the well-known and powerful Cher-

noff bounds [6, 4, 13, 28] for bounding the tail of the
distribution of their sum. Nevertheless, as shown by

Rompel [41], we may derive something analogous:

Lemma 3.1 (Rompel [41]): Let X(k) be the sum of
n k-wise independent random variables taking on val-

ues in the range [0, 1], with p = ll(X(k)), where k is
a positive even integer. Then there is a fixed constant

c >0 such that

for any A >0.

In some cases, we can simplify this:

Corollary 3.2: Let X(k) be the sum of n k-wise in-

dependent random variables taking on values in the
range [0, 1], with p = E(X(k)) ~ 1, where k is a pos-
itive even constant. Then there is a fixed constant

c >0 such that

for any ~ >0.

Incidentally, this corollary also seems to follow

from a recent inequality of Schmidt, Siegel, and Srini-
vssan [42], which may yield a better constant factor.

3.3 Derandomization

We are now ready to review the restricted inde-
pendence technique for derandomizing a probabilis-

tic algorithm [4, 32, 33]. We use the formulation of

Luby [32], which assumes we have a probabilistic al-
gorithm, Random, which is designed so that all the
randomization is contained in a single choice step. In
addition, we assume the following:

1. Random succeeds with constant probability
even if the underlying random variables are only

k-wise independent, for some constant k.

2. Each random variable Xi takes on values
{X~, X2,...,2?*}, where m is bounded by a

polynomial in n.

‘In our usage each Xi will take a value from {O, 1}.
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3. There is a prime number q bounded by a polyno-
. .

mlal m n, and integers ni,l, n~,z, . . .. ni,m, such
that .xi takes on value z~ with probability ni,j/q

(with ~~=1 ni,j = q).

Luby [32] shows that if Random satisfies all of these
conditions, then one may construct a space of qk points

so that each point corresponds to an assignment of val-
uesto Xl, X2,..., X.. Moreover, each Xi = Xj with

probability ni,j /q and the Xi’s are k-wise independent.
Since this space is polynomial in size, we may there-
fore derandomize Random by calling it on each of the

qk sample points in parallel. Since Random succeeds
with constant probability, at least one of these calls

succeed (in fact, a constant fraction succeed). The
output is given by one of these successful calls (where
one breaks ties arbitrarily).

4 O((nr)OtlJ)-Work Approxima-

tion Finding

Our first method for finding approximating subsets of
X is quite simple and can be implemented to run very
fast in parallel, albeit with a rather large number of
processors. Our method is based upon a quantification
of how close a particular subset is to being a (l/r)-
approximation or (1 /r)-net of the given range space.

So, let (X, 72) be a range space, let Y be a subset of

X, and let S be a subset of 7?. Let Ay(r, S) denote
the number of ranges R E S that Y does not (l/r)-
approximate, and let NY (r, S) denote the number of

ranges R c S such that Il?l ~ lX1/r but Y (l R = 0.
Of course, we desire these “error functions” to be as
small as possible. The next lemma explores how well
a random Y achieves this goal when Y is defined using
k-wise independent random variables.

Lemma 4.1: Let (X, R) be a range space. Given a
parameter 1< P s IX 1, a parameter s t)lat is greater
than some fixed constant so > 1, and a fixed posi-

tive even constant k, Jet Y be a k-wise independent

expected s-sample of X, and Jet S be a subset of 7?.
Then the following is true with probability at least
1/2:

1. s – e(sl/2) < IYI < s + e(sllz),

2. AY(r, S) < crk lS1/sk,

3. .ALy(?’, s) < crk/2pl/sk/2,

for some constant c >0.

Proofi Since Y is an expected s-sample of X, it is
determined by n k-wise independent indicator random

(k),xy),. ... n ,x(k). hence IYI, Ay(r, S)variables Xl

and NY (r, S) are themselves random variables. Let
us, therefore, consider each in turn, beginning with

IYI = ~~=1 Xi. Since IYI is a sum of n k-wise indepen-

dent indicator random variables with mean plyl = s,
we may apply Corollary 3.2 to bound the probability
that Y does not satisfy Condition 1 as

Pr(llYl – SI > 6CS1J2) ~
Csklz

(6cs)~/2 S 1/6’ (1)

where c is as in the corollary. Thus, with probability

5/6, S – 6CS112< lY1 ~ S + 6CS112.

Let us next consider AY (r, S), then. We can write
Ay (r, S) = ~R~~ YR, where YR is an indicator ran-

dom variable for “Y does not (l/r)-approximate R“.

We bound Ay (r, S) by considering its expectation,
which, by the linearity of expectation, is

~(AY(r, S)) = ~ -E(YR) = ~ Pr(YR = 1).
R@ RG5

Let us therefore derive a bound for

Pr(Y~ = 1) = Pr(llY n RI – lYl(lR1/n)l > lY1/r).

Define random variables U = IY n RI – IY n Rl(lR1/n)
and V = IY n (X\ R)l(lR1/n). Then

pr(YR = 1) = pr(lu – VI > lY1/?’).

Let pu = E(U) and pv = E(V) and note that p~ =

PV = (slR1/n)(l – lR[/n). Thus,

Pr(Y~ = 1)= Pr(lU – p~ +pv – VI > lY1/r).

It is easy to verify that this latter probability is
bounded by

Pr(lU–pul > lY1/2r)+Pr(lV–pVl > lY1/2r).

Note that U = ~iERXi(l – lR1/n) and V =

~i@’R Xi(lRI/n). Thus, we may apply Lemma 3.1 to
bound this probability by

(

[k(slR1/n) + k2]ki2rk < ~rks~,z,lYlk
c’

lY1k )
— 7

for some constant c, since s ~ so > 1. There-

fore, E(dY(r, S)) s crkskf21S1/jYlk. We may
then apply Markov’s inequality (which has no

dependence assumptions) to show Pr(AY (r, S)
6crks~i21S1/lYlk) < 1/6. Combining this with
gives us the claimed bound.

The bound for NY (r, S) is proved similarly. ■

Given this lemma we can then apply the

in-

(;

re----
stricted independence technique to derive a determin-

istic method for range spaces with bounded scaffold
dimension. In this case we assume 7(Y) is computable
in O(log n) time using work proportional to a polyn~

mial in ~R~~(y) lRI On ZUI EREW PRAM.

76



Theorem 4.2: Let (X, %?) be a range space with gen-

erator function F and scaffold dimension d, for some

constant d > 0, and let n = 1X1. Also, let 1 < r < n
be a given parameter and let t >0 be any fixed (small)
constant. Then, in O(log n) time using O((nr)c) work
in the EREW PRAM model, for some constant c >0,
one can construct any of the following:

1. a (1/r) -approx. A of (X, R) of size t3(n’r2),

2. a (1/r) -approx. B of (X, X(B)) of size @(r2+’),

3. a (l/r)-net C of (X, 7?) of size @(n’r), or

4. a (l/r)-net D of (X, F(D)) of size @(#+ C).

Proof: (Sketch) Apply the restricted independence
technique [32] with k > 2d/c, and s = O(n’r2), so that

IAI is ~(s) and A~(r, 77,) <1 with probability at least
1/2. We use similar arguments for constructing B, C,
and D. ■

5 O(nrO(l))-Work Approximation

Finding

As already mentioned, the method of the previous sec-
tion is simple and can be implemented to run very fast

in parallel. Its work complexity is quite high, how-
ever. In this section we show how to reduce this by us-
ing the well-known divide-and-conquer paradigm (e.g.,

see [22]). We also use another range-space property,
which holds for the types of range spaces that arise in

computational geometry applications.

Let (X, 7?) be a range space with generator func-
tion F, and let Y be a subset of X. For any S ~ R,
we define the range space S restricted to Y to be the
set SIY = {Yn R: R c $}. We say that ~ is factorable
if, for any Y ~ Z ~ X, Y(Z)IY = Y(Y)IY. Note that
factorability implies that 7(Y) IY = %ZIy.

Many of range spaces that arise in computa-
tional geometry are factorable. For example, in ap-
plications based upon VC-dimension arguments, one

gets factorability “for free,” since in this case one
can give the range space (X, 7?) the generator func-

tion 7(Y) = %?Iy, which is called the shatter func-

tion [34, 35, 36, 37]. If (X, 7?) has VC-dimension d,
then (X, 7?) with F haa scaffold dimension d as well,
as shown in [43, 44] (using different terminology of
course). Or, for another example, consider the range
space (X, 7?) introduced earlier, where X is a set of n
points in the plane and 7? is the set of all ranges of X

determined by intersecting X with disks. In this case,
if we take Y ~ Z ~ X, then, for any range R G F(Z),
R n Y is determined by some disk D whose generating
points are in Z. To show that this same range is gen-
erated by Y imagine “shrinking” D until its degrees of
freedom are constrained as much as possible without
removing any points of Y from its intersection with
Y. This “smaller” disk is determined by at most three

points of Y, and it exactly contains the set R n Y;
hence, it is in 7(Y) [Y.

In addition to this notion of factorability, we also
need two simple observations, which are adaptations of
observations made by Matou&ek in a slightly different
context [35].

Observation 5.1: Let (X, %3) be a range space
with factorable generator function F, and sup-
pose Yl)Yz, ..., Y~ are, respectively, equal-cardinality

(l/r)-approximations forrangespaces (XI, Y(XI)[,Y1),

(X2, F(X2)IX2), . . . . (Xm, ~(xm)lxn), where the Xi’s
also have equal cardinality, and X = Xl UXZU. . .UXm.

Then Y= Y1UY2U.. oU-Ym is a ( l/r) -approximation
for (X, R).

Observation 5.2: Let (X, R) be a range space
with factorable generator function F. If Y is an

(l/rI)-approximation for (X,7?) and Z is a (l/rz)-
approximation for (Y, F(Y)ly), then Z is a (l/rl +
l/rz)-approximation for (X, 7?).

Given a range space (X, 7?) with factorable gen-
erator function 3 and bounded scaffold dimen-
sion, we wish to apply these observations to a
divide-and-conquer method for constructing a (l/r)-
approximation Y of (X, 72-) of size O(nJ r2) using only

O(nrOflJ) work, for any reasonably small constant
6 > 0, where n = IX 1. We achieve this by design-
ing an algorithm, Approx, which is a modification of

an early simple divide-and-conquer approach of Ma-

tou.5ek [34]. Whereas his method was work-inefficient,

however, ours will be work efficient.

We define Approx so that it produces a (l/t)-
approximation, Y, of (X, 7?), where t = log n/r(log n–
1). This is, of course, a better approximation than a
(l/r)-approximation would be, but this formulation
will prove easier to work with.

Algorithm Approx(r, (X, 7?)):

1.

2.

3.

4.

If n ~ r2, then return X.

Otherwise, divide X equally into r-n sub-

sets Xl, X2, . . .. X~ and recursively call

Approx(r’, (Xi, ~(Xi ) lx, )) for each i in paral-
lel, where r’ = r and m = n8 with O <6< 1
being a constant to be set in the analysis.

Let Yi be the set returned by recursive call i, and
let Y’ = YIUY2U.. .UYm. Apply Theorem 4.2 to
find a (l/t’)-approximation Y of (Y’, ~(Y’)[y~),
where t’= (1 – 6) log n/6r.

Return Y.

In the following theorem we show that the al-
gorithm Approx performs correctly in the bounds
claimed above.
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Theorem 5.3: Given a range space (X, 7?) with fac-

torable generator function F and sctiold dimension

bounded by a constant, one can produce a (l/r)-

approximation of (X, R) of size O(n$rz+d) using

O(nrc) work, where c >0 is some constant and 6 is

any positive constant strictly less than the reciprocal

of the constant c in Theorem 4,2. The time required
is O(log n) in the EREW PRAM model.

Proofi (Sketch) The proof follows by a straightfor-
ward analysis of the recurrence relations for time, size,
and work. ■

This theorem immediately implies work-efficient

methods for constructing other approximating subsets,
for we may follow an application of Theorem 5.3 by an-
other application of Theorem 4.2 to produce sets B,

C, and D as in that theorem in O(log n) time using

O(nr’) work on an EREW PRAM, for some constant
c. Moreover, if one is willing to take a slightly longer
amount of time, then one can construct smaller sets A
and C, as the following corollary shows:

Corollary 5.4: Given a range space (X, 7?) with fac-
torable generator function F and scaffold dimension
bounded by a constant, one can produce a (l/r)-
approximation of (X, 7?) of size 0(r2+A ), or a (l/r)-net
of (X, 7?) of size 0(r1+8), using O(nrc) work, where

c > 0 is some constant and 6 is any positive constant
strictly less than the reciprocal of the constant in The-
orem 4.2. The time required is 0(log2 n/ log r) in the
EItEW PRAM model,

Proofi (Sketch) Imagine a modified version of

Approx where we set m = r, r’ = 2r, and t’= 2r, and
we apply Theorem 4.2 with c ~ 6/(3 + 6). It is easy

to show that this algorithm runs in 0(log2 n/ log r)
time and, more importantly, using an argument sim-
ilar to that used by Matouiiek [34], that this modi-

fied algorithm produces a (l/r) -approximation of size
0(r2+6) using work that is O(n(r log n)’) for some con-
stant c. The (l/r)-approximation result follows, then,
if we follow an application of Theorem 5.3 to find a

(l/?)-approximation by a call to this modified version
of Approx to find a ( l/t) -approximation of this set,

using f = 2r. Following this by yet another call to
Theorem 5.3 to construct a (1/2r)-net of this set gives

us the ( l/r)-net result (except for this result, we use

? = 4r in the previous calls). ■

Incidentally, Chazelle and Matou3ek [11] recently

give a result similar to this corollary (using a different
approach), but the running time and work bounds for
their method are larger than those above.

In the next section we give an application of The-
orem 5.3 to an important instance of the geometric

partitioning problem.

6 Constructing a (l/r) -Cutting

Suppose we are given a set X of n hyperplanes in
IRd. A (1/r) -cuiiing for X is a partition of lRd into

simplices such that each simplex intersects at most

n/r hyperplanes. In this section we show how to ap-

{
ply Theorems 4.2 and 5.3 to construct an O rd)-sized

(l/r)-cutting in O(log n) time using O(nr” 1)) work
on an EREW PRAM. We then show how to adapt
a recursive-subdivision technique of Chazelle [8] so as
to construct such a cutting in O(log n log r) time using
O(nrd-l) work on an EREW PRAM, which is optimal
if one must also output all the hyperplane-simplex ad-

jacencies. Our method computes these adjacencies .as
a by-product at no additional cost.

6.1 An O((nr)O(ll)-Work Method

Our first method is based on an adaptation of an ap-
proach used by Chazelle and Friedman [9]. Their ap-
proach is to construct an optimal-sized (l/r) -cutting
by using the conditional probabilities technique to de-

randomize a random sampling algorithm for finding a
set Y such that the number of ranges of size tn/r not
intersected by Y decreases geometrically in l/t.

In our case we will use Lemma 4.1 to get a similar
set Y, except that the number of ranges of size tn/r
not intersected by our Y will decrease quadratically in

I/t. In addition, our set Y will only be a net for the
ranges generated by Y, not for all of %!. Fortunately,
this will still prove sufficient, as we will now show.

Suppose we are given a set X of n hyperplanes in
Illd. Let Y be a k-wise independent sample of X. If

we compute the arrangement of Y [26, 27] and form a

canonical triangulation [9, 14, 15, 34] of this arrange-
ment (which is easily implemented in parallel), then
we define 0( lY]d) simplices. Let Y(Y) be the ranges
determined by these simplices, where each simplex u
generates the range consisting of all the hyperplanes
of X that intersect the interior of u. The range space
induced by F clearly has scaffold dimension7 d, since
there are O([Y [d) such ranges determined by Y. For
any range R ~ 7(Y), with [RI = tn/r, we desire that

Y n R # 0 if t ~ 1. We note that Ny(r/t, X(Y))

denotes the number of such ranges in F(Y) that are

“missed” by Y. We can choose s = r in Lemma 4.1
so that, with probability at least 1/2, ]Y[ is O(r)

and NY(r/t, 3(Y)) ~ crki2/(tkf2sk12-d) = crd/tk12,
where k is a positive even integer (which we will set in

the analysis below).

By a simple application of the restricted indepen-
dence derandomization technique we may find such a
Y in O(log n) time using 0(nd+5) work on an EREW
PRAM. Given such a Y, we construct its arrange-
ment and canonical triangulation in 0(log2 r) time us-
ing O(rd) work by the parallel EREW PRAM method

7This F is not factorable, hOwever.
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of the author [27]. We then compute, for each sim-

plex u in this subdivision, the set, RO, of hyperplanes

intersecting u. This can easily be done in O(log n)
time using O(nrd) processors. We follow this, for

each simplex u, by constructing a (l/to )-net Y. of
the range space (Rc, F(YO ) l~e ) by Theorem 4,2, where

ta = [ROlr/n. We can choose e = 1 in that Theorem

so that each such (l/tO)-net will be of size O(t~). Con-
structing the arrangement of each such Y., restricted
to u, gives us a (l/r) -cutting, and this can be done in

O(max~= {log2 ta}) = 0(log2 r) time using work that is
polynomial in n and r. Since the size of the arrange-

ment of YO in u is O(t ~d), the total size of this cutting
is proportional to

We may re-write this sum as

which, by the above discussion, can be hounded by

/

r

/

T
c(rd/tk12 - Zd)dt = crd t-2dt >

1 1

for some constant c >0, if we choose k = 4d + 4. This
is clearly O(rd). We summarize:

Lemma 6.1: Let X be a set of n hyperplanes in IRd,
and let 1 < r < n be a given parameter. One can
construct an O(rd)-sized ( 1/r)-cutting of X in time

O(log n + log2 r) using O((nr)c) work on an EREW
PRAM, where c is some constant.

6.2 An O(nrOIIJ)-Work Method

The above method gives an optimal sized (l/r)-
cutting, but it clearly does so at great expense. Nev-

ertheless, it can be used to derive a more efficient
method. Such a method is based upon the following
simple observations (which are analogues of observa-
tions made by others in different contexts [8, 35]).

Observation 6.2: Let (X, 72) be a range space with

factorable generator function F. If Y is an (1 /rl )-
approximation for (X, 7?) and Z is a (1/r2)-net for

(Y, F(Y)ly), then Z is a (l/rl + l/r2)-net for (X,%!).

Observation 6.3: Let X be a set of n hyperplanes

in Etd. If Y is an (l/r)-net for (X, ‘R) and C is the
cut ting formed by a canonical triangulation of Y‘s ar-
rangement, then C is a (d/r) -cutting for X.

We may “combine” these two observations to note

Observation 6.4: Let X be a given set of n hyper-
planes in IRd. If Y is an ( l/rl )-approximation for
(X, 7?) and C is a (l/rZ)-cutting for Y, then C is a
d(l/rl + l/r2)-cutting for X.

Given these observations, we may then derive

Theorem 6.5: Let X be a set of n hyperplanes in

IR~. One can construct an O(rd)-sized (l/r)-cutting

of X in time O(log n + log2 r) using O(nrC) work on an

EREW PRAM, for any 1< r < n and some constant
C>o.

Proofi Let X be as given. By Observation 6.4,
we may form a ( l/r)-cutting by first applying The-

orem 5.3 to construct a (l/2dr)-approximation of X
and then apply Lemma 6.1 to form a (1/2dr)-cutting
of this. The application of Theorem 5.3 takes O(log n)
time using O(nrc) work, for some constant c. Since
we assume d is a constant, the ( l/2dr)-approximation

produced can be made to be of size 0(n’r2), for any
fixed constant e > 0. If we choose this ~ to be the

reciprocal of the constant c in Lemma 6.1, we may ap-
ply this lemma to construct a (1/2dr)-cutting of this

approximation in O(log n + log2 r) time using O(nrC)
work. This will be a (l/r) -cutting of size O(rd). ,

This is clearly an improvement in the work bound
for constructing a (l/r) -cutting, but we can do even
better. Our approach to finding an optimal-sized
(l/r)-cutting efficiently in parallel is based upon an el-
egant recursive-subdivision idea due to Chazelle [8]. In
this approach one forms an 0(1)-sized ( l/ro)-cutting

of X, for some constant r., and then one recurses on
each simplex. Recursing logrO r levels gives us a (l/r)-
cutting. Unfortunately, a simple-minded application
of this approach using Theorem 6.5 would not yield

an optimal-sized cutting. This is because the constant

“hiding” behind the big-Oh in the size bound of The-
orem 6.5 would grow with each level of the recursion,

so that after log,O r levels the total size of the cutting

could be as large as ~(rd+~ ), for some constant 6, and

not O(rd) as we would desire.

6.3 Achieving Intersection Sensitivity

In the generic recursive call, one has a set Y of hy-
perplanes from X and a simplex c that they all in-

tersect. The elegance in Chazelle’s implementation of
this approach [8] is that he shows how find each re-
cursive (1 /rO)-cutting in u so that its size depends on

ro and on the number of hyperplane intersections that

occur inside u. In this way he is able to avoid the size
blow-up problem mentioned above. Unfortunately, for
our purposes, his approach again uses the conditional

probabilities technique, Thus, if we are to adapt his
approach to our parallel setting, we must derive an
intersection-sensitive method for constructing a (l/r)-
cutting that does not use this technique.
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So, suppose we are given a set X of n hyperplanes
that all intersect a given simplexu. We can define a

range space for X by considering all combinatorially
distinct ways that the hyperplanes in X can be inter-

sected by segment inside u. Given a subset Y ~, X,
we define Zc (Y) to be the set of intersection points
inside u that are determined by the hyperplanes in
Y. We can define a generator function F for such a
Y by considering all combinatorially distinct segments
that could have as an endpoint a point in Z. (Y) or the
point determined by the intersection of u and d– 1 hy-
perplanes in Y. This range space clearly has bounded
scaffold dimension (it is 2d). It is also easy to see that

this range space is factorable.

Given Y ~ X, we say that Y is sensitive to X in
u if IZO(Y)I ~ 4(lY1/n)dlZo(X)l.

Lemma 6.6: Let X be a set of n hyperplanes in II%d
that all intersect a given simplex u. Then, in time

O(log n) using O((nr)c) work on an EREW PRAM,
one can construct an O(rl+e)-sized (l/r)-net Y for

(X, Y(Y)) that is sensitive to X in a, for any fixed
constant e > 0.

Proof: The proof is essentially the same as for
Lemma 4.1 in Theorem 4.2, except in this case the
chosen subset Y must also satisfy the geometric con-
dition IZC(Y)I < 4(lY1/n)dlZO(X)l. So, let us consider
the probability of this occurring if Y is a k-wise inde-
pendent sample of X. If k ~ d, then ,!7(IZO(Y)I) =
(lY1/n)dlZo(X)l. Thus, by Markov’s inequality,

Pr(lZO(Y)l > 4(lY\/n)dlZO(X)l) ~ 1/4.

Adding this as an extra condition on Y, therefore, does
not violate our application of the restricted indepen-
dence derandomization technique, and increases the

time and work bounds of Theorem 4.2 by at most a
constant factor. ■

We can use this to derive an efficient method for
finding an intersection-sensitive (l/r)-cutting by pref-
acing it by the construction of an appropriate (l/r)-
approximation. The following composition lemma due
to ChazeHe [8] will prove to be useful in this regard:

Lemma 6.7 (Chazelle [8]): Let X be a set of n hy-

perplanes in IRd that intersect a given simplex cr. If
Y is an (1/2dr)-approximation for (X, 7?) and Z is a

(1/2dr)-net for Y that is sensitive to Y in a, then Z is

~~~~,;j-net for X and lZ&(z’)1 is O((lZ1/lXl)dlZ~ (X)l+

This leads to

Lemma 6.8: Let X be a set of n hyperplanes in
IRd that all intersect a given simplex tr, and let

1 < r < n be a given parameter. Then, in time

8 Chazelle [8] refers to such a Y as a strong net for X.

O(log n + log2 r) using O(nrc) work on an EREW

PRAM, one can construct a (l/r) -cutting C for X
in a of size O(r(l+t)d-l + (rl+e/n)dlZd(X)l), for any
fixed constant c >0.

Proof: Apply Theorem 5.3 to find a (l/2dr)-
approximation Y of X, and then apply Lemma 6.6
to construct Z, a (1/2dr)-net of Y that is sensitive to
Yin a. The set Y can be made to be of size (n’r2) and
the set Z can be made to be of size O(rl+’), and, by
Observation 6.2, Z is a (1/dr)-net for X. The constant
c can be chosen so that the total work needed is O(nrc)
for some constant c. By Observation 6.3, we can con-
struct the arrangement and canonical triangulation of
Z to form a (l/r)-cutting, C’, of X in u. The size of

C is O(lZld-l + IZC(Z)I) = O(r(l+’J[d-lJ + IZO(Z)I),
since ICl is proportional to the number of intersec-
tion points determined by u and the hyperplanes

in Z. By Lemma 6.7, then, we have that [Cl is

O(r(l+c)d-l + (rl+’/n)dlZo(X)l). ■

6.4 An O(nr~-l)-Work Method

We are now ready to describe our algorithm for ef-

ficiently constructing a (l/r)-cutting, which is based
upon the simple recursive subdivision technique of
Chazelle [8]. Suppose we are given a set X of n hy-
perplanes in IRd and a parameter r < n such that
r is greater than some constant r. ~ 2. We be-
gin by applying Theorem 6.5 to construct a (l/rO)-
cutting CO of size O(r~) in O(log n) time using a lin-
ear amount of work. For any simplex a, let Xc de-

note the set of hyperplanes in X that intersect u’s
interior. For i = 1 to logrO r we refine Ci _ 1 into Ci

by applying Lemma 6.8 to form a (l/pO)-cutting of

each simplex u in Ci_l such that IXO I > n/r~, where

p! = r~ IX. I/n. Each such cutting requires O(log n)
time using O(IXC 1) work. Clearly, p. < r., and Ci is
a ( l/r$)-cutting. Thus, when the computation com-
pletes (i.e., when i = log,O r), Ci is a (l/r) -cutting.
By Lemma 6.8, we can bound lCil by

lCil ~ ~ C (r$+’)d-l + (rj+’/lXcl)dlZa(Xc)l) ,

UECa_l

where c is some constant. Since ~C~C,_l IZO(Xa ) I is

O(nd) and IX. I ~ n/r&-l, we can re-write this

lCil < cr$+’)d-llC~-~l + cr$+’)d.

A simple induction proof shows that r. can be chosen
large enough and ~ small enough so that lCil is O(r~d).
Thus, ICI is O(rd). The running time is O(log n log r)
and the total work used is proportional to

Iogro r logro r

~ n[Cil/r~ < ~ nrj(’-’),

i=l i=l

which is O(nrd- 1). Thus, we have the following:
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Theorem 6.9: Let X be a set of n hyperplanes in

Etd, and let r < n be a given parameter larger than

some constant ro ~ 2. One can construct an O(rd)-

sized ( I/r)-cut ting of X in time O(log n log r) using

O(nrd- 1) work on an EREW PRAM.

6.5 Even More-Efficient Constructions

Matou5ek [36] shows how to use results analogous
to Theorems 5.3 and 6.9 to derive a recursive re-
finement method for constructing ( l/r)-cuttings and

(l/r)-approximations in O(n log r) time if r ~ no for
some constant a > 0. Substituting our theorems into

his method (and implementing it in parallel) immedi-

ately implies the following:

Theorem 6.10: Let X be a set of n hyperplanes in

IRd, and let r be such that 2< ro < r s n“, for some
constant r. and some constant a > 0 depending on

d. Then, in time O(log n log r) using O(n log r) work
on an EREW PRAM, one can construct an O(rd)-
sized (l/r) -cutting of X or an O(rd+’)-sized (l/r)-

approximation of X, for any constant f >0.

7 Applications

In this section we give a few consequences of our work.

7.1 Constructing 3-D Convex Hulls

Let X be a set of n points in IR3. The 3-dimensional
convex hull problem is to construct a representation

of the boundary of the smallest convex set contain-
ing X. The best previous deterministic parallel al-

gorithms for this problem run in 0(log2 n) time using

O(n logz n) work on a CREW PRAM [5, 21, 23]. In the
full version we show how to improve the work bound
to @(n log n) while keeping the time at 0(log2 n). This
gives the first optimal-work NC algorithm for this
problem, solving an open problem posed by Amato

and Preparata [5]. Our approach is to derandom-
ize the optimal-work randomized parallel algorithm of
Reif and Sen [40], which is based on the random sam-

pling technique. This work bound is optimal in the

worst case, assuming the output size is O(n). In the

general case, however, we believe one should be able to

achieve O(n log h) work by using the iterative-squaring
approach of Chazelle and Matouiek [10].

7.2 Distance Selection

The next application we give shows that our meth-
ods can actually improve the sequential complex-
ity of a problem if it is used in conjunction with
the parametric searching technique, which was introd-
uced by Megiddo [38] and extended by several oth-
ers [3, 12, 16, 17, 19, 20]. The particular problem we

address is distance selection, where one is given a set

X of n points in the plane and one wishes to find a pair

of points in X that realize the k-th smallest dist ante.

In the full version we show how to apply the para-

metric searching technique and the methods from pre-
vious sections to derandomize the method of Agarwal

et al. [2], deriving the following:

Theorem 7.1: Given a set X ofn points in the plane,
one can determine a pair (p, q) in X that determine the

k-th smallest distance in 0(n413 log813 n) time.
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