
Dynamic Ray Shooting and Shortest Paths
via Balanced Geodesic Illiangulations

(Preliminary version)

Michael T. Goodrich*

Dept. of Computer Science

The Johns Hopkins University

Baltimore, MD 21218

goodrich~cs. jhu. edu

Summary of Results

TVe give new methods for maintaining a data

structure that supports ray shooting and shortest

path queries in a dynamically-changing connected

subdivision S. Our approach is based on a new dy-

namic method for maintaining a balanced decompo-

sition of a simple polygon via geodesic triangles. We

maintain such triangulations by viewing their dual

trees as balanced trees. We show that rotations in

these trees can be implemented via a simple “diag-

onal swapping” operation performed on the corre-

sponding geodesic triangles, and that edge insertion

and deletion can be implemented on these trees us-

ing operations akin to the standard split ancl splice

operations. We also maintain a dynamic point loca-

tion structure on the geodesic triangulation, so that

we may implement ray shooting queries by first lo-

cating the ray’s endpoint and then walking along the

ray from geodesic triangle to geodesic triangle until

we hit the boundary of some region of S. The short-

est path between two points in the same region is

obtained by locating the two points and then walk-

ing from geodesic triangle to geodesic triangle either

following a boundary or taking a shortcut through

a common tangent. Our data structure uses 0(72)

space and supports queries and updates in 0(log2 n)

time, where n is the current size of S. It outperforms

the previous best data structure for this problem by

a log n factor in all the complexity measures (space,

query times, and update times).

*This research was supported in part by the National
Science Foundation under Grant CCR-9003299, and by
the NSF and DARPA under Grant CCR-8908092.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

9th Annual Computational Geometry,5/93/CA, USA
O 1993 ACM 0-89791 .583 -6/93 /0005 /0318 . ..$1 .50

Roberto Tamassiat

Dept. of Computer Science

Brown University

Providence, RI 02912-1910

rt@cs. brown. edu

1 Introduction

An exciting trend in algorithmic research has

been to show how one can efficiently maintain

various properties of a combinatorics or geomet-

ric structure while updating that structure in a

dynamic fashion; see, for example [5, 8, 9, 11,

19, 21, 23, 26].

1.1 The Problem

The specific dynamic computational geometry

problem we address in this paper is to maintain

a connected subdivision S subject to insertion

and deletion of vertices and edges, and to ray

shooting and shortest path queries. From now

on, we denote with n the current size of S, i.e.,

the number of vertices of S.

1.2 Previous Work

In the static setting, there are several op-

timal techniques for shortest-path and ray-

shooting [1, 3, 6, 12, 13, 18], even in paral-

lel [10, 15]. In particular, the data structures of

Chazelle and Guibas [3] and of Guibas and Her-

shberger [12] support respectively ray-shooting

and shortest path queries in simple polygons in

O(log n) time using O(n) space. In the dynamic

setting, the best result to date is the data struc-

ture of Chiang, Preparata, and Tamassia [4] for

connected subdivisions, which uses O(n log n)

t This research was supported in part by the National

Science Foundation under grant CCR-9007851, by the

U.S. Army Research Office under grant DAAL03-91-G-

0035, and by by the Office of Naval Research and the

Defense Advanced Research Projects Agency under con-

tract NOO014-91-J-4052, ARPA order 8225.

318



space and supports ray-shooting queries, slhort-

est path queries, and insertion and deletion of

vertices and edges in O (log3 n) time (amortized

for vertex updates).

1.3 Our Results

In this paper we present a dynamic data struc-

ture for connected subdivisions that supports

ray-shooting and shortest-path queries. The

repertory of of update operations includes inser-

tion and deletion of vertices and edges, and is

complete for connected subdivisions. The space

requirement is O(n), and the worst-case running

time for all operations (queries and updates) is

0(log2 n), where n is the current size of the sub-

division. Our data structure outperforms the

previous best data structure for this problem

by a log n factor in all the complexity measures

(space, query times, and update times). Also,

it is conceptually simple.

1.4 Overview of the Technique

A geodesic path between two points p and q in-

side a simple polygon P is the shortest path

joining p and g that does not go outside P.

Given three vertices u, V, and w of a sim-

ple polygon P, w~lch occur in that order, the

geodesic triangle Auvw they determine is the

union of the geodesic paths from u to v, from

v to w, and from w to u. (See Figure 1.) A

geodesic triangulation of a simple polygon P is

a decomposition of P’s interior into geodesic

triangles whose boundaries do not cross. Two

geodesic triangles may have a non-empty imlter-

section, however, if portions of their respective

boundaries overlap.

A geodesic triangulation is combinatorially

and topologically like a triangulation of a sim-

ple polygon. Hence, it immediately induces a

degree-3 tree T, where each nocle in T cclrre-

sponds to a geodesic triangle and we join the

node corresponding to 6UVW with the node cor-

responding to ~xyz if they share two of their

vertices (e.g., if z = v and z = w). (See “Fig-

ure 2.) As shown by Chazelle et al, [2], the

nodes of T corresponding to the geodesic trian-

gles whose boundaries are intersected by some

ray in P will always form a path in T. Thus, if T

has small diameter, then we can efficiently per-

form a ray-shooting query for a point p and di-

rection F by locating the geodesic triangle whose

interior contains p and then iteratively travers-

ing geodesic triangles along direction P from p

until we hit the boundary of P. Indeed, this is

approach of Chazelle et a(. for building a static

ray shooting data structure.

Our approach is to maintain T as a balanced

binary tree, such as a red-black tree [7, 14, 20,

25]. Sleator, Tarjan, and Thurston [24] observe

that a diagonal swap between two adjacent tri-

angles in a triangulation of a convex polygon

corresponds to a rotation in the tree dual to

this triangulation. We extend this to geodesic

triangulations, and observe likewise that a rota-

tion in T will correspond to swapping the diag-

onals determined by two adjacent geodesic tri-

angles. We show that vertex insertion and dele-

tion can be implemented by inserting and delet-

ing in T, and that edge insertions and deletions

can be performed using an operation on T that

is analogous to a sequence of splitand splice

operations. If we maintain geodesic paths in

auxiliary structures, then we can perform each

rotation and insertion in T in O(log n) time (us-

ing splits and splices on the geodesic paths in-

volved in the rotation). We therefore! achieve

a running time for queries and updates that is

0(log2 n) in the worst case.

2 Preliminaries

2.1 Connected subdivisions

A connected (planar) subdivision S is a parti-

tion of the plane into simple polygons, called the

regions of S. Note that S has one unbounded

region, called the external region. A subdivision

S is generated by a planar graph embedded in

the plane such that the edges are straight-line

segments. We assume a standard representation

for the subdivision S, such as doubly-connected

edge lists [22].

1Recall that in a split(v)operation one divides T into

T1, which contains the nodes with in-order number small

than v’s in-order label, and T2, which contains the nodes

with larger in-order label; a sphce(7’1, Tz ) reverses this
operation,

319



2.2 Geodesic Triangulations

Let r be a geodesic triangle ~uvw, as defined

above. In general, r will consist of a simple

polygon made up of three concave chains and

three piece-wise linear curves emanating away

from the three vertices where the concave chains

are joined. We refer to the inner polygonal re-

gion as the deltoid region for T, due to its re-

semblance to the well-known quartic curve [17],

and we refer to the three chains emanating

out from the deltoid region as tails (see Fig-

ure 1). We represent the three concave chains

using an auxiliary data structure that supports

binary-type searching and chain splitting and

splicing. For example, we could use red-black

trees [7, 14, 20, 25].

2.3 Red-black Trees

Since our structure is built using the red-black

tree data structure as a schematic, let us briefly

review this structure. We use the formulation of

Tarjan [25]. A red- ldack tree is a rooted binary

tree T whose nodes are assigned integer ranks

that obey the following constraints:

1.

2.

3.

If v has a nil child pointer, then Tank(v) =

1 and v’s nil child pointer is viewed as

pointing to a node with rank O.

If v is a node with a parent, then

~ank(o) ~ rank(p(v)) ~ rank(v) + 1,

where p(v) denotes the parent of v.

If v is a node with a grandparent, then

rank(o) < ~a7tk(p(p(tr)j).

A node v is called black if rank(p(v)) =

~ank(v) + 1 or v is the root; v is red otherwise

(i.e., if Tank(p(v)) = Tank(v)).

As a shorthand notation, let us use rank(T)

to denote the rank of the root of a tree T. Let

n be the number of nodes of T. It is easy to

see that rank(v) is proportional to the loga-

rithm of the number of descendants of v, so that

~ank(T) = O(log n). Tarjan [25] shows that

red-black trees support the spiit and splice oper-

ations in O(r-(n) log 72) time, where 7-(71) denotes

the time complexity of performing a rotation2

21n the standard red-black tree setting r(n) is O(I),

but this will not be the case in our applications.

in T. His methods are based on using rotations

and simple node and edge insertions and dele-

tions. In our use of red-black trees, we must as-

sume that each internal node has degree 3; thus,

let us assume that the root of a red-black tree

T actually has a parent, which is a degree-one

“dummy node.” In addition, we desire that our

tree-modification operations be based strictly

on the use of tree rotations, and not use the

more general pointer changing as is used in the

standard implementations [7, 14, 20, 25]. Fortu-

nat ely, such implementations are easy to come

by. For completeness, we include an outline

here.

For a splice of trees T1 and T2, we create a

new node r (if one doesn’t already exist) such

that the root of T1 and the root of T2 form the

children of r. We then perform a series of rota-

tions in this tree to push the smaller tree down

to an appropriate depth. The time needed is

O(r(n)]~ank(T1) – rank(T2)l) = O(~(n)logn).

Likewise, let us describe a non-destructive

version of a split of tree T at a node v c T that

returns a node r whose left child is a red-black

tree for the elements left of v in T, and whose

right child is a node s, where s’s left child is

v and s’s right child is a red-black tree for the

elements right of v in T. Such a tree can be

constructed from T by performing a series of

rotations to move v up T. Any time a pair of

nodes on the left fringe3 (resp., right fringe) of

the path from the root of T to v become sib-

lings during this series of rotations, we perform

a splice of their respective subtrees. (See Fig-

ure 3.) The final tree can be made to produce

the result described above. One can show that

the time needed to perform this operation is

O(r(n) log n), for the total cost of performing all

the splice operations forms a “telescoping sum”

that is O(r(n)logn).

Finally, we must contend with the fact that

the root of our red-black tree implementations

has a “dummy node” parent. In particular, we

allow for one to perform an evert(v) operation

on a red-black tree T, where one makes a leaf

node v be the new “dummy node” parent of the

root, and lets the old dummy node become a

sReca~ that a left (resp., right) fringe node for a leaf-

to-root path rr is a node that is a left (resp., right) child

of a node on ~ but is itseIf not on x.

320



regular leaf node. Of course, this also requires

that we rebalance T. Such a rebalancing can be

implemented by prefacing the eversion by per-

forming a non-destructive split at the leaf node

v, which divides T into T1, which contains the

nodes to the left of v, and T2, which contains

the nodes to the right of v. Then we may per-

form the evert operation, and rebalance the tree

by splicing together T1 and the old dummy node

for the root of T, and then splicing the resulting

tree with T2. Since this requires 0(1) split and

splice operations, it clearly can be implemented

in O(r(n) log n) time.

3 Our Data Structure

Let S be a connected subdivision. In this sec-

tion we describe our data structure for perform-

ing ray shooting queries in S.

3.1 The primary structure

As mentioned in the introduction, the main

component of our data structure for S is that

we maintain a geodesic triangulation of each re-

gion of S. With each region P of S, we also

store the tree T dual to the geodesic triangul-

ation we maintain for P. Each internal node

in T corresponds to a geodesic triangle ancl we

join the node corresponding to ~uvw with the

node corresponding to ~zy,z if they share two

of their vertices (e.g., if m = v and z = w). Each

leaf corresponds to an edge of P and is joined

to the (parent) geodesic triangle that has this

edge on its boundary. In particular, if one of the

edges of a geodesic triangle ~ is also an edge of

P, then we say that ~ is a border triangle, and,

for each such border triangle T, we add an ad-

jacency in T from the node associated with ~

to a (leaf) node associated with the edge c,f P

on ~ (see Figure 5). In addition, we distinguish

a border triangle p in P as the root triangle,

so as to root T at the node associated with p.

The main idea of our primary structure, then,

is to maintain this rooted tree T as a red-black

tree [7, 14, 20, 25], ignoring the (dummy) leaf

node associated with p.

3.2 The secondary point location

structure

As a secondary data structure we maintain a

dynamic point location data structure on the

deltoid regions determined by the geodesic tri-

angulations of all the faces in S. In particular,

we use the structure of Goodrich and Tamas-

sia [II], which uses O(n) space, supports point

location queries in 0(log2 n) time, edge inser-

tion and deletion in O(log n) time, and vertex

insertion and deletion in O (log n) time as well.

The only caveat to using this structure is that it

requires each face in the subdivision to be mono-

tone (say, with respect to the z-axis). That is, it

requires the underlying subdivision to be mono-

tone. Of course, a deltoid region need not be

monotone. Nevertheless,

Lemma 3.1: The geodesic triangulation of a

connected subdivision can be refined to a mono-

tone subdivision by inserting at most one edge

in each deltoid region.

Proofi Omitted in this preliminary version. ❑

Thus, our secondary structure consists of

the dynamic point location of Goodrich and

Tamassia [11] built upon the union of the del-

toid regions in all the geodesic triangles in S,

together with at most one edge per deltoid re-

gion so as to make each face in the resulting

subdivision S’ monotone with respect to the z-

axis.

3.3 The tertiary deltoid structures

The final component of our data structure is

a tertiary structure built for the deltoid re-

gions. In particular, for each deltoid region 6,

we maintain each of the three concave chains for

6 in a balanced tree structure (e.g., a red-black

tree [7, 14, 20, 25]). Each internal node in such

a tree corresponds to a subchain of a concave

chain and stores the length of the associated

sub chain.

Our entire data structure, ‘D, then, con-

sists of the primary geodesic triangulation struc-

tures, the secondary point location structure,

and the tertiary deltoid structures.

Lemma 3.2: D requires O(n) space.

321



Proof: Omitted in this preliminary version. ❑

3.4 Ray shooting

So, suppose we have such a data structure

for our connected subdivision S, and let F be

a query ray for which we wish to perform a

ray shooting query. We begin by perform-

ing a point location for the origin of F using

the secondary point location structure. This

takes time 0(log2 n) [11]. We then traverse the

geodesic triangulation along the ray F one tri-

angle at a time, until the region boundary is

hit. For each geodesic triangle traversed, we

perform a stabbing query for F and the trian-

gle boundary to identify 7’s exit point using the

tertiary structures stored for each geodesic tri-

angle. (See Figure 4.) Since we maintain T

as a red-black tree, O (log n) triangles are tra-

versed, each of which requires O(log n) time for

its stabbing query. Therefore, we have

Lemma 3.3: A ray-shooting query in D takes

0(log2 n) time.

4 Balanced Geodesic Triangu-

lations in a Dynamic Envi-

ronment

In this section we show how to maintain the

data structure D while performing edge inser-

tion and deletion as well as vertex insertion and

deletion. In particular, we define the follow-

ing update operations on a connected subdivi-

sion S:

InsertEdg<e, v, w, R; RI, R2): Insert edge e =

(v, w) into region R such that R is parti-

tioned into two regions RI and R2.

RemoveEdge(e, v, w, RI, R2; R): Remove eclge

e = (v, w) and merge the regions RI and

R2 formerly on the two sides of e into a

new region R.

LzsertVerte~v, e; el, e2): Split the edge e =

(u, w) into two edges el = (u, v) and

e2 = (v, w) by inserting vertex v along e.

Remove Vertez(v, el, ez; e): Let v be a vertex

with degree two such that its incident

edges el = (u, v) and e2 = (v, w), are

on the same straight line. Remove v

and merge el and e2 into a single edge

e = (u, w).

Attach Vertez(v, e; w): Insert edge e = (v, w)

and degree-one vertex w inside some re-

gion R, where v is a vertex of R.

Detach Vertez(v, e): Remove a degree-one ver-

tex v and edge e incident on v.

The above repertory of operations is com-

plete for connected subdivisions. That is, any

connected subdivision S can be constructed

“from scratch” using only the above operations.

Also, Attach Vertex and Detach Vertex can be
simulated by a ray shooting query followed by

a sequence of O(1) Insert Vertez, Remove Ver-

tex, InsertEdge, and RemoveEdge operations [4].

Hence, such operations will not be further dis-

cussed.

4.1 Rotations

A swap of diagonals in the geodesic trian-

gulation of a region corresponds to a ro-

tation in the dual tree (see Figure 5).

The geodesic triangulation is modified with

0(1 ) InsertEdge/RemoveEdge operations. The

boundaries of the geodesic triangles are mod-

ified by O(1) split/splice operations (see Fig-

ure 6). Thus, a rotation requires logarithmic

time, i.e., r(n) is O(log n) in our primary struc-

ture T.

4.2 Vertex Insertion and Deletion

Operations InsertVertex(v, e; e~, ez) and

Remove Vertez(v, el, e2; e) correspond to the in-

sertion/deletion of a node in the dual trees as-

sociated with the regions that share edge e.

The geodesic triangulation is modified by two

Insert Vertex/Remove Vertex operations. The

boundaries of the geodesic triangles are mod-

ified by two insertions/deletions.

Lemma 4.1: Operations Insert Vertex and Re-

move Vertex take each O (log n) time.

322



4.3 Edge Insertion and Deletion

Let us next consider edge insertion and deletion,

and begin our discussion with the insertion case.

The operation InsertEdge(e, v, w, R; RI, R:l) can

be implemented as follows. Let d and ~ be edges

of R such that d is inciclent to v and j is inci-

dent to w, with d and f being on opposite sides

of e (i.e., d and f will be separated after e is

inserted). We begin our implementation of the

insertion of e by everting the tree T at the leaf

for d, resulting in a geodesic triangulation of

R corresponding to a red-black tree T’ rooted

at d. We then perform a non-destructive split

on the dual tree T’ at ~ so that the edge e is

the diagonal between the geodesic triangles cor-

responding to the parent and grandparent of d,

which gives us a new dual tree T“. We may then

insert the edge e, cutting T“ at the edge dual

to e. This results in two new regions R1 and R,z

with corresponding dual trees T1 and T2. Notice

that the root of T] (resp., T2) has as one of its

children the root of a red-black tree and as its

other child the node d (resp., ~). We complete

the construction, then, by performing a splice

on the two children of the root of T] and the

root of T2, respectively. (See Figure 7.) Note

that this construction requires that we perform

0(1 ) evert, split, and splice operations on the

dual trees for RI and R2. Each red-black tree

rotation required to implement these operations

in T requires O(log n) time using the tertiary

chain structures. Thus, this edge insertion can

be implemented in 0(log2 n) time.

Let us therefore next consider the operation

RemoveEdge(e, v, w, Rl, R2; R). Let T1 and T2

be the dual trees for the geodesic triangulations

of R1 and R2, respectively. We begin by per-

forming an evert operation on 7’2 to make the

leaf corresponding to e become the root for this

new tree T.j in R2. We then perform a non-

destructive .@it on T1 at the leaf in T1 corre-

sponding to e, which gives us a new tree T{.

We then conceptually merge R1 and R2 b:y re-

placing the leaf for e in T; with the root of T;.

That is, if we let ~ denote the root of T;, then

we replace the leaf for e by r. We complete

the construction by performing a splice at the

(new) parent for T, ant] then another .@ice at

the grandparent of r. (See Figure S.) This gives

us a balanced tree for the entire region R. No-

tice that the implementation of this operation

required 0(1 ) evert, split, and splice operations.

Thus, it too can be implemented in 0(log2 n)

time.

Lemma 4.2: Operations InsertEdge and Re-

moveEdge take each O (log2 n) time.

5 Shortest Path Queries

In this section, we show how to extend our ap-

proach so as to efficiently answer shortest path

queries in S. In this case we are given two query

point p and q and we wish to determine the

shortest path between p and q that does not

cross any edges of S. We may assume, without

loss of generality, that p and q belong to the

same region in S, since we can test if this is not

the case in 0(log2 n) time [1 1]. So, suppose we

are given two query points p and q in. a region

P of S, and we wish to perform a shortest path

query for the pair (p, q). We consider two vari-

ations of this query: reporting the length of the

path, and reporting all the edges of the path.

In the following, an augmented balanced bi-

nary tree, called chain tree, will be used to

represent a polygonal chain, where the leaves

are associated with the edges, and the internal

nodes with the vertices of the chain. Each node

also corresponds to a subchain and stores its

length. It should be clear that this information

can be updated in O(1) time per rotation, so

that splitting or splicing two chain trees takes

logarithmic time. With this representation, it

is possible to find the two tangents from a point

to a convex chain and the four common tan-

gents between two convex chains in logarithmic

time [22].

In order to support shortest path queries,

we extend our data structure so as to store en-

tire geodesic triangles. Specifically, we modify

our data structure by storing at each node p of

tree T the tails of the geodesic triangle ~ asso-

ciated with p, in addition to a representation

of the deltoid region for ~. In order to main-

tain this as a linear-space structure we do not

store any portions already stored at an ances-

tor of p, however. The portions of tails stored

at a node are represented with chain trees, and

the missing chains are represented in 0(1) space

323



as a pair V,W representing the interval of chain

edges from v to w (which is a shortest path from

v to w stored at an ancestor), where v and w

are vertices of the geodesic triangle for p.

Lemma 5.1: The space requirement of the

modified data structure is O(n); the portion of

the geodesic triangle stored at a node consists

of O(1) chains; and rotations in T can be per-

formed in O(log n) time.

Proof: We omit the details in this preliminary

version. ❑

If p and q are vertices of R, the geodesic

path algorithm is as follows: First, we evert T so

that the dummy leaf of T is associated with an

edge incident on p. This takes O (logz n) time.

Next, perform a non-destructive split at a leaf

p~ of T incident upon q to bring p~ to be the

grandchild of the root of T so that the geodesic

path from p to q is the diagonal separating the

geodesic triangle for p~ from the geodesic trian-

gle for p(p~ ) (see Figure 7, as this is very similar
to our operation for edge insertion with v = p

and w = q). Now, the shortest path between p

and q is a diagonal in the geoclesic triangulation

for R, so that the length of the geodesic path

and its k edges can be retrieved in time 0(1)

and O(k), respectively, from the chain trees. Fi-

nally, we undo the above rotations to reset the

data structure to its original state. The overall

time complexity is O(log2 n), plus O(k) if the

path is reported in addition to its length.

If p and q are not vertices of R, we “at-

tach” them to the boundary of R by means

of two horizontal ray-shootings followed by two

Attach Vertez operations, which takes 0(log2 n)

time, and we apply the previous method.

Lemma 5.2: A shortest-path query takes time

O(log2 n) to report the length of the path, plus

O(k) time to report the k edges of the path.

6 Conclusion

We have given a simple and efficient scheme

for dynamically maintaining a connected sub-

division S subject to ray shooting and short-

est path queries. Our methocl was based on

maintain geodesic triangulations of each polyg-

onal region in S through the use of an ele-

gant duality between diagonal swaps between

adjacent geodesic triangles and rot at ions in red-

black trees. Since we implemented each rotation

in O (log n) time, this resulted in worst-case run-

ning times of O (log2 n) for queries and updates.

Hershberger and Suri [16] recently showed

that one can triangulate the interior of a sim-

ple polygon (using additional interior points) so

that any ray intersects O (log n) triangles. Ap-

plying our approach to this method would not

improve the running time of updates, however,

since an edge insertion would still require chang-

ing O(log n) edges, and we would still require a

dynamic point location structure. Thus, this

would still require 0(log2 n) time. Therefore,

this still leaves as an open question whether one

can achieve o(log2 n) time for both updates and

ray shooting queries in a dynamic connected

subdivision.

Acknowledgement

We would like to thank Gunter Rote for useful

comments.

References

[1]

[2]

[3]

[4]

P.K. Agarwal and M. Sharir, “Applications

of a new partitioning scheme,” Proc. 2nd

Workshop Algorithms Data Struct., Lec-

ture Notes in Computer Science, vol. 519,

Springer-Verlag, 1991, 379-391.

B. Chazelle, H. Edelsbrunner, M. Grigni,

L. Guibas, J. Hershberger, M. Sharir,

and J. Snoeyink, “Ray shooting in poly-

gons using geodesic triangulations,” Proc.

Int. Coil. on Automata, Languages, and

Programming (ICALP): LNCS 510, 1991,

661-673.

B. Chazelle and L.J. Guibas, “Visibility

and Intersection Problems in Plane Geom-

etry,” Discrete C’omput. Geom., 4, 1989,

551-581.

Y.-J. Chiang, Y.-J., F.P. Preparata, and

R. Tamassia, “A Unified Approach to Dy-

namic Point Location, Ray Shooting, and

324



[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

“. -, ..-. . . ..-

[14]---”’ “--” ““ “’-””Shortest l’aths m l’lanar Maps,” t’roc.

~th ACM-SIAM Symp. on Discrete .Algo-

rithms, 1993, 44–53.

S.W. Cheng and R. Janardan, “New Re-

sults on Dynamic Planar Point Location,”

Technical Report TR 90-13, Dept. of (30m-

puter Science, Univ. of Minnesota, 1990.

(Prelim. version: 31st FOG’S, 96--105,

1990.)

S.W. Cheng and R. Janardan, “Space-

efficient ray shooting and intersection

searching: algorithms, dynamization and

applications,” Proc. 2nd A CM-SIAM Sym-

pos. Discrete Algorithms, 1991, 7-16.

T.H. Cormen, C.E. Leiser-

son, and R.L. Rivest, Introduction to Al-

gorithms, MIT Press (Cambridge, Mass.:

1990).

Eppstein, D., G.F. Italiano, R. Tamas-

sia, R.E. Tarjan, J. Westbrook, and M.

Yung, “Maintenance of a Minimum Span-

ning Forest in a Dynamic Planar Graph ,“

Proc. First A CM-SIAM Symp. on Discrete

Algorithms, 1-11, 1990.

0. Fries, K. Mehlhorn, and S. Naeher, “Dy-

namization of Geometric Data Structures,”

Proc. (Ist) ACM Symp. on Computational

Geometry, 168-176, 1985.

M.T. Goodrich, M. Ghouse, and J. Bright,

“Generalized Sweep Methods for Paral-

lel Computational Geometry,” Proc. %d

ACM Symp. on Parallel Algorithms and

Architectures, 1990,280-289.

M.T. Goodrich and R. Tamassia, “Dy-

namic Trees and Dynamic Point Location,”

Proc. 23rd A CM Symp. on Theory oj Com-

puting, 1991, 523-533.

L.J. Guibas and J. Hershberger, “Optimal

shortest path queries in a simple polygon ,“

J. Comput. Syst. Sci., 39, 1989, 126-152.

L.J. Guibas, J. Hershberger, D. Leven,

M. Sharir, and R.E. Tarjan, “Linear Time

Algorithms for Visibility and Shortest Path

Problems Inside Simple Polygons ,“ %d

ACM Comp. Geom., 1986, 1–13.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

L.J. Gm bas and N. Sedgewlck, bbfl l.hchro-

matic Framework for Balancecl Trees,”

Proc. 19th IEEE Symp. on Foundations of

Computer Science, 1978,8-21.

J. Hershberger, “Optimal Parallel Algo-

rithms for Triangulated Simple Polygons,”

Proc. 8th ACM Symp. on Computational

Geometry, 1992, 33-42.

J. Hershberger and S. Suri, “A Pedes-

trian Approach to Ray Shooting: Shoot a

Ray, Take a Walk,” Proc. dth ACM-SIAM

Symp. on Discrete Algorithms, 1993.

J.D. Lawrence, A Catalog of Special Plane

Curves, Dover Publications, Inc. (New

York: 1972).

D.T. Lee and F.P. Preparata, “Euclidean

shortest paths in the presence of r~ectilinear

barriers,” Networks, 14, 1984, 393--410.

E.M. McCreight, “Priority Search Trees,”

SIAM J. on Comput., No. 14, 1985, 257-

276.

K. Mehlhorn, Data Structures and Algo-

rithms 1: Sorting and Searching, Springer-

Verlag, 1984.

M. Overmars, The Design of Dynamic

Data Structures, Lecture Notes in Com-

puter Science, Springer-Verlag, 1983.

F.P. Preparata and M.I. Shamm, Com-

putational Geometry: An Introduction,

Springer-Verlag, NY, 1985.

D.D. Sleator and R.E. Tarjan, “A Data

Structure for Dynamic Trees,” J. Comput.

and Sys. Sci,, Vol. 26, 362–391, 1983.

D.D. Sleator, R.E. Tarjan, and W. P.

Thurston, “Rotation distance, triangula-

tions, and hyperbolic geometry,” J. Amer.

Math. Sot., 1, 1988, 647-682.

R.E. Tarjan, Data Structures and Network

Algorithms, SIAM, Philadelphia, PA, 1983.

D. Willard and G. Lueker, “Adding Range

Restriction Capability to Dynamic Data

Structures,” J. ACM, Vol. 32, 597-617,

1985.

325



A Geodesic Triangle

w

u

Figure 1

A Rotation and Associated
Splice during a Split

splice

““a’’”<

Geodesic Triangulation

Figure 2

Ray Shooting O(log%) Time

-

Figure 3 Figure 4

326



Rotation and Swap of
Diagonals: Topological Wew

❑

Y

Figure 5

Edge Insertion

new
root

—

w
w

Q

d ,,.,.,.,.,:,.,,:,:,,,,,,,:,::;:;,;:;:~:, w,:,,

@

‘l~:.:.,.,:,::,:,:,..................
d ..,,.,,:.. v‘.:.:.:,:.:,:.,.,.:.,:,:::,:,:., ‘:’:’:.:::::::..

‘x~,:,., ‘.:..:::.,:.:::;W.
...................................... ..:;::;,:=.%:::::::......,.,.,,,.,,,.,:,:,:, .,:,,.:.:.,.,.,.,.,.,.,.v :::::::?:::.*: ‘?=,,.,:,:::::::::,:;:,:, ..::::::::::::;,::~:, ..,:,:.:.:,............. ..:.:,::,::,,:,,,,,,:,:,,.:;~,,,,,,, .,.,:,

+ .:$~.~,, .::i::j:;:.;: _
.::i~ now splice here ~:.:.:.:.:.:.W .,

:.:?:.......,.,,. ;..’.’.:.:.::::::::W., .,:,:,;:

%

v:,~:::::,:,::,:::,:,::::
..:,:::,:,:,:,:::,:,:,:,:,:.,.....:,~ : ,.,.,:?.!.?.,3.. ;~:,,.,‘.::W.:.:,::><.2W;,................. ;-:

,.:::; :;jf;;;:jj~.~,: ,,,,,..,,.......................,.:.:..,.

;’ w %.i~ti,:, w

:::::::::,::fi.y.:.,,,........... .,.,.,.,,,,,.,,,.....................,.,..., .::::::::::::::.:.,.?,.>,

we split here ‘.,:::::,;;:;:;:,:,::;:;,:::,:::,;:::::.,
nondestructive y ‘:::fi:w,:,:;.,fi,:w................*.. “f..,.:.:.:.:.,.:.:.:.,,.,.,.,,,,,.

A.fiu
.:.:.

v

Update of Delto
Regions in a

Rotation

h

,,:,:

v
.!.;,.

u

Figure 6

Edge Deletion

root

1.

2.

3.

Spli

Figure 7 Figure 8

327


