
Algorithmica (1988) 3:535-548 Algorithmica
�9 1988 Springer-Veda8 New York Inc.

Parallel Algorithms for Some Functions of
Two Convex Polygons I

Mikhai l J. Ata l lah 2 and Michael T. Goodr ich 2

Abstract. Let P and Q be two convex, n-vertex polygons. We consider the problem of computing,
in parallel, some functions of P and Q when P and Q are disjoint. The model of parallel computation
we consider is the CREW-PRAM, i.e., it is the synchronous shared-memory model where concurrent
reads are allowed but no two processors can simultaneously attempt to write in the same memory
location (even if they are trying to write the same thing). We show that a CREW-PRAM having n I/k
processors can compute the following functions in O(k ~+~) time: (i) the common tangents between
P and Q, and (ii) the distance between P and Q (and hence a straight line separating them). The
positive constant e can be made arbitrarily close to zero. Even with a linear number of processors,
it was not previously known how to achieve constant time performance for computing these functions.
The algorithm for problem (ii) is easily modified to detect the case of zero distance as well.

Key Words. Computational geometry, Convex polygons, Parallel algorithms.

1. Introduction. Let P and Q be two convex, n-vertex polygons. We consider

the p rob lem of comput ing , in parallel , the fol lowing funct ions of P and Q when
P and Q are disjoint: (i) the c o m m o n tangents be tween P and Q, and (ii) the

shortest d is tance be tween P and Q (and hence a l ine separat ing them). A n easy
modif ica t ion of the a lgor i thm for (ii) actual ly tests dis jointness (it returns a

nonzero dis tance and separat ing l ine iff they are disjoint) . Th roughou t this paper,

the model of paral lel compu ta t i on we use is the C R E W - P R A M , i.e., it is the
synchronous sha red-memory model where concur ren t reads are a l lowed but no

two processors can s imul taneous ly a t tempt to write in the same memory locat ion
(even if they are trying to write the same thing). Let c and d be any integers of
our choice, and let k = c d. We show that a C R E W - P R A M having n 1/k processors

can compute the above -men t ioned funct ions in t ime O (k 1§ where

limc_~oo e (c) = 0; hence c can be chosen to be a cons tant that is large enough to
make e (c) very close to zero. Our algori thms are nontr iv ia l parallel general izat ions

of the k n o w n sequent ia l a lgori thms [4], [5] for these problems.
Setting k = 1 in our c o m m o n tangents result immedia te ly implies an opt imal

O(log n) t ime, n processor paral le l convex hull a lgor i thm that is s impler than
the ones recently given in [1] and [2]. The parallel convex hull a lgori thms given
in [1] and [2] avoid the c leaner approach of recursively solving two subprob lems

1 This research was supported by the Office of Naval Research under Grants N00014-84-K-0502 and
N00014-86-K-0689, and the National Science Foundation under Grant DCR-8451393, with matching
funds from AT&T.
2 Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA.

Received October 25, 1986; revised April 17, 1987. Communicated by Bernard Chazelle.

536 M.J. Atallah and M. T. Goodrich

of size n / 2 each [3], [6], [7], because it was not known then how to find the
common tangents between the two subsolutions in constant time and with n
processors. Instead, these previous parallel convex hull algorithms partition the
input points into ~ sets of size ~ each and, although asymptotically optimal,
they are less natural than the standard solution [3], [6], [7] whose efficient parallel
implementat ion is made possible by this paper. Essentially the same technique
that we use for establishing our common tangents result is used to design a
parallel algorithm for computing the shortest distance between P and Q.

The paper is organized as follows. Section 2 gives the algorithm for computing
the two common tangents between P and Q such that P and Q are on the same
side of each of these two tangents. Essentially the same algorithm can compute
the other two common tangents (the ones such that P and Q are on opposite
sides of each of them). Section 3 gives a similar result for computing the (shortest)
distance between P and Q. Essentially the same algorithm can detect whether P
and Q are actually disjoint or not (if not it would just return a zero value for
the distance). Section 4 concludes.

2. Finding Common Tangents. Let P = (p l , . . . , P,) and Q = (q ~ , . . . , qn) be two
disjoint convex polygons, where the pi's (resp. qi's) are given in clockwise cyclic
order. For convenience we assume that no three successive vertices of either
polygon are colinear. Let c and d be any integers of our choice, c = O(1). Let
k = c d. Our aim is to show that a CREW-PRAM with n 1/k processors can compute
the two common tangents beween P and Q (P and Q are on the same side of
a common tangent) in time O(kl§ where l i m c ~ e(c) = O. By choosing c to
be a large enough constant, we can make e(c) arbitrarily close to zero. As already
mentioned, even the case k = 1 of this result was previously an open question.

Since P and Q are disjoint, they are separable by a straight line. Such a
separating line is not given as part of the input. However, a by-product of the
algorithm we give in Section 3 is that a n n 1/k processor CREW-PRAM can, in
O (k ~§ time, find a straight line separating P and Q. For the rest of this section
we assume that such a separating line (call it L) has already been found. Without
loss of generality we assume that L is vertical, that P is to its left, and Q is to
its right. We focus on the problem of computing the upper common tangent (that
of computing the lower one being symmetrical), and we henceforth use P and
Q to denote the upper portions of the two input polygons. For notational
convenience we continue to assume that P and Q are n-gons, i.e., that I P I = I01 --
n. See Figure 1.

I f we had n 2 processors available, then it would be trivial to find the desired
common tangent in constant time (the detailed specification of such a brute-force
algorithm is easy and is omitted). In view of this last remark, we may be tempted
to give the following straightforward constant time, n processor "solut ion" (which
does not work):

(i) Consider two evenly spaced x/~-subsequences of the vertices of P and
Q, obtaining the two v/-ff-gons P'=(Pv~-, P2 , / '~ . . . ,P ,) and Q ' =
(q~ , q2e-~. . . , qn). Use the above-mentioned brute-force approach to find

Parallel Algorithms for Some Functions of Two Convex Polygons 537

p P

P2

P l Pn

L

q2

qn

qJ.

Fig. 1. The two polygons P and Q. Without loss of generality, the line separating P and Q is vertical
and P is to the left of Q.

the common tangent to P ' and Q' in constant time. Say it is the line joining
pi,/-~ P ' to q / ~ c Q'.

(ii) The vertices of P' (resp. Q') divide P (resp. Q) into x/n portions, call them
P~ , P,/-~ (resp. Q 1 , . . . , Q,/~). Use the brute-force algorithm between the
2x/-n points in P~ u Pi+~ and the 2x/-n points in Qj ~ Qj+I (i.e., between the
portions of P adjacent to p~,/-n- and the portions of Q adjacent to tbe-~).

The reason the above approach fails is that the "locality" property needed for
step (ii) need not hold: indeed, the portion of P (resp. Q) containing the left
(resp. right) point of tangency might be quite far from P~e-~ (resp. q2,/~). (We leave
it to the reader to find an example of how this might happen.) The correct solution
to the common tangent problem makes a more judicious use of the basic idea
of the above (erroneous) steps (i) and (ii). It also makes use of the next two
(easy) propositions.

PROPOSITION 1. Let p be a point external to Q. Then the upper tangent to Q
passing through p can be computed in time 0 (k) by an n 1/k processor C R E W - P R A M ,
where k is any integer of our choice.

PROOF. Let t = n 1 - 1 / k . Let Q' consist of every tth vertex of Q, i.e., Q ' =
(q,, q2 , , . . . , q,). Since Q' has tl 1 / k vertices and we have n 1 /k processors, it is
trivial to find in constant time the upper tangent to Q' passing through p, say
this tangent touches Q' at qit. Let qj be the vertex of Q at which the desired
tangent touches Q. Test whether qj is to the left of qit, to the right of qi,, or at
qlt (this test trivially takes constant time with one processor). If t b = q,t then we
are done, so suppose (without loss of generality) that the test reveals that qj is
to the left of q,, i.e., j < it (the case it < j is symmetrical). Then it is not hard to
prove that we have (i - 1) t < _ j (we leave the proof to the reader). Therefore it
suffices to find the upper tangent to polygon (q~t_,, qit-t+l , q. - l) passing
through p. Thus, by doing a constant amount of work, we have reduced the
polygon size by a factor of n Ilk. Doing this at most k times finds the desired
point of tangency. []

538 M.J. Atallah and M. T. Goodrich

PROPOSITION 2. Let p be a vertex of P and let Pu be a vertex o f P at which the
common tangent between P and Q touches P. Then for any integer k of our choice,
a n n 1/k processor C R E W - P R A M can, in O(k) time, determine whether Pu is to the
left o f p, to the right of p, or at p.

PROOF. Use Proposition 1 to find the tangent to Q passing through point p, let
T be this tangent. If T is tangent to P then p~ =p. Otherwise, let 3/be the vertex
of P just to the left of p. It is obvious that p, is to the left of p on P if and only
if 7 is above line T. []

The following preliminary algorithm shows that, for any integer c of our choice,
an n 1/c processor CREW-PRAM can find the common tangent to P and Q in
O(c 2) time.

PRELIMINARY ALGORITHM A FOR FINDING UPPER COMMON TANGENT

Input. The upper portions P and Q of two disjoint convex polygons separated
by a vertical line L. Both P = (Pl, . - . ,Pn) and Q = (ql , . �9 �9 qn) are monotone in
the x direction, i.e., the x component of pi (resp. qj) is smaller than that of P H
(resp. qj+l)- See Figure 1. Note: The assumption that we are already given L is
not really needed, since Section 3 shows how to find such a line L.

Output. The upper common tangent to P and Q.

StepO. Se t /3 :=P , 0 : = Q , s : = n 1/2c.

Step 1. Repeat steps 2-6 until either t3 is a single point or 0 is a single point.
Without loss of generality, assume that it is P that ends up becoming a single
point (call it Pu). Use Proposition 1 to find, in O(c) time, the tangent to Q passing
through Pu, and output the tangent thus found (this is the desired tangent between
P and Q).

Step 2. Let P ' = (ak , . . . , as) be the polygon obtained by considering every
(I/3l/s)th vertex of P, i.e., the s vertices of P' divide /3 into s equal portions.
Call these portions A 1 , . . . , As, so that ai is adjacent in P to portions Ai and
Ai+l. By definition, ai belongs to Ai but not to Ai+l. Let Q ' = (b a , . . . , bs) be
analogously defined for Q, and let the resulting portions of Q be B 1 , . . . , Bs. Use
the already-mentioned brute-force method for finding the common tangent
between P ' and Q' (this is possible and takes constant time because we have s 2
processors). Say the tangent thus found joins a~ c P' to bj ~ Q'. (See Figure 2.)

Step 3. Test whether the common tangent to fi and t~ touches /3 in Ai. (This
is done in O(c) time by using Proposition 2 twice, once at vertex P~-I and once
at vertex p~.) If the answer is "yes" then do /3 := A~, otherwise /3 remains
unchanged.

Implementation Note. The assignment /3 :--Ai is done in constant time simply
by remembering the new first and last vertex of/3.

Parallel Algorithms for Some Functions of Two Convex Polygons 539

6 . a s

b2

r \
b.

bl

Fig. 2. The two subpolygons P' and Q' and their common supporting tangent aib~. The polygons 16
and (~ are shown by dashed lines.

Step 4. Test whether the common tangent t o /5 and t~ touches/5 in A~+~. If it
does then d o / 3 := A~+~, otherwise/5 remains unchanged.

Step 5. Test whether the common tangent to /3 and 0 touches (~ in Bj. If it
does then do 0 := Bj, otherwise t~ remains unchanged.

Step 6. Test whether the common tangent to fi and 0 touches/3 in B j + 1 . If it
does then do Q := Bj+I, otherwise Q remains unchanged.
(End of algorithm.)

Note that the algorithm maintains thepropert.y that the tangent between P and
Q is the same as the tangent between P and Q. Thus the algorithm is correct.

Since every usage of Proposition 2 takes O(c) time, the time complexity of the
algorithm is equal to c multiplied by the number of times that steps 2-6 get
executed. We now bound the number of times steps 2-6 are executed.

^ A

LEMMA 1. Let a,, bj, P, Q, P', and Q'^ be as inA step 2 of Algorithm A. Also, let
p, qo be the common tangent to P and Q (p, c P, qo c Q). Then at least one of the
following statements is true:

(a) p, c Ai;
(b) p, ~ Ai+G
(c) qvcB~;
(d) q~ ~ Bj+,.

PROOF. If p, = ai or qv = b~ then the lemma holds, so assume that p. ~ ai and
qo ~ bj. By its definition, the line p, qv is above both ai and bj. Therefore at least
one of Pu or q~ is above the line a~bj. Without loss of generality, assume that p,
is above the line a~bj. We prove that (a) or (b) must hold by a case analysis.

540 M.J. Atallah and M. T. Goodrich

Pu

.'" ...

... s

Fig. 3. We show that if Pu e Aw, w < i, then convexity is violated.

Case 1. In/5, Pu is to the left of a~. Then we claim that Pu e A~ (and hence (a)
holds). Suppose to the contrary that p, e Aw where w < i. By the definition of a~
and bj, the vertex awe P ' must lie on or below the straight line a~bj. The three
vertices p, , aw, ai occur in that order on /5 (see Figure 3). Consider the positions
of these three vertices relative to the line a ; b / t h e first vertex is (by hypothesis)
above that line, the second is (as we have just argued) on or below it, and the
third is (by definition) on it. This contradicts the convexity of/5. Thus, (a) holds.

Case 2. In P, p~ is to the right of ai. An argument similar to that for case 1
shows that Pu e Ai+l; hence, (b) holds.

I f q~ is above line a~b~, then an argument similar to that above shows that one
of (c) or (d) must hold. []

COROLLARY 1. Steps 2-6 o f Algorithm A are executed a total o f at most 4 c - 1
times.

PROOF. Lemma 1 implies that, every time we execute steps 2-6, at least one of
/3._ the statements . - Ai, /5 := Ai+l, 0 := Bj, (~ := Bj+I is executed. This implies that

at least one o f /5 or Q decreases in size by a factor of s = n 1/2~, thus proving the
corollary. []

We have thus established the following:

THEOREM 1. Algorithm A correctly computes the upper common tangent to P and
Q. With n uc processors, it runs in time 0(c2) .

COROLLARY 2. With n processors, the upper common tangent to P and Q can be
computed in constant time.

Let Bo be the algorithm corresponding to Corollary 2, i.e. Bo runs in O(1) time
with n processors. Now, we define a sequence of algorithms B~, B2 , . . . such that

Parallel Algorithms for Some Functions of Two Convex Polygons 541

Bd uses n ~/~d processors, and is defined as follows: Bd reads exactly like A except
that:

(i) In Bd step 0 sets s equal to n 1/c (instead of n ~/2c in A).
(ii) In step 2, whereas A uses the brute-force method, Bd uses Bd-1 (we can do

this even though there are only n ~/cd processors available, because Bd_ 1 is
being used on a subproblem of size only hi~C).

(iii) Every usage of Proposition 1 or Proposition 2 now costs O(c d) time because
we have only n l/ca processors.

Obviously, Lemma 1 still holds for Bd just as it did for A. Thus, every time
steps 2-6 are executed in Bd, at least one of /3 or t~ decreases in size by a factor
of s ---- n 1/c. This implies that steps 2-6 in l d are executed at most 2 c - 1 times.
I f we let Td be the time complexity of Bd, then we have

To=c1 and T d = (2 C - - 1) ' (T d 1+C2"cd)+c3 "c d,

where c~, c2, and c3 are constants. This has solution Td = 0 (c2 (c -- 1)-1(2c -- 1) d).
Choosing c to be a constant and using k = c d gives

Td = O(k 1+~(c)) where e(c) = l o g c (c - l (2 c - 1)).

This establishes the following:

THEOREM 2. Let P and Q be two disjoint convex n-gons. Let k = c a where c and
d are any integers, c = O(1). A C R E W - P R A M having n Uk processors can compute
the common tangents between P and Q in O(k ~+~(c)) time, where limc~oo e(c) = O.

As already stated, the above algorithm can trivially be modified to compute
the other two common tangents (the ones such that P and Q are on opposite
sides of each of them). The details of these modifications are easy and are left
to the interested reader.

3. Computing the Distance. The input consists of the two disjoint convex poly-
gons P = (P l , . . . ,Pn) and Q = (q l , . . . , q ,) , where the pi's (resp. qi's) are given
in clockwise cyclic order and no three successive vertices of either polygon are
colinear. We are interested in computing, in parallel, the shortest distance between
P and Q. This distance is formally defined as follows:

d(P, Q)= min d(u, w),
u~P, w c Q

where d(u , w) denotes the Euclidean distance between points u and w, and the
notation "u ~ P " means that u is a point on the boundary of P (not necessarily
a vertex of P). Our algorithm actually returns a pair of points u, w such that
d(P, Q) = d(u , w). Of course, once we have these points u, w, any perpendicular

542 M.J. Atallah and M. T. Goodrich

to the straight line segment joining u and w is a line separating P from Q.
Therefore our algorithm for the closest distance immedately gives us the separating
line L needed in Section 2. At the end of this section we briefly sketch the
modifications needed for the algorithm to also work for the case of zero distance
(in which case there is no separating line).

In order to simplify the exposition, we assume that the desired points u, w are
unique. Our algorithm can easily be modified for the general case, e.g., by adopting
a suitable convention for returning a unique u, w pair in case d(P, Q) is the
distance between two parallel segments of (respectively) P and Q (in that case
there is an infinite number of choices for u, w, and this is the only case where u
and w are not unique).

Let p be a point (not necessarily a vertex) on the boundary of P, and define
q similarly for Q. Let Tp (resp. Tq) be the line perpendicular to the segment pq
at point p (resp. q). It is quite trivial to see that d(P, Q) = d(p, q) if and only if
(i) Tp and Tq are tangent to (respectively) P and Q, and (ii) P and Q are on
opposite sides of the region between Tp and Tq (i.e., this region separates them).
This simple observation immediately implies that, with n 2 processors and in
constant time, it is possible to compute the closest distance between P and Q
and a pair of points achieving it (the detailed specification of this brute-force
procedure is left to the reader). The algorithm we shall give uses these simple
observations. It also makes use of the next two (easy) propositions.

PROPOSITION 3. Let p be a point external to Q. Then the point q ~ Q such that
d(p, q)= d(p, Q) can be computed in time O(k) by a n n 1/k processor CREW-
PRAM, where k is any integer of our choice.

PROOF. Let t = n 1-~/k . Let Q' consist of every tth vertex of Q, i.e., Q ' =
(qt, q2 t , . . . , qn)- Since Q' has n 1/k vertices and we have n 1/k processors, it is
trivial to find in constant time the point q '~ Q' such that d(p, q')=d(p, Q').
(Note that q' need not be a vertex of Q'.) I f the perpendicular to line pq' at point
q' is tangent to Q, then we can stop and declare point q' as the desired point q.
Otherwise let a (resp. fl) be the vertex of Q' that immediately precedes (resp.
follows) point q' when the boundary of Q' is traced in a clockwise manner (see
Figure 4). Note that in Q, there are 2 t + 1 vertices between a and/3 (inclusive)
if q' is a vertex, otherwise there are t + 1 vertices between a and/3 (where the
word "between" refers to the circular ordering q l , . . . , qn)" We leave it to the
reader to prove that, in Q, the desired point q occurs between a and/3 (inclusive).
Let y be the median of the (at most 2t + 1) vertices between a and/3 (inclusive):
test whether the desired point q is at 3', between a and 3", or between 3' and/3
(this test trivially takes constant time with one processor). I f q = 3' then we are
done, so assume (without loss of generality) that the test reveals that q is between
a and 3'. Hence we can focus our search for q to the section of Q between a
and 3" (excluding 3'), which contains at most t vertices. Therefore by doing a
constant amount of work, we have reduced the polygon size by a factor of at
least n l /k . Doing this at most k times finds the desired point q. []

Parallel Algorithms for Some Functions of Two Convex Polygons 543

. . - - - ~ a P

q2t

Q,

Fig. 4. Searching for the point in a convex polygon Q closest to a point p. The polygon Q is outlined
by dashed lines, and the polygon O' is outlined by solid lines.

PROPOSITION 4. Let Pi and pj be any two vertices o f P, i < j, and let Pu be the
vertex o f P such that d(pu, Q) = d(P, Q). Then for any integer k o f our choice, an
n ~/k processor C R E W - P R A M can, in O(k) time, locate where Pu occurs with respect
to Pi and pj in the sequence Pl, P2,. �9 �9 , Pn (i.e., it can determine whether u = i, u =j ,
i < u < j , or none of these).

PROOF. For any two indices 1 -< a, b -< n, let o.a,b denote the sequence d(pa, Q),
d(pa+l, Q) , . . . , d(pb, Q) (assuming index n + 1 equals 1). For example, o-9,2 =
d(p9, Q) , . . . , d(p , , Q), d (p l , Q) , . . . , d(p2, Q). Observe that, because of con-
vexity, there exist two indices a and b, 1 <- a -< b -< n, such that tra, b and o'b,a are
both sorted, one in increasing order and the other in decreasing order. This
implies that we can locate where Pu occurs with respect to any pair Pi, Pj in the
sequence Pl, -- -, Pn by performing a constant number of distance computations
of the type d(pt, Q). By Proposition 3, each such distance computat ion can be
done within the desired time and processor bounds. []

The following preliminary algorithm shows that, for any integer c of our choice,
an n ~/c processor CREW-PRAM can find, in O(c 2) time, the points u c P and
w ~ Q such that d(u, w) = d(P, Q).

PRELIMINARY ALGORITHM D FOR COMPUTING DISTANCE

Input. Two disjoint convex polygons P = (P l , . . . , P,) and Q = (q l , . - . , q,)- The
pi's (resp. q/s) are given in clockwise cyclic order.

544 M.J. Atallah and M. T. Goodrich

Output. Points u, w such that d(u, w) = d(P, Q).

StepO. Set /3 :=p , (~:=Q, s:=nl/2~.

Step 1. Repeat the following steps until either/3 is a single point or t~ is a single
point. Without loss of generality, assume it is P that ends up becoming a single
point (call it x): use Proposition 3 to find, in O(c) time, the point y c Q such
that d(x, y) = d(x, Q). Output the points x and y (these are the desired points
U, W).

Step 2. Let P ' = (a l , . . . , as) be the polygon obtained by considering every
(IPI/s)th vertex of/3, i.e., the s vertices of P' divide t3 into s equal portions.
Call these portions A 1 , . . . , As, so that ai is adjacent in /3 to portions Ai and
Ai+l. By definition, ai belongs to A~ but not to A;+1. Let Q '= (bl b~) be
analogously defined for (~, and let the resulting portions of (~ be B 1 , . . . , Bs. Use
the already-mentioned brute-force method for finding the points a ~ P' and b e Q'
such that d(a, b) = d(P' , Q'). Since we have s 2 processors, this takes constant time.

Let ap (resp. tip) be the vertex of P' that immediately precedes (resp. follows)
a on the boundary of P'. (Figure 5 illustrates the case when a is not a vertex of
P'.) If a is a vertex of ,P ' then ap and tip are (respectively) its predecessor and
successor vertices on P , and hence there are then 2[P I/s + 1 vertices of/3 between
ae and tip (inclusive). If a is not a vertex of P' then ap and tip are consecutive
vertices of P', point a is on the segment of P' that joins ap to tip, and there are
l /3l /s+ 1 vertices of /3 between ap and tip (inclusive). Let Yv be the median of

P (d a s h e ~

P' (solid) (

pa~ a

%

h

!

J;

i I

I -

Fig. 5. Reducing the size of /~ and/or
(inclusive), and ye subdivides P~ into

"Iv

(dashed)

A f l O f Q' (solid)

I

t~. p~t3 is the (dashed) portion of 13 between ap and fie
P=Y and P:'~. Q~, Q=v, and QVg are defined analogously.

Parallel Algorithms for Some Functions of Two Convex Polygons 545

the (at most 21/3[/s + 1) vertices o f / 3 that are between ap and [3p (inclusive).
(Note that if a is a vertex of P', then 3'P = a.) We use P ~ to denote the portion
of P that is between ap and [3p (excluding ap and [3p). P~V and Pv~ are
analogously defined.

Let Olo, [30, '~O' Q"e' Q"V' and QV~ be similarly defined for b, Q', and t~.
(Figure 5 illustrates the case when b is a vertex of Q'.)

Step 3. Use Proposition 4 to detect whether u = av, u = [3p, u ~ 3'p, u 6 par,
U e PV~, or none of these. If u equals ae (resp. TP, [3P) then set P equal to O/p
(resp. TP, [3P)and go to step 4. Otherwise, if u c p~v then do /3 := p~v and go to
step 4. Otherwise, if u ~ pv~ then do /3 := pv~ and go to step 4. Otherwise leave
P unchanged. (An assignment l ike/3 := P ~ is done in constant time simply by
remembering the new first and last vertex of/3.)

Step 4. Use Proposition 4 to detect whether w = aq, w = [30, w =~Yo, w ~ Q~V,
w ~ Qr~, or none of these. If w equals a o (resp. 30, [3o) then set Q equal to a o
(resp. 3'0, [30) and go to step 2. Otherwise, if w = Q~V then do 0 := Q~v and go
to step 2. Otherwise, if w ~ QV~ then do (~:= Qv~ and go to step 2. Otherwise
leave 0 unchanged.
(End of algorithm.)

Since every usage of Proposition 4 takes O(c) time, the time complexity of the
algorithm is equal to c multiplied by the number of times that steps 2-4 get
executed. We now bound the number of times steps 2-4 are executed.

LEMMA 2. Let a, b, P ~ , Q~'e, u and w be as in Algorithm D. Assume that
u ~ {ae, tip} and w ~ {aQ, [30}- Then at least one of the following statements is true:

(a) u e P ~'~,
(b) w c Q ~ .

PROOF. Let Ta (resp. Tb) be the line perpendicular at a (resp. b) to the segment
ab (see Figure 5). By the definition of a and b, To (resp. Tb) is tangent to P '
(resp. Q'). Without loss of generality, T~ and Tb are vertical, P ' is to the left of
To, and Q' is to the right of Tb. If u = a or w = b then the lemma holds, so assume
that u # a and w # b. By the definition of u and w, we must have d(u, w) <- d(a, b).
This implies that u is to the right of T~ or w is to the left of Tb (possibly both).
Hence, it suffices to show that if u (resp. w) is to the right (resp. left) of
To (resp. Tb), then (a) (resp. (b)) holds. We prove this by contradiction. Suppose
that u is to the right of T~ and (a) does not hold, i.e. u ~ P ~ . Without loss of
generality, assume that u is below "yp. NOW, by walking from vertex 7p clockwise
along the boundary of/3, we encounter vertex [3e before reaching u. Since 7P is
on or to the right of T,, [3e on or to the left of T~, and u to the right of T~, this
contradicts the convexity of P. A similar argument shows that if w is to the left
of Tb, then (b) holds. []

COROLLARY 3. Steps 2-4 of Algorithm D are executed a total of at most 4 c - 1
times.

546 M.J. Atallah and M. T. Goodrich

PROOF. Lemma 2 implies that, every time we execute steps 2-4, at least one
o f / 3 or (~ decreases in size by a factor of at least s = n 1/2~, thus proving the
corollary. []

We have thus established the following:

THEOREM 3. Algorithm D correctly f inds points u ~ P and w ~ Q such that
d (u, w) = d (P, Q). I t uses n 1/ c processors and it runs in time O(c2), where c is any
integer o f our choice.

We now define a sequence of algorithms Eo, E l , . . . in a manner entirely
analogous to the way we defined sequence Bo, B1 , . . . in the previous section.
The analysis, which is very similar to that done in Section 2 (and hence is omitted),
establishes the following:

THEOREM 4. Let P and Q be two disjoint convex n-gons. Let k = c d where c and
d are any integers, c = O(1). A C R E W - P R A M having n Uk processors can compute
points u ~ P and w ~ Q such that d(u, w) = d(P, Q) in O(k l+~(c~) time, where
lim~-~oo e(c) = O.

COROLLARY 4. Let P and Q be two disjoint convex n-gons. Let k = c d where c
and d are any integers, c-- O(1). A C R E W - P R A M having n 1/k processors can

compute a straight line L which separates P f rom Q in O (k 1+~(c)) time, where
limc_~oo e(c) = O.

Given a straight line L and a convex polygon P, an easier and somewhat more
efficient version of the above method can be used to determine if L and the
boundary of P intersect or not, and if so to give both points of this intersection.
This is done in time O (k) if we have n 1/k processors, where k is any integer of
our choice. The details are left to the reader.

The algorithm given in this section can easily be made to work for the case of
possibly zero distance (i.e., when we do not know ahead of time whether P and
Q are disjoint). The only modification needed for this is in step 2 of algorithm
D. We only briefly sketch it next. In step 2 of algorithm D, insert the following
computat ion right after the definition of P ' and Q'. Let the line L be the one
joining point am of P' to point ba of Q'. Compute the intersections of L with the
boundaries of P' and Q'. Since we have s 2 processors, this takes constant time.
The pattern of these four intersections trivially enables one processor to test, in
constant time, whether L contains a point common to both P' and Q'. I f the
answer to this test is "yes" then the distance is zero (i.e., P and Q intersect) and
we are done. So assume that the answer to this test is "no". In that case P' and
Q' intersect iff there are pairs of boundary edges e~ ~ P ' and e 2 E Q' that intersect
each other. I f there are many such pairs of intersecting edges el, e2, then convexity
implies that there is exactly one pair el, e2 with the following property: if L~ is
the line containing el and L2 is the line containing e2, then a walk from a~ to b~
along L encounters the four points a~, L~ n L, L2 n L, and bl in that order. (See

Parallel Algorithms for Some Functions of Two Convex Polygons 547

[8] for a discussion of how this follows from convexity; the sequential intersection
detection algorithm of [8] actually finds such a pair el, e2 by binary search.)
Therefore we can use the s 2 processors available to test by brute force whether
P ' and Q' intersect or not, in constant time. I f they do intersect then we are done,
if they do not then we proceed exactly as in the rest of step 2 and algorithm D:
find the points a ~ P ' and b ~ Q' such that d (a , b) = d (P ' , Q') . . . etc.

As a final remark, we observe that the problem of computing the shortest
distance between the boundaries of P and Q has an f~(log n) lower bound on
the CREW-PRAM, by the following straightforward construction. We use the
fact that there is a known f~(log n) lower bound for the problem of computing
the logical OR of n bits X l , . . . , x n [9]. Therefore it suffices to show that a
CREW-PRAM can compute the logical OR of n bits in time equal to a constant
plus the time for computing the distance between the boundaries of P and Q.
We do this by converting the problem of computing the OR of Xl , x, to that
of computing the distance between the boundaries of the following two convex
n-gons P and Q. P is any regular convex n-gon (i.e., all its sides have same
length). Let Qo consist of the regular convex n-gon whose vertices are the middle
points of the n boundary edges of P. The convex n-gon Q is obtained from Qo
by "deforming" Qo very slightly so as to move some of its vertices slightly into
the interior of P, others just outside of P. This deformation is governed by the
boolean variables X l , . . . , xn: we associate the ith vertex of Qo with xi and, in
the above-mentioned deformation of Qo into Q, it is x~ which governs whether
its corresponding point of Qo will move slightly inside of P (if x~ = 0) or outside
of P (if x~ = 1). The polygon Q so obtained has the property that its boundary
is at a distance of zero from the boundary of P iff the logical OR of the x~'s
is 1. (Note that Q need not be regular; it is actually regular only if the x~'s are
all 0, or all 1.) The construction of P and Q from x~ , xn can clearly be done
in constant time with n processors. This establishes the claimed lower bound.

4. Conclusion. We gave new parallel algorithms for computing some functions
of convex polygons in the CREW-PRAM model. In particular, we showed that
constant time suffices for computing these functions even if we have a sublinear
number of processors (in fact n 1/~ processors suffice for any constant integer c).
Even with a linear number of processors, it was not previously known how to
achieve constant time performance for computing these functions.

References

[1] A. Aggarwal, B. Chazelle, L. Guibas, C. O'Ddnlaing and C. Yap, Parallel Computational
Geometry, Proceedings of the 26th Annual IEEE Symposium on Foundations of Computer Science,
October 1985, pp. 468-477.

[2] M.J. Atallah and M. T. Goodrich, Efficient Parallel Solutions to Some Geometric Problems,
Journal of Parallel and Distributed Computing, Vol. 3, 1986, pp. 492-507.

[3] A. Chow, Parallel Algorithms for Geometric Problems, Ph.D. dissertation, Computer Science
Department, University of Illinois at Urbana-Champaign, 1980.

548 M.J. Atallah and M. T. Goodrich

[4] H. Edelsbrunner, Computing the Extreme Distances Between Two Convex Polygons, Journal
of Algorithms, Vol. 6, 1985, pp. 213-224.

[5] M.H. Overmars and J. Van Leeuwen, Maintenance of Configurations in the Plane, Journal of
Computer and Systems Sciences, Vol. 23, 1981, pp. 166-204.

[6] F. P. Preparata and S. J. Hong, Convex Hulls of Finite Sets of Points in Two and Three
Dimensions, Communications of the Association for Computing Machinery, Vol. 20, No. 2, 1977,
pp. 87-93.

[7] F.P. Preparata and M. I. Shamos, Computational Geometry, An Introduction, Springer-Verlag,
New York, 1985.

[8] B.M. Chazelle and D. P. Dobkin, Detection is Easier than Computation, Proceedings of the
12th ACM Annual Symposium on Theory of Computing, 1980, pp. 146-153.

[9] S. Cook and C. Dwork, Bounds on the Time for Parallel RAM's to Compute Simple Functions,
Proceedings of the 14th ACM Annual Symposium on Theory of Computing, 1982, pp. 231-233.

