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Parallel Algorithms for Some Functions of 
Two Convex Polygons I 

Mikhai l  J. Ata l lah  2 and  Michael  T. Goodr ich  2 

Abstract. Let P and Q be two convex, n-vertex polygons. We consider the problem of computing, 
in parallel, some functions of P and Q when P and Q are disjoint. The model of parallel computation 
we consider is the CREW-PRAM, i.e., it is the synchronous shared-memory model where concurrent 
reads are allowed but no two processors can simultaneously attempt to write in the same memory 
location (even if they are trying to write the same thing). We show that a CREW-PRAM having n I/k 
processors can compute the following functions in O(k  ~+~) time: (i) the common tangents between 
P and Q, and (ii) the distance between P and Q (and hence a straight line separating them). The 
positive constant e can be made arbitrarily close to zero. Even with a linear number of processors, 
it was not previously known how to achieve constant time performance for computing these functions. 
The algorithm for problem (ii) is easily modified to detect the case of zero distance as well. 
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1. Introduction.  Let P and  Q be two convex,  n-vertex polygons.  We consider  

the p rob lem of  comput ing ,  in  parallel ,  the fol lowing funct ions  of  P and  Q when 
P and  Q are disjoint:  (i) the c o m m o n  tangents  be tween  P and  Q, and  (ii) the 

shortest d is tance be tween  P and  Q (and  hence  a l ine separat ing them).  A n  easy 
modif ica t ion  of  the a lgor i thm for (ii) actual ly tests dis jointness  (it returns a 

nonzero  dis tance and  separat ing l ine iff they are disjoint) .  Th roughou t  this paper,  

the model  of  paral lel  compu ta t i on  we use is the C R E W - P R A M ,  i.e., it is the 
synchronous  sha red-memory  model  where concur ren t  reads are a l lowed but  no 

two processors can s imul taneous ly  a t tempt  to write in  the same memory  locat ion 
(even if  they are trying to write the same thing).  Let c and  d be any  integers of  
our  choice, and  let k = c d. We show that  a C R E W - P R A M  having n 1/k processors 

can compute  the above -men t ioned  funct ions  in  t ime O ( k  1§ where 

limc_~oo e ( c )  = 0; hence c can be chosen to be a cons tant  that is large enough to 
make e (c) very close to zero. Our  algori thms are nontr iv ia l  parallel  general izat ions  

of  the k n o w n  sequent ia l  a lgori thms [4], [5] for these problems.  
Setting k = 1 in  our  c o m m o n  tangents  result  immedia te ly  implies an opt imal  

O(log n) t ime, n processor  paral le l  convex hull  a lgor i thm that  is s impler  than  
the ones recently given in [1] and  [2]. The parallel  convex hull  a lgori thms given 
in [ 1] and  [2] avoid the c leaner  approach  of  recursively solving two subprob lems  
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of  size n / 2  each [3], [6], [7], because it was not known then how to find the 
common tangents between the two subsolutions in constant time and with n 
processors. Instead, these previous parallel convex hull algorithms partition the 
input points into ~ sets of  size ~ each and, although asymptotically optimal, 
they are less natural than the standard solution [3], [6], [7] whose efficient parallel 
implementat ion is made possible by this paper. Essentially the same technique 
that we use for establishing our common tangents result is used to design a 
parallel algorithm for computing the shortest distance between P and Q. 

The paper  is organized as follows. Section 2 gives the algorithm for computing 
the two common tangents between P and Q such that P and Q are on the same 
side of  each of  these two tangents. Essentially the same algorithm can compute 
the other two common tangents (the ones such that P and Q are on opposite 
sides of  each of  them). Section 3 gives a similar result for computing the (shortest) 
distance between P and Q. Essentially the same algorithm can detect whether P 
and Q are actually disjoint or not (if not it would just return a zero value for 
the distance). Section 4 concludes. 

2. Finding Common Tangents. Let P = ( p l , . . . ,  P,) and Q = ( q ~ , . . . ,  qn) be two 
disjoint convex polygons, where the pi's (resp. qi's) are given in clockwise cyclic 
order. For convenience we assume that no three successive vertices of  either 
polygon are colinear. Let c and d be any integers of  our choice, c = O(1). Let 
k = c d. Our aim is to show that a CREW-PRAM with n 1/k processors can compute 
the two common tangents beween P and Q (P  and Q are on the same side of  
a common tangent) in time O(kl§ where l i m c ~  e(c)  = O. By choosing c to 
be a large enough constant, we can make e(c)  arbitrarily close to zero. As already 
mentioned, even the case k = 1 of  this result was previously an open question. 

Since P and Q are disjoint, they are separable by a straight line. Such a 
separating line is not given as part  of  the input. However, a by-product  of  the 
algorithm we give in Section 3 is that a n  n 1/k processor CREW-PRAM can, in 
O ( k  ~§ time, find a straight line separating P and Q. For the rest of  this section 
we assume that such a separating line (call it L) has already been found. Without 
loss of  generality we assume that L is vertical, that P is to its left, and Q is to 
its right. We focus on the problem of computing the upper  common tangent (that 
of  computing the lower one being symmetrical), and we henceforth use P and 
Q to denote the upper  portions of  the two input polygons. For notational 
convenience we continue to assume that P and Q are n-gons, i.e., that I P I  = I01 -- 
n. See Figure 1. 

I f  we had n 2 processors available, then it would be trivial to find the desired 
common tangent in constant time (the detailed specification of such a brute-force 
algorithm is easy and is omitted). In view of this last remark, we may be tempted 
to give the following straightforward constant time, n processor "solut ion" (which 
does not work): 

(i) Consider two evenly spaced x/~-subsequences of  the vertices of  P and 
Q, obtaining the two v/-ff-gons P'=(Pv~-,  P2 , / '~ . . . ,P , )  and Q ' =  
(q~ ,  q2e-~. . . ,  qn). Use the above-mentioned brute-force approach to find 
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Fig. 1. The two polygons P and Q. Without loss of generality, the line separating P and Q is vertical 
and P is to the left of Q. 

the common tangent to P '  and Q' in constant time. Say it is the line joining 
pi,/-~ P '  to q / ~ c  Q'. 

(ii) The vertices of P'  (resp. Q') divide P (resp. Q) into x/n portions, call them 
P~ . . . .  , P,/-~ (resp. Q 1 , . . . ,  Q,/~). Use the brute-force algorithm between the 
2x/-n points in P~ u Pi+~ and the 2x/-n points in Qj ~ Qj+I (i.e., between the 
portions of  P adjacent to p~,/-n- and the portions of Q adjacent to tbe-~). 

The reason the above approach fails is that the "locality" property needed for 
step (ii) need not hold: indeed, the portion of  P (resp. Q) containing the left 
(resp. right) point of tangency might be quite far from P~e-~ (resp. q2,/~). (We leave 
it to the reader to find an example of how this might happen.) The correct solution 
to the common tangent problem makes a more judicious use of  the basic idea 
of  the above (erroneous) steps (i) and (ii). It also makes use of the next two 
(easy) propositions. 

PROPOSITION 1. Let p be a point external to Q. Then the upper tangent to Q 
passing through p can be computed in time 0 ( k ) by an n 1/k processor C R E W - P R A M ,  
where k is any integer of  our choice. 

PROOF. Let t =  n 1 - 1 / k .  Let Q' consist of  every tth vertex of  Q, i.e., Q ' =  
(q,, q2 , , . . . ,  q,). Since Q' has tl 1 / k  vertices and we have n 1 /k  processors, it is 
trivial to find in constant time the upper tangent to Q' passing through p, say 
this tangent touches Q' at qit. Let qj be the vertex of Q at which the desired 
tangent touches Q. Test whether qj is to the left of qit, to the right of  qi,, or at 
qlt (this test trivially takes constant time with one processor). If  t b = q,t then we 
are done, so suppose (without loss of  generality) that the test reveals that qj is 
to the left of  q,,  i.e., j < it (the case it < j  is symmetrical). Then it is not hard to 
prove that we have ( i - 1 ) t < _ j  (we leave the proof  to the reader). Therefore it 
suffices to find the upper tangent to polygon (q~t_,, qit-t+l . . . .  , q. - l )  passing 
through p. Thus, by doing a constant amount  of work, we have reduced the 
polygon size by a factor of  n Ilk. Doing this at most k times finds the desired 
point of tangency. [] 
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PROPOSITION 2. Let p be a vertex of  P and let Pu be a vertex o f  P at which the 
common tangent between P and Q touches P. Then for any integer k of  our choice, 
a n  n 1/k processor C R E W - P R A M  can, in O( k ) time, determine whether Pu is to the 
left o f  p, to the right of  p, or at p. 

PROOF. Use Proposition 1 to find the tangent to Q passing through point p, let 
T be this tangent. If  T is tangent to P then p~ =p. Otherwise, let 3/be the vertex 
of P just to the left of p. It is obvious that p, is to the left of p on P if and only 
if 7 is above line T. [] 

The following preliminary algorithm shows that, for any integer c of our choice, 
an n 1/c processor CREW-PRAM can find the common tangent to P and Q in 
O(c 2) time. 

PRELIMINARY ALGORITHM A FOR FINDING UPPER COMMON TANGENT 

Input. The upper portions P and Q of two disjoint convex polygons separated 
by a vertical line L. Both P = (Pl, . - .  ,Pn) and Q =  (ql , .  �9 �9 qn) are monotone in 
the x direction, i.e., the x component of pi (resp. qj) is smaller than that of P H  
(resp. qj+l)- See Figure 1. Note: The assumption that we are already given L is 
not really needed, since Section 3 shows how to find such a line L. 

Output. The upper common tangent to P and Q. 

StepO. Se t /3 :=P ,  0 : = Q ,  s : = n  1/2c. 

Step 1. Repeat steps 2-6 until either t3 is a single point or 0 is a single point. 
Without loss of generality, assume that it is P that ends up becoming a single 
point (call it Pu). Use Proposition 1 to find, in O(c) time, the tangent to Q passing 
through Pu, and output the tangent thus found (this is the desired tangent between 
P and Q). 

Step 2. Let P ' =  ( ak , . . .  , as) be the polygon obtained by considering every 
(I/3l/s)th vertex of P, i.e., the s vertices of P'  divide /3 into s equal portions. 
Call these portions A 1 , . . . ,  As, so that ai is adjacent in P to portions Ai and 
Ai+l. By definition, ai belongs to Ai but not to Ai+l. Let Q ' = ( b a , . . . ,  bs) be 
analogously defined for Q, and let the resulting portions of Q be B 1 , . . . ,  Bs. Use 
the already-mentioned brute-force method for finding the common tangent 
between P '  and Q' (this is possible and takes constant time because we have s 2 
processors). Say the tangent thus found joins a~ c P'  to bj ~ Q'. (See Figure 2.) 

Step 3. Test whether the common tangent to fi and t~ touches /3 in Ai. (This 
is done in O(c) time by using Proposition 2 twice, once at vertex P~-I and once 
at vertex p~.) If  the answer is "yes" then do /3 := A~, otherwise /3 remains 
unchanged. 

Implementation Note. The assignment /3 :--Ai is done in constant time simply 
by remembering the new first and last vertex of/3. 
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Fig. 2. The two subpolygons P' and Q' and their common supporting tangent aib~. The polygons 16 
and (~ are shown by dashed lines. 

Step 4. Test whether the common tangent t o /5  and t~ touches/5  in A~+~. If it 
does then d o / 3  := A~+~, otherwise/5 remains unchanged. 

Step 5. Test whether the common tangent to /3 and 0 touches (~ in Bj. If it 
does then do 0 := Bj, otherwise t~ remains unchanged. 

Step 6. Test whether the common tangent to fi and 0 touches/3  in B j +  1 . If  it 
does then do Q := Bj+I, otherwise Q remains unchanged. 
(End of algorithm.) 

Note that the algorithm maintains thepropert.y that the tangent between P and 
Q is the same as the tangent between P and Q. Thus the algorithm is correct. 

Since every usage of  Proposition 2 takes O(c) time, the time complexity of  the 
algorithm is equal to c multiplied by the number of  times that steps 2-6 get 
executed. We now bound the number of times steps 2-6 are executed. 

^ A 

LEMMA 1. Let a,, bj, P, Q, P', and Q'^ be as inA step 2 of Algorithm A. Also, let 
p, qo be the common tangent to P and Q ( p, c P, qo c Q ). Then at least one of the 
following statements is true: 

(a) p, c Ai; 
(b) p, ~ Ai+G 
(c) qvcB~; 
(d) q~ ~ Bj+,. 

PROOF. If  p,  = ai or qv = b~ then the lemma holds, so assume that p. ~ ai and 
qo ~ bj. By its definition, the line p, qv is above both ai and bj. Therefore at least 
one of  Pu or q~ is above the line a~bj. Without loss of generality, assume that p, 
is above the line a~bj. We prove that (a) or (b) must hold by a case analysis. 
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Fig. 3. We show that if Pu e Aw, w < i, then convexity is violated. 

Case 1. In/5,  Pu is to the left of  a~. Then we claim that Pu e A~ (and hence (a) 
holds). Suppose to the contrary that p,  e Aw where w < i. By the definition of  a~ 
and bj, the vertex awe P '  must lie on or below the straight line a~bj. The  three 
vertices p, ,  aw, ai occur in that order on /5  (see Figure 3). Consider the positions 
of  these three vertices relative to the line a ; b / t h e  first vertex is (by hypothesis) 
above that line, the second is (as we have just argued) on or below it, and the 
third is (by definition) on it. This contradicts the convexity of/5. Thus, (a) holds. 

Case 2. In P, p~ is to the right of  ai. An argument similar to that for case 1 
shows that Pu e Ai+l; hence, (b) holds. 

I f  q~ is above line a~b~, then an argument similar to that above shows that one 
of  (c) or (d) must hold. [] 

COROLLARY 1. Steps 2-6 o f  Algorithm A are executed a total o f  at most  4 c - 1  
times. 

PROOF. Lemma 1 implies that, every time we execute steps 2-6, at least one of 
/3._ the statements . -  Ai, /5 := Ai+l, 0 := Bj, (~ := Bj+I is executed. This implies that 

at least one o f /5  or Q decreases in size by a factor of  s = n 1/2~, thus proving the 
corollary. [] 

We have thus established the following: 

THEOREM 1. Algorithm A correctly computes the upper common tangent to P and 
Q. With n uc processors, it runs in time 0(c2) .  

COROLLARY 2. With n processors, the upper common tangent to P and Q can be 
computed in constant time. 

Let Bo be the algorithm corresponding to Corollary 2, i.e. Bo runs in O(1) time 
with n processors. Now, we define a sequence of  algorithms B~, B2 , . . .  such that 
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Bd uses n ~/~d processors, and is defined as follows: Bd reads exactly like A except 
that: 

(i) In Bd step 0 sets s equal to n 1/c (instead of  n ~/2c in A). 
(ii) In step 2, whereas A uses the brute-force method,  Bd uses Bd-1 (we can do 

this even though there are only n ~/cd processors available, because Bd_ 1 is 
being used on a subproblem of size only hi~C). 

(iii) Every usage of Proposition 1 or Proposition 2 now costs O(c  d) time because 
we have only n l/ca processors. 

Obviously, Lemma 1 still holds for Bd just as it did for A. Thus, every time 
steps 2-6 are executed in Bd, at least one of /3  or t~ decreases in size by a factor 
of  s ---- n 1/c. This implies that steps 2-6 in l d  are executed at most 2 c -  1 times. 
I f  we let Td be the time complexity of  Bd, then we have 

To=c1 and T d = ( 2 C - - 1 ) ' ( T d  1+C2"cd)+c3 "c d, 

where c~, c2, and c3 are constants. This has solution Td = 0 (c2 (c  -- 1)-1(2c -- 1) d). 
Choosing c to be a constant and using k = c d gives 

Td = O(k  1+~(c)) where e(c)  = l o g c ( c - l ( 2 c -  1)). 

This establishes the following: 

THEOREM 2. Let  P and Q be two disjoint convex n-gons. Let  k = c a where c and 
d are any integers, c = O(1). A C R E W - P R A M  having n Uk processors can compute 
the common tangents between P and Q in O(  k ~+~(c)) time, where limc~oo e(  c) = O. 

As already stated, the above algorithm can trivially be modified to compute 
the other two common tangents (the ones such that P and Q are on opposite 
sides of  each of them). The details of  these modifications are easy and are left 
to the interested reader. 

3. Computing the Distance. The input consists of  the two disjoint convex poly- 
gons P = ( P l , . . .  ,Pn) and Q = ( q l , . . . ,  q , ) ,  where the pi's (resp. qi's) are given 
in clockwise cyclic order and no three successive vertices of  either polygon are 
colinear. We are interested in computing, in parallel, the shortest distance between 
P and Q. This distance is formally defined as follows: 

d(P, Q)= min d(u, w), 
u~P, w c Q  

where d(u ,  w) denotes the Euclidean distance between points u and w, and the 
notation "u  ~ P "  means that u is a point on the boundary  of P (not necessarily 
a vertex of  P). Our algorithm actually returns a pair of  points u, w such that 
d(P,  Q) = d(u ,  w). Of course, once we have these points u, w, any perpendicular  
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to the straight line segment joining u and w is a line separating P from Q. 
Therefore our algorithm for the closest distance immedately gives us the separating 
line L needed in Section 2. At the end of  this section we briefly sketch the 
modifications needed for the algorithm to also work for the case of  zero distance 
(in which case there is no separating line). 

In order to simplify the exposition, we assume that the desired points u, w are 
unique. Our algorithm can easily be modified for the general case, e.g., by adopting 
a suitable convention for returning a unique u, w pair in case d(P, Q) is the 
distance between two parallel segments of  (respectively) P and Q (in that case 
there is an infinite number  of  choices for u, w, and this is the only case where u 
and w are not unique). 

Let p be a point (not necessarily a vertex) on the boundary of  P, and define 
q similarly for Q. Let Tp (resp. Tq) be the line perpendicular  to the segment pq 
at point p (resp. q). It is quite trivial to see that d(P, Q) = d(p, q) if and only if 
(i) Tp and Tq are tangent to (respectively) P and Q, and (ii) P and Q are on 
opposite sides of  the region between Tp and Tq (i.e., this region separates them). 
This simple observation immediately implies that, with n 2 processors and in 
constant time, it is possible to compute the closest distance between P and Q 
and a pair of  points achieving it (the detailed specification of this brute-force 
procedure is left to the reader). The algorithm we shall give uses these simple 
observations. It also makes use of  the next two (easy) propositions. 

PROPOSITION 3. Let p be a point external to Q. Then the point q ~ Q such that 
d(p, q)= d(p, Q) can be computed in time O(k) by a n  n 1/k processor CREW- 
PRAM, where k is any integer of our choice. 

PROOF. Let t =  n 1-~/k .  Let Q' consist of  every tth vertex of Q, i.e., Q ' =  
(qt, q2 t , . . . ,  qn)- Since Q' has n 1/k vertices and we have n 1/k processors, it is 
trivial to find in constant time the point q '~  Q' such that d(p, q')=d(p, Q'). 
(Note that q' need not be a vertex of Q'.) I f  the perpendicular to line pq' at point 
q' is tangent to Q, then we can stop and declare point q' as the desired point q. 
Otherwise let a (resp. fl) be the vertex of Q' that immediately precedes (resp. 
follows) point q' when the boundary of  Q' is traced in a clockwise manner  (see 
Figure 4). Note that in Q, there are 2 t +  1 vertices between a and/3  (inclusive) 
if q' is a vertex, otherwise there are t + 1 vertices between a and/3  (where the 
word "between"  refers to the circular ordering q l , . . . ,  qn)" We leave it to the 
reader to prove that, in Q, the desired point q occurs between a and/3 (inclusive). 
Let y be the median of  the (at most 2t + 1) vertices between a and/3 (inclusive): 
test whether the desired point q is at 3', between a and 3", or between 3' and/3  
(this test trivially takes constant time with one processor). I f  q = 3' then we are 
done, so assume (without loss of  generality) that the test reveals that q is between 
a and 3'. Hence we can focus our search for q to the section of Q between a 
and 3" (excluding 3'), which contains at most t vertices. Therefore by doing a 
constant amount  of  work, we have reduced the polygon size by a factor of  at 
least n l /k .  Doing this at most k times finds the desired point q. [] 
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Fig. 4. Searching for the point in a convex polygon Q closest to a point p. The polygon Q is outlined 
by dashed lines, and the polygon O' is outlined by solid lines. 

PROPOSITION 4. Let Pi and pj be any two vertices o f  P, i < j, and let Pu be the 
vertex o f  P such that d(pu, Q) = d(P, Q). Then for  any integer k o f  our choice, an 
n ~/k processor C R E W - P R A M  can, in O(k )  time, locate where Pu occurs with respect 
to Pi and pj in the sequence Pl, P2,. �9 �9 , Pn (i.e., it can determine whether u = i, u =j ,  
i < u < j ,  or none of  these). 

PROOF. For any two indices 1 -< a, b -< n, let o.a,b denote the sequence d(pa, Q), 
d(pa+l, Q ) , . . . ,  d(pb, Q) (assuming index n + 1 equals 1). For example,  o-9,2 = 
d(p9, Q ) , . . . ,  d(p , ,  Q), d ( p l ,  Q ) , . . . ,  d(p2, Q). Observe that, because of con- 
vexity, there exist two indices a and b, 1 <- a -< b -< n, such that tra, b and o'b,a are 
both sorted, one in increasing order and the other in decreasing order. This 
implies that we can locate where Pu occurs with respect to any pair Pi, Pj in the 
sequence Pl, -- -, Pn by performing a constant number  of  distance computations 
of  the type d(pt,  Q). By Proposition 3, each such distance computat ion can be 
done within the desired time and processor bounds. [] 

The following preliminary algorithm shows that, for any integer c of  our choice, 
an n ~/c processor CREW-PRAM can find, in O(c 2) time, the points u c P and 
w ~ Q such that d(u, w) = d(P, Q). 

PRELIMINARY ALGORITHM D FOR COMPUTING DISTANCE 

Input. Two disjoint convex polygons P = ( P l , . . . ,  P,)  and Q = ( q l , . - . ,  q,)- The 
pi's (resp. q/s)  are given in clockwise cyclic order. 
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Output. Points u, w such that d(u, w) = d(P, Q). 

StepO. Set /3 :=p ,  (~:=Q, s:=nl/2~. 

Step 1. Repeat the following steps until either/3 is a single point or t~ is a single 
point. Without loss of generality, assume it is P that ends up becoming a single 
point (call it x): use Proposition 3 to find, in O(c) time, the point y c Q such 
that d(x, y) = d(x, Q). Output the points x and y (these are the desired points 
U, W). 

Step 2. Let P ' =  ( a l , . . . ,  as) be the polygon obtained by considering every 
(IPI/s)th vertex of/3, i.e., the s vertices of P'  divide t3 into s equal portions. 
Call these portions A 1 , . . . ,  As, so that ai is adjacent in /3 to portions Ai and 
Ai+l. By definition, ai belongs to A~ but not to A;+1. Let Q '=  (bl . . . . .  b~) be 
analogously defined for (~, and let the resulting portions of (~ be B 1 , . . . ,  Bs. Use 
the already-mentioned brute-force method for finding the points a ~ P' and b e Q' 
such that d(a, b) = d(P' ,  Q'). Since we have s 2 processors, this takes constant time. 

Let ap (resp. tip) be the vertex of P' that immediately precedes (resp. follows) 
a on the boundary of P'. (Figure 5 illustrates the case when a is not a vertex of 
P'.) If a is a vertex of ,P '  then ap and tip are (respectively) its predecessor and 
successor vertices on P ,  and hence there are then 2[ P I/s + 1 vertices of/3 between 
ae and tip (inclusive). If  a is not a vertex of P'  then ap and tip are consecutive 
vertices of P',  point a is on the segment of P'  that joins ap to tip, and there are 
l /3l /s+ 1 vertices of /3  between ap and tip (inclusive). Let Yv be the median of 

P ( d a s h e ~  

P' (solid) ( 

pa~ a 

% 

h 

! 

J; 

i I 

I -  

Fig. 5. Reducing the size of /~ and/or 
(inclusive), and ye subdivides P~ into 

"Iv 

(dashed) 

A f l O f  Q' (solid) 

I 

t~. p~t3 is the (dashed) portion of 13 between ap and fie 
P=Y and P:'~. Q~, Q=v, and QVg are defined analogously. 
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the (at most 21/3[/s + 1) vertices o f / 3  that are between ap and [3p (inclusive). 
(Note that if a is a vertex of P',  then 3'P = a.) We use P ~  to denote the portion 
of  P that is between ap and [3p (excluding ap and [3p). P~V and Pv~ are 
analogously defined. 

Let Olo, [30, '~O' Q"e' Q"V' and QV~ be similarly defined for b, Q', and t~. 
(Figure 5 illustrates the case when b is a vertex of Q'.) 

Step 3. Use Proposition 4 to detect whether u = av, u = [3p, u ~ 3'p, u 6 par,  
U e PV~, or none of  these. If  u equals ae  (resp. TP, [3P) then set P equal to O/p 
(resp. TP, [3P)and  go to step 4. Otherwise, if u c p~v then do /3  := p~v and go to 
step 4. Otherwise, if u ~ pv~ then do /3  := pv~ and go to step 4. Otherwise leave 
P unchanged. (An assignment l ike/3 := P ~  is done in constant time simply by 
remembering the new first and last vertex of/3.) 

Step 4. Use Proposition 4 to detect whether w = aq,  w = [30, w =~Yo, w ~ Q~V, 
w ~ Qr~, or none of these. If  w equals a o (resp. 30, [3o) then set Q equal to a o 
(resp. 3'0, [30) and go to step 2. Otherwise, if w = Q~V then do 0 := Q~v and go 
to step 2. Otherwise, if w ~ QV~ then do (~:= Qv~ and go to step 2. Otherwise 
leave 0 unchanged. 
(End of  algorithm.) 

Since every usage of Proposition 4 takes O(c) time, the time complexity of the 
algorithm is equal to c multiplied by the number of times that steps 2-4 get 
executed. We now bound the number of times steps 2-4 are executed. 

LEMMA 2. Let a, b, P ~ ,  Q~'e, u and w be as in Algorithm D. Assume that 
u ~ {ae, tip} and w ~ {aQ, [30}- Then at least one of  the following statements is true: 

(a) u e P  ~'~, 
(b) w c Q ~ .  

PROOF. Let Ta (resp. Tb) be the line perpendicular at a (resp. b) to the segment 
ab (see Figure 5). By the definition of a and b, To (resp. Tb) is tangent to P '  
(resp. Q'). Without loss of  generality, T~ and Tb are vertical, P '  is to the left of 
To, and Q' is to the right of Tb. If  u = a or w = b then the lemma holds, so assume 
that u # a and w # b. By the definition of u and w, we must have d(u, w) <- d(a, b). 
This implies that u is to the right of T~ or w is to the left of  Tb (possibly both). 
Hence, it suffices to show that if u (resp. w) is to the right (resp. left) of  
To (resp. Tb), then (a) (resp. (b)) holds. We prove this by contradiction. Suppose 
that u is to the right of  T~ and (a) does not hold, i.e. u ~ P ~ .  Without loss of 
generality, assume that u is below "yp. NOW, by walking from vertex 7p clockwise 
along the boundary of/3, we encounter vertex [3e before reaching u. Since 7P is 
on or to the right of T,, [3e on or to the left of T~, and u to the right of  T~, this 
contradicts the convexity of P. A similar argument shows that if w is to the left 
of  Tb, then (b) holds. [] 

COROLLARY 3. Steps 2-4 of  Algorithm D are executed a total of  at most 4 c -  1 
times. 
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PROOF. Lemma 2 implies that, every time we execute steps 2-4, at least one 
o f / 3  or (~ decreases in size by a factor of  at least s = n 1/2~, thus proving the 
corollary. [] 

We have thus established the following: 

THEOREM 3. Algorithm D correctly f inds points u ~ P and w ~ Q such that 
d ( u, w) = d ( P, Q ). I t  uses n 1/ c processors and it runs in time O(c2), where c is any 
integer o f  our choice. 

We now define a sequence of algorithms Eo, E l , . . .  in a manner  entirely 
analogous to the way we defined sequence Bo, B1 , . . .  in the previous section. 
The analysis, which is very similar to that done in Section 2 (and hence is omitted), 
establishes the following: 

THEOREM 4. Let  P and Q be two disjoint convex n-gons. Let  k = c d where c and 
d are any integers, c = O(1). A C R E W - P R A M  having n Uk processors can compute 
points u ~ P and w ~ Q such that d(u,  w) = d(P,  Q) in O(k l+~(c~) time, where 
lim~-~oo e(c)  = O. 

COROLLARY 4. Let  P and Q be two disjoint convex n-gons. Let  k = c d where c 
and d are any integers, c--  O(1). A C R E W - P R A M  having n 1/k processors can 

compute a straight line L which separates P f rom Q in O ( k  1+~(c)) time, where 
limc_~oo e(c)  = O. 

Given a straight line L and a convex polygon P, an easier and somewhat more 
efficient version of the above method can be used to determine if L and the 
boundary of P intersect or not, and if so to give both points of  this intersection. 
This is done in time O ( k )  if we have n 1/k processors, where k is any integer of  
our choice. The details are left to the reader. 

The algorithm given in this section can easily be made to work for the case of  
possibly zero distance (i.e., when we do not know ahead of  time whether P and 
Q are disjoint). The only modification needed for this is in step 2 of  algorithm 
D. We only briefly sketch it next. In step 2 of  algorithm D, insert the following 
computat ion right after the definition of P '  and Q'. Let the line L be the one 
joining point am of P' to point ba of  Q'. Compute  the intersections of  L with the 
boundaries of  P'  and Q'. Since we have s 2 processors, this takes constant time. 
The pattern of  these four intersections trivially enables one processor to test, in 
constant time, whether L contains a point common to both P'  and Q'. I f  the 
answer to this test is "yes"  then the distance is zero (i.e., P and Q intersect) and 
we are done. So assume that the answer to this test is "no".  In that case P' and 
Q'  intersect iff there are pairs of  boundary edges e~ ~ P '  and e 2 E Q'  that intersect 
each other. I f  there are many such pairs of  intersecting edges el, e2, then convexity 
implies that there is exactly one pair el, e2 with the following property: if L~ is 
the line containing el and L2 is the line containing e2, then a walk from a~ to b~ 
along L encounters the four points a~, L~ n L, L2 n L, and bl in that order. (See 
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[8] for a discussion of how this follows from convexity; the sequential intersection 
detection algorithm of  [8] actually finds such a pair el, e2 by binary search.) 
Therefore we can use the s 2 processors available to test by brute force whether 
P '  and Q' intersect or not, in constant time. I f  they do intersect then we are done, 
if  they do not then we proceed exactly as in the rest of  step 2 and algorithm D: 
find the points a ~ P '  and b ~ Q'  such that d ( a ,  b) = d (P ' ,  Q') . . .  etc. 

As a final remark, we observe that the problem of computing the shortest 
distance between the boundaries  of P and Q has an f~(log n) lower bound on 
the CREW-PRAM, by the following straightforward construction. We use the 
fact that there is a known f~(log n) lower bound for the problem of computing 
the logical OR of  n bits X l , . . . , x n  [9]. Therefore it suffices to show that a 
CREW-PRAM can compute the logical OR of  n bits in time equal to a constant 
plus the time for computing the distance between the boundaries of  P and Q. 
We do this by converting the problem of  computing the OR of Xl . . . .  , x, to that 
of  computing the distance between the boundaries of  the following two convex 
n-gons P and Q. P is any regular convex n-gon (i.e., all its sides have same 
length). Let Qo consist of  the regular convex n-gon whose vertices are the middle 
points of  the n boundary edges of  P. The convex n-gon Q is obtained from Qo 
by "deforming"  Qo very slightly so as to move some of its vertices slightly into 
the interior of  P, others just outside of  P. This deformation is governed by the 
boolean variables X l , . . . ,  xn: we associate the ith vertex of Qo with xi and, in 
the above-mentioned deformation of  Qo into Q, it is x~ which governs whether 
its corresponding point of  Qo will move slightly inside of  P (if x~ = 0) or outside 
of  P (if x~ = 1). The polygon Q so obtained has the property that its boundary 
is at a distance of zero from the boundary of P iff the logical OR of the x~'s 
is 1. (Note that Q need not be regular; it is actually regular only if the x~'s are 
all 0, or all 1.) The construction of  P and Q from x~ . . . .  , xn can clearly be done 
in constant time with n processors. This establishes the claimed lower bound. 

4. Conclusion. We gave new parallel algorithms for computing some functions 
of  convex polygons in the CREW-PRAM model. In particular, we showed that 
constant time suffices for computing these functions even if we have a sublinear 
number  of  processors (in fact n 1/~ processors suffice for any constant integer c). 
Even with a linear number  of  processors, it was not previously known how to 
achieve constant time performance for computing these functions. 
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