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1 IntroductionIn computer vision, one is interested in devising algorithms that automatically interprets the con-tents of a digital image (a \scene"). In model-based computer vision, one is also given some infor-mation a priori about the objects to be searched for in the scene, speci�cally, a library S of k models(or \shapes"), partitioned into c concept classes (or \color classes"). The problem is to determinethe concept class of each model that appears in the image.For example, suppose we are given a library S consisting of images of di�erent types of vehicles(say bicycles, buses, cars, and trucks), and we must determining which type of vehicle is presentin a given query image q. The most direct approach would be to compare each model in S againstq and determine exactly which one is present in q. Although there are only c = 4 concept classesin this example, the total number of models k may be much larger than c { e.g., the \car" classmay contain an image of every make and model of car on the road. Determining the speci�c carmodel is irrelevant for this application, and so a more e�cient search strategy would exploit theproperties shared by members of a particular class. For example, bicycles are smaller than cars,while buses/trucks are larger.In another example, the library S may consist a set of alphabetic characters in many di�erentfonts. The concept classes then may be de�ned to be sets of all characters that represent the sameletter, regardless of font or style of print. We are more interested in determining whether the letterpresent is an \E" or an \F" than in what its precise font is. See Figure 1.In this paper, we examine a fundamental instance of this model-based computer vision problem.Each model in the library S is given in a �xed position, orientation, and scale, and the given inputimage contains exactly one instance of one model. This situation arises, for example, after an imagesegmentation is applied to a scanned-in page of text. Our problem is to determine the class of theobject that is present in the scene by asking a sequence of \probe queries" of the following form:\Is there an object at location p in the scene?" We assume that there is an oracle that answersthese probe queries, and we measure complexity in terms of the worst-case number of queries tothe oracle before identifying the concept class of the model that is actually present in the image.In practice, such an oracle may be implemented as a local operator on a digitized image | e.g., asa measure of local texture or of gradient �eld.A probing strategy is an interactive algorithm that can most naturally be thought of as a binarydecision tree, in which each node, v, corresponds to a set of candidate models, S(v), which in turnbelong to a set of candidate concept classes. The root corresponds to the full set S, and each leafcorresponds to a set of models that all belong to the same concept class. Each internal node hasan associated probe point that speci�es the query that we ask the oracle at that particular stage ofthe identi�cation. A path from the root to a leaf in the decision tree represents a possible outcomefor a particular scene. An example is illustrated in Figure 2.In this paper, we study the complexity of constructing minimum height decision trees for ge-ometric concept classes. In other words, given a set S of geometric models, we want to construct(o� line) a decision tree so that the worst-case number of probe queries needed to identify theconcept class of the model present in the image is as small as possible. Any such decision tree hasheight at least dlg ce. However, 
(k) height decision trees are necessary for certain arrangementsand colorings of models, even for two color classes.



Main ResultsWe formulate and study the geometric decision tree problem from the point of view of conceptclasses, proving several related results:� Let S = S1 [ S2 be a set of k non-degenerate aligned unit squares of two color classes. Thenthe problem of constructing a minimum height decision tree to determine the color class isNP-complete.� Let S = [ci=1Si be a set of k simple polygons in the plane (having a total of n vertices), ofclasses 1; 2; : : : ; c, whose arrangement is non-degenerate. Then, we can �nd, in polynomialtime, a decision tree whose height is at most 2 lg k times the height of an optimal decisiontree that identi�es the class to which the model in the scene belongs. This construction canbe done in O(n logn+ hcjA(S)j) time.� Let S = [ci=1Si be a set of k simple polygons in the plane, of classes 1; 2; : : : ; c, whosearrangement is possibly degenerate. Then, we can �nd, in polynomial time, a decision treewhose height is at most 4 lg k times the height of an optimal decision tree that identi�es theclass to which the model in the scene belongs. The method uses a \double greedy" strategyfor selecting pairs of probes to use in succession.MotivationWe are motivated by real instances of the model-based computer vision problem. The speci�cinstance of our problem (with the assumption that the models be given in a �xed position andorientation) arises in recent approaches to model-based vision suggested by Arkin and Mitchell [1],Bienenstock et al. [4, 5] (for character recognition), Mirelli [19], and Papadimitriou [21]. For exam-ple, Papadimitriou suggests a \probing scheme" in which one searches for instances of geometricmodels anywhere within an image, using our same model of probing, and he reduces the problem toexactly the problem studied here. In e�ect, the probing schemes of [1, 4, 5, 21] serve to \factor out"the e�ect of translation and rotation, reducing the �nal decision problem to that of this paper. Thee�ect of translation and rotation can also be accommodated within our framework by replicatingthe model instances according to all possible positions within the image, assuming, of course, thatthere are only a �nite number of possible placements.Relation with previous workMost previous work on building decision trees [20] has focused on non-geometric instances of theproblem. The abstract decision tree problem takes as input a �nite universal set X = f1; : : : ; kgand a family of subsets of X , T = fT1; T2; : : : ; Tmg, representing the set of possible probes. Hya�land Rivest [14] prove that it is NP-complete to construct a minimum height or a minimum externalpath length decision tree. Garey [9] presents dynamic programming algorithms for determiningan optimal weighted decision tree. Our problem considered here can be viewed as the unweighteddecision tree problem in which the set of possible \tests" is de�ned by the faces in the arrangementA(S) determined by a set S of k geometric objects.Arkin, et. al [2] recently studied the problem of building geometric decision trees, with thegoal of identifying the speci�c model present in the scene (i.e., without considering the notion of



color classes). They showed that, although optimal decision trees can be e�ciently constructedfor a non-degenerate set of k polygons that each contain the origin, the problem of constructinga minimum height decision tree is NP-complete if the models are possibly degenerate or if theydo not share a common point. (Here, we say that a set of polygons is non-degenerate if no twopolygons share a subsegment of their boundaries.)More importantly, [2] de�ne a \greedy" heuristic for constructing decision trees, and prove thatit yields a decision tree of height at most dlg ke times that of an optimal decision tree. They alsoshow that there are geometric instances of the problem for which the greedy heuristic attains theworst-case factor �(lg k). The greedy decision trees of [2] can be arbitrarily bad, however, whenthe models are assigned color classes, and one is only interested in identifying the class to which aparticular scene belongs.Recent related work on geometric object-identi�cation has been motivated by applications inmodel-based computer vision [7, 13] and tactile sensing in robotics [10, 12]. Some results in thisarea include characterizations by Joseph and Skiena [15] that n+3 �nger probes are su�cient andn � 1 necessary to determine a convex n-gon P selected from a �nite set �, improving an earlierresult by Bernstein [3], and a result of Lyons and Rappaport [17] that takes S to be a collectionof k convex polygons with �xed orientation on a plane, and shows that k � 1 �nger probes arenecessary and su�cient to determine the model. An interesting feature of this latter result is thatit is independent of the number of sides in the models; this property is lost when the models mayassume arbitrary orientations in the scene. See [22] for a survey of related results in geometricprobing.De�nitions and NotationLet S be a set of k simple polygons (\models") in the plane, having a total of n vertices. We assumethat S is partitioned into c color classes, Si, and we write S = hS1; S2; : : : ; Sci. Thus Si \ Sj = ;for all i 6= j, and S = [ci=1Si.A point in the plane designates a probe (or \test"). Each probe P can be identi�ed with asubset of the set of objects that are \Hit" by the probe, hP (S) � S, and the remaining objectsmP (S) = SnhP (S) are said to be \Missed" by the probe. If T is any subset of S then we extend thehit and missed subsets in the natural way so that hP (T ) = hP (S) \ T , and mP (T ) = mP (S)\ T .We say that a set of probes is complete for S, if for any two objects in di�erent color classes thereexists a probe that hits one of these objects and misses the other.For a set S = hS1; S2; : : : ; Sci of models and a complete set of probes, we desire a binary decisiontree that discriminates between models of di�erent classes without necessarily distinguishing modelswithin the same class. Each node of the tree is associated with a subset of S and each nonleaf nodeis associated with a probe. A decision tree satis�es the following conditions:� The subset associated with the root of the tree is S.� Each leaf of the tree is associated with a (not necessarily proper) subset of a single color class.� If T is the subset associated with some nonleaf node and P is the probe associated with thisnode, then the left child of this node is associated with hP (T ), and the right child is associatedwith the missed set mP (T ).



We let A(S) denote the arrangement induced by S; A(S) is a collection of 0-faces (vertices),1-faces (edges), and 2-faces (cells). All points within an edge or a cell of A(S) intersect the same setof polygons of S, and therefore each point in an edge or a cell has the same discriminating powerwhen it is used as a probe point. Thus, the set of possible probes can be identi�ed with the faces(vertices, edges, and cells) of A(S).We say that A(S) (or S) is degenerate if two distinct edges of polygons in S intersect in morethan a single point (i.e., they intersect in a line segment).2 The Non-Degenerate CaseOne obvious lower bound on the height of a decision tree is lg c, since there are at least c leaves.We now show another lower bound on the height of a decision tree, which applies whether thearrangement is degenerate or not. Let s(C) be the minimum number of points needed to \stab" allmodels in the set C, where a point stabs a model if it is in that model. De�ne �Si = [j 6=iSj .Lemma 2.1 Let S = hS1; S2; : : : ; Sci be a partitioning of a set of k simple polygons in the planeinto c color classes. Assume that A(S) is non-degenerate. Then, the height of any decision treeidentifying the class to which the model in the scene belongs is at least minifs( �Si)g.Proof. We give an adversary argument. Consider the path in the probe tree from the root to aleaf, in which each probe is a \Miss". If the points along this path in which we probed do not staball the models in two or more color classes, than we can not tell those classes apart at that leaf.utWith this lower bound, we can easily adapt a proof from Arkin et al. [2] that constructing anoptimal decision tree is NP-complete, even for two color classes:Theorem 2.2 Let S = hS1; S2i be a set of k non-degenerate aligned unit squares of two colorclasses. Then the problem of constructing a minimum height decision tree for S is NP-complete.Proof. The problem is clearly in NP, since a complete set of candidate probe points can beconcisely expressed by taking midpoints of segments joining vertices of polygons of S.To prove the NP-hardness of determining the existence of a decision tree of height � h, we showa reduction from the problem of deciding whether h points su�ce to stab a given set of aligned unitsquares, where a set of points stabs a given set of squares if each square contains at least one of thepoints. This problem was (essentially) shown to be hard by Fowler, Paterson and Tanimoto [8].(They show that 3-SAT can be reduced to the problem of deciding whether h aligned unit squaressu�ce to cover a given set of points. Almost the same reduction can be made from 3-SAT to theproblem of stabbing a given set of aligned unit squares by h points.)Given an instance of the square stabbing problem (SSP), we create two disjoint copies of it,one of each color class. We claim that a decision tree of height less than h exists if and only if thesquares of the (SSP) instance can be stabbed by h points. Given h points that stab all the squaresof an SSP instance, we use them as probe points for the objects in S1. If one or more probes is a\Hit" then our model is of class S1, otherwise it is of class S2. The \only if" direction follows fromour lower bound. utAn easy case in which an optimal height decision tree can be constructed exactly is that inwhich there are two classes, one of which consists of a single model. (Refer to Figure 3.)



Lemma 2.3 Let S = hS1; S2i be a set of k non-degenerate models, with jS1j = 1. Then a minimumheight decision tree for S is of height 1 or 2 and the tree can be constructed in O(n logn+ jA(S)j)time.Proof. Clearly, it can be checked in time O(jA(S)j) whether one probe point su�ces. We showthat at most two probes are needed to discriminate between the two classes: In the arrangement ofall objects, consider a face f that is contained in the object of class S1 and that has on its boundarysome portion of the boundary of that object. (At least one such face exists, and can be found oncethe arrangement is built.) Probe in face f . If this is a \Miss", then we know the target object isof class S2. If it is a \Hit", then probe in a face f 0 that is adjacent to f along some portion of theboundary of the S1 object. Because of non-degeneracy, the set of models hit is identical to those hitby the previous probe, except for the S1 object. If this second probe is a \Hit", then we concludethat an S2 object is present; otherwise, we conclude S1. This gives us an optimal decision tree. Thistree can easily be constructed by a depth-�rst traversal of the arrangement, assuming it is given asa polygon arrangement (e.g., see Goodrich [11]), which can be constructed in O(n logn + jA(S)j)time by a method of Chazelle and Edelsbrunner [6]. utRemark. A generalization of the strategy given in the proof above shows that one can alwaysachieve a decision tree of height 2jS1j for the case of two color classes.We use Lemma 2.3 to �nd a decision tree for the general non-degenerate problem, and showthat its height is at most 2 lg k times that of the optimal tree.Theorem 2.4 Let S = hS1; S2; : : : ; Sci be a partitioning of a set of k simple polygons in the planeinto c color classes. Assume that A(S) is non-degenerate. Then, we can �nd, in O(n logn +hcjA(S)j) time, a decision tree whose height is at most 2 lg k times the height of an optimal decisiontree identifying the class to which the model in the scene belongs.Proof. Our strategy is to approximate a minimum height decision tree that identi�es whichspeci�c model is present (if any) among the models in �Si = [j 6=iSj, where i is the class achievingthe minifs( �Si)g. Probe along this tree, until reaching a leaf which corresponds to identifying aspeci�c model. Since we identi�ed the exact model we know which class it is in. (Clearly, this classis not Si.) We have thus reduced our problem to that of deciding between one model, which is ina speci�c (and therefore known) color class other than Si, and any of the models of color class Si.But this problem can be done with only 2 more probes, by Lemma 2.3.Let h be the height of the decision tree obtained by this method, and let h� be the height ofthe minimum probe tree. We know by Lemma 2.1 thath� � mini fs( �Si)g:Also, by Theorem 5 in [2] we can build a decision tree that identi�es which model is present amonga set of k0 non-degenerate models stabbed by s � 2 given points, and the tree is of height at mosts � 1 + dlgbk0=(s � 1)ce. To this tree we add at most two more probes, as in Lemma 2.3. In ourcase we use k0 = j [j 6=i Sjj. (k0 < k.) However, we can not �nd the exact stabbing number of�Si, since that problem is NP-hard, so instead we approximate it to within a lg k0 factor (e.g., byLovasz [16]), allowing us to use s � lg k0minifs( �Si)g. We have,h � lg k0mini fs( �Si)g+ dlgbk0=(s� 1)ce+ 1;



implying that hh� � lg k0 + dlgbk0=(s� 1)ce+ 1minifs( �Si)g :Now, if minifs( �Sig 2 f1; 2g, then we can easily obtain a tree of height at most lg k0 + 2 | a lg k0height tree can identify exactly which model in �Si is present (if at all), and at most 2 additionalprobes complete the classi�cation. If we assume that minifs( �Sig � 3, then we gethh� � lg k0 + dlgbk0=(s� 1)ce+ 1minifs( �Si)g � 2 lg k:The bottleneck in the algorithm is implementing a greedy strategy for �nding i. This can easilybe done in O(n logn+hcjA(S)j) time by a series of depth-�rst traversals of the arrangement A(S).utIn the next section we show that we can still get an O(lg k) approximation factor in the degen-erate case, although the constant factor in this bound is not quite as good as in the non-degeneratecase.3 The Degenerate CaseOur proof for designing a good decision tree for geometric concept classes depends crucially onthe fact that no two models share a common edge, for this implies that the number of modelscovering a particular face in the arrangement of models di�ers by exactly 1 with the number ofmodels covering an adjacent face. In this section we give a set of strategies for dealing with the\degenerate" case when several models can share common edges. Such a \degenerate" situationcan arise, for example, in character recognition, where di�erent letters (such as \R", \E", and \D")can share common edges. (See Figure 4.)We begin with a simple result, showing that the degenerate case is hard, even if there are onlytwo color classes and the models are convex and all share a common point:Theorem 3.1 Let S = hS1; S2i be a set of k convex, possibly degenerate models of two color classes,with the property that all models (of both classes) have a point in common. Then the problem ofconstructing a minimum height decision tree for S is NP-complete.Proof. The problem is clearly in NP, since a complete set of candidate probe points can beconcisely expressed by taking midpoints of segments joining vertices of polygons of S.To prove the NP-hardness of determining the existence of a decision tree of height � h, weshow a reduction from the set cover problem: Given a collection of subsets C = fC1; C2; : : :Cmg ofU = f1; 2; : : : ; ng and a number h, is there a subset C 0 � C with jC 0j � h, such that every elementof U belongs to at least one member of C 0?Given an instance of the set cover problem, we create a regular 2m�gon, M , with sides of unitlength centered at the origin. Consider the sides of M to be indexed j = 1; : : : ; 2m. For each edgej, let vj =2M be a point \just outside" edge j, and let �j be the triangle determined by edge j andpoint vj . Choose vj such that the polygon M [ (Sj �j) is convex. The instance of our probe treeproblem created will have n models of each color class, say red and blue, such that each element



in U will have two corresponding models, one of each color. Each red model corresponds to anelement of i 2 U , and is a convex polygon RiRi =M [ 24 [fj : i2Cjg�j35 :Similarly, each blue model corresponds to an element i 2 U and is a convex polygon BiBi =M [ 24 [fj : i2Cjg�m+j35 :We claim that a decision tree of height less than h exists if and only if there is a set cover ofsize h. Given h subsets that form a set cover, we use as probe points points in the corresponding(red) triangles �j for j in the set cover. If one or more probes is a \Hit" then our model is of classS1, (red), otherwise it is of class S2, (blue).Note that a probe point in M gives no information, since all models in S are present at sucha point, thus we assume that any probetree will contain no such probes. The \only if" directionfollows from the observation above and our lower bound of Lemma 2.1. utAn interesting open problem is: Can we design, in polynomial time, an optimal probe tree forthe case in which the models are of two classes, are non degenerate, (convex) and all share a pointin common.3.1 The FrameworkFor a decision tree to exist, the only assumption we must make is that for any pair of models Xand Y , there is some probe point p that distinguishes X from Y (either because p 2 X and p 62 Y ,or vice versa). Because of a lack of nice geometric structure, we model the degenerate case in amore abstract fashion than we have used above.Henceforth, we will refer to nodes of a decision tree by their associated sets. Consider some nodein a decision tree associated with the set T = hT1; T2; : : : ; Tci. We will use lower-case, ht1; t2; : : : ; tcidenote the respective cardinalities of the color classes. De�ne the weight of T to be its cardinality,wgt(T ) = jT j. For each color i, de�ne the i-weight of T to be the sum of cardinalities except classi. wgt i(T ) =Xj 6=i tj = wgt(T )� ti:Observe that for any leaf in the decision tree, one of the weight functions is zero, namely the weightfunction of the only surviving color class.One measure of the quality of a probe is how evenly it partitions the set of models among itschildren. Another way to think about this is, for each edge (T; T 0) in the decision tree, consider howmany models in T have been eliminated from consideration in T 0. We de�ne the total eliminationfrom T to T 0 to be elim(T; T 0) = wgt(T )� wgt(T 0):The class most heavily eliminated is the class i that maximizes ti� t0i. Finally, for any class i, de�nethe i-elimination of the edge (T; T 0) to be the total elimination excluding class i,elimi(T; T 0) = wgt i(T )� wgt i(T 0) = elim(T; T 0)� (ti � t0i):



Of course, there must be a balance between the number of models eliminated from the left andright children of a node, since every model eliminated from one child will be present in the otherchild. In the classless case of [2] (or equivalently, where each object is in its own class) the greedystrategy is chosen to maximize the minimum elimination from each of the two children. In thepresence of classes, this is not quite the right strategy, because it is quite acceptable to have onelarge color class.3.2 The \Double-Greedy" StrategyWe now de�ne the double-greedy heuristic for constructing decision trees. We select probes to beapplied in ensembles of two consecutive probes, each of which is chosen by a greedy criterion (hencethe term, double-greedy). Given a node T (with at least two color classes still active) the �rst probeof each ensemble is chosen exactly as in the standard greedy algorithm to maximize the minimumnumber of models eliminated along each of its two outgoing edges. That is, we select the probe Pthat maximizes min(elim(T; hP(T )); elim(T;mP(T ))):For the second probe, consider each of the two children, T 0 and T 00 of T . For T 0, let i be themost heavily eliminated class by the previous probe. The second probe is chosen to maximize theminimum i-elimination for each of the two resulting grandchildren. That is, we select the probe P 0that maximizes min(elimi(T 0; hP 0(T 0)); elimi(T 0; mP 0(T 0))):We do the same for T 00 with whatever its most heavily eliminated class is.The main result of this section is that the height of the double-greedy decision tree is at mosta logarithmic factor greater than the height of the optimum decision tree.Theorem 3.2 Let S = hS1; S2; : : : ; Sci be a set of k simple polygons in the plane, partitioned intoc color classes, that are in a possibly degenerate arrangement. Let h� denote the minimum heightamong all decision trees, and let hg denote the height of the double-greedy decision tree. Thenhgh� � 4 lg k:This theorem is proved by a variation of the argument appearing in [2] for standard decisiontrees. The argument is more complicated in this case because of the extra complexity of theheuristic, and the subtleties of how probes eliminate models between di�erent classes. Considerthe longest path in the double-greedy decision tree. The edges on this path can be partitioned intoconsecutive pairs since the probes have been chosen in ensembles. Let d denote the color class thatis nonempty in the leaf of this path. At the root, the d-weight is at most k, and at the leaf it iszero. Observe that the d-weights decrease monotonically (not strictly) along the path. Classify anedge on this path as being light if the d-weight of the child is at most one half of the parent, andotherwise it is heavy. Along any path there can be at most lg k light edges, and so for the remainderof the proof it su�ces to consider only heavy edges.For each node T at the head of an ensemble, let m(T ) denote the length of the longest subpath(of ensemble edge pairs) that reduces the d-weight by a factor of no more than one half. Let mdenote the maximum value of this function over the entire path. Observe that the weight cannot



be halved more than lg k times, and so (m+2) lg k is an upper bound on the height of the double-greedy decision tree. To complete the proof it su�ces to show that for some constant C, C �m isa lower bound on the height of the optimum decision tree.Consider the subpath that de�nes m. Consider any ensemble edge pair on this subpath. If d isthe most heavily eliminated class from the �rst probe, then we mark the second edge of the pair,and otherwise we mark the �rst edge. The number of marked edges on the path is m=2.Let W denote the d-weight at the start of the subpath. At the end of the path the d-weight isat least W=2, and so by the pigeonhole principal, along some marked edge (T; T 0) on the path thed-weight has decreased by at most W � (W=2)m=2 = Wm :Call the marked probe P that minimizes the decrease in d-weight the limiting probe. We claimthat after applying this probe, no later probe along an edge can decrease the d-weight by a factorgreater than twice this amount, that is, 2W=m. Before showing this, let us see why this su�cesto complete the proof. At the end of the subpath the current d-weight is at least W=2. Clearlythe height of the optimum tree to complete the discrimination of this subset of models is a lowerbound on the height of the optimum tree for the entire problem. However, since no future probecan decrease the d-weight by more than 2W=m, at leastW=22W=m = m4probes are needed even in the optimum tree. Thus the optimum decision tree has height at leastm=4, and this will complete the proof. (We illustrate the main ideas of this proof in Figure 5.) Allthat remains is to prove the following claim.Lemma 3.3 If the limiting probe P applied along edge (T; T 0) reduces the d-weight by E, then nolater probe can reduce the d-weight by more than 2E.Proof. We may assume that the probe P reduces the d-weight of T by less than half, sinceotherwise the lemma is trivially true. Thus, there are two cases to consider.If the limiting probe is applied along the second edge of an ensemble, then this probe wasselected to reduce the d-weight by the largest amount possible, that is, to distinguish as manyelements as possible from among all classes except d. Since later nodes involve subsets of T , anyprobe that distinguishes more than E models from these classes could have been applied at T todecrease the d-weight even more. The greedy choice of P implies that no such probe can exist.If, on the other hand, the limiting probe was applied to the �rst edge of the ensemble, thenby the de�nition of the double-greedy strategy we know that class d was not the most heavilyeliminated class in this probe. Thus, the number of models eliminated from class d by this probecan be no more than half the number of models eliminated from all the other classes, and henceelim(T; T 0) � 2E:Now, suppose towards a contradiction that some later probe reduces the d-weight by more than2E. Such a probe must distinguish at least 2E total models from a subset of T , and hence couldhave been applied at T to eliminate more than 2E models, contradicting the choice of this probe.ut
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