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Large-scale problems involving geometric data areubiquitous in spatial databases [24,32,33] , geo-graphic information systems (GIS) [10,24,33], con-straint logic programming [19,20], object orienteddatabases [38], statistics, virtual reality systems, andcomputer graphics [33]. As an example, NASA's soon-to-be petabyte-sized databases are designed to facili-tate a variety of complex geometric queries [10]. Im-portant operations on geometric data include rangequeries, constructing convex hulls, nearest neighborcalculations, �nding intersections, and ray tracing, toname but a few.1.1 Our I/O modelIn I/O systems, data are usually transferred in unitsof blocks, which may consist of several kilobytes. Thisblocking takes advantage of the fact that the seek timeis usually much longer than the time needed to trans-fer a record of data once the disk read/write head isin place. An increasingly popular way to get furtherspeedup is to use many disk drives and/or many CPUsworking in parallel [12,13,18,25,28,36]. We model suchsystems, examples of which are shown in Figure 1, us-ing the following four parameters:M = # items that can �t in internal memory;B = # records per block;P = # CPUs (internal processors);D = # disk drives.For the problems we consider, we de�ne three generalparameters:N = # items or updates in the problem instance;K = # query operations in the problem instance;T = # items in the solution to the problem.
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Figure 1: (a) The parallel disk model. Each of theD disks can simultaneously transfer B records to andfrom internal memory in a single I/O. The internalmemory can store M � DB records. (b) Multiproces-sor generalization of the I/O model in (a), in whicheach of the P = D internal processors controls onedisk and has an internal memory of size M=P . TheP processors are connected by some topology such asa hypercube or an EREW PRAM and their memoriescollectively have size M .We will assume that M < N , 1 � P � M= logM ,and 1 � DB � M=2. The measures of performancethat we would like to minimize simultaneously are thenumber of I/Os and the internal computation time.The relevant terms that enter the formul� for theI/O bounds are often in units of blocks, such as N=B,M=B, and so on. For that reason we de�ne the fol-lowing shorthand notation:� = NB ; � = MB ; � = KB ; � = TB :In order to get across our techniques in the mini-mum space, we illustrate our results in this paper tothe special case of the I/O model in which P = 1 andD = 1. Even in this simpli�ed model our results areextremely signi�cant, as P = 1 and D = 1 accuratelymodels the vast majority of I/O systems currently in-stalled and being produced, yet no optimal algorithmswere previously known for the problems we discuss.Additionally, our results are optimal in the generalI/O model and in the parallel hierarchy models. Inparticular, in the I/O model, using P processors re-duces the internal computation time by a factor of Pand using D disks reduces the number of I/O steps bya factor of D. This is discussed in greater detail inSection 6 and in the full version of this paper.

1.2 Our resultsIn this paper we present a number of general tech-niques for designing external-memory algorithms forcomputational geometry problems. These techniquesinclude the following:� distribution sweeping : a generic method for ex-ternalizing plane-sweep algorithms;� persistent B-trees: an o�-line methods for con-structing an optimal-space persistent version ofthe B-tree data structure. For batched prob-lems this gives a factor of B improvement overthe generic persistence techniques of Driscoll etal. [11]);� batch �ltering : a general method for perform-ing K simultaneous external-memory searches indata structures that can be modeled as a planarlayered dags;� external marriage-before-conquest : an external-memory analog to the well-known technique ofKirkpatrick and Seidel [22] for performing output-sensitive hull constructions.We apply these techniques to derive optimalexternal-memory algorithms for the following funda-mental problems in computational geometry: com-puting the pairwise intersection of N orthogonal seg-ments, answering K range queries on N points, con-structing the 2-d and 3-d convex hull of N points,performing K point location queries in a planar sub-division of size N , �nding all nearest neighbors for aset of N points in the plane, �nding the pairwise in-tersections of N rectangles, computing the measure ofthe union of N rectangles, computing the visibility ofN segments from a point, performing K ray-shootingqueries in CSG models of size N , as well as severalgeometric dominance problems. Our results are sum-marized in the following theorem, individual parts ofwhich are discussed in the remaining sections of thepaper.Theorem 1.1: Each of the problems mentioned inthe preceding paragraph can be solved in external mem-ory using O((� + �) log� � + � ) I/Os. If D disks areused in parallel, the number of I/Os required can bereduced by a factor of D.For problems in which there are no queries as part ofthe problem instance, we use K = 0 (and thus � = 0);if the output (solution) size is �xed, we use T = 1 (andthus � = 1=B = o(1)).



2 Distribution sweepingThe well-known plane sweep paradigm [30] is a pow-erful approach for developing computational geome-try algorithms that are e�cient in terms of internalcomputation. In this section we develop a new planesweep approach that for the �rst time achieves opti-mal I/O performance (and a subsequent improvementin practice) for a large number of large-scale o�-lineproblems in computational geometry. Speci�c exam-ples that we explore include orthogonal segment inter-section, batched range queries, computing all nearestneighbors, rectangle intersection and union computa-tions, visibility among a set of non-intersecting linesegments, and 3-d maxima.We assume we are given a sequence � =�1�2 : : :�N , such that each �i is an update operationof the form insert(x) or delete(x), where each such xis taken from a known total order !. The sequence �corresponds to the sequence of update operations dur-ing the sweep. In addition, we are given a sequence� = �1�2 : : : �K , such that each �i is a query operationquery(j), which is de�ned as some kind of search ina search tree de�ned on ! by performing the opera-tions �1�2 : : : �j. We assume, without loss of general-ity, that the �i's are sorted by their j arguments. Theproblem is to determine the answer to each �i query.One obvious external-memory solution to this prob-lem is to implement the search tree as a dynamic B-tree [6,9] and to perform the queries in � in an on-linefashion while performing the updates in �. Unfortu-nately, this requires �((N + K) log� �) = �(B(� +�) log� �) I/O operations in the worst case, which isprohibitive. Previous work using lazy batched updateson the B-tree yielded algorithms with O((�+�) log2 �)I/Os [34].In Sections 2.1 and 2.2 we show how to performthe queries using only O((�+�) log� �) I/Os, which isoptimal. The lower bound follows by a simple reduc-tion from the sorting problem, which has the same I/Obound as a lower bound [3]. Our new method uses ano�-line top-down implementation of the sweep, whichin turn is based upon a novel application of the sub-division technique used by in the \distribution sort"algorithms of [3,27,37]. It is for this reason that werefer to our technique as distribution sweeping.2.1 An example: orthogonal segment in-tersection reportingBefore discussing the distribution sweeping as ageneral technique, let us begin with a simple exam-ple illustrating the main ideas involved. The example

we will use is the problem of reporting all intersectingpairs from a set of N orthogonal line segments. Thisproblem is important in graphics and VLSI design sys-tems.We de�ne the sweep in terms of a vertical sweep ofthe plane by a horizontal line. The x-coordinates ofthe vertical segments de�ne the total order !, and they-coordinates of their endpoints de�ne the sweep-lineupdate events in �. The y-coordinates of the hori-zontal segments de�ne the sweep-line query events in�. Initially, we use an optimal sorting algorithm sothat endpoints of all segments are in two sorted lists,one sorted by x and the other by y. We now partitionthe points into d�e vertical strips 
i. Now the sweep-ing begins, progressing from top to bottom. As wesweep, we will report some of the segment intersectionsand distribute data to recursive subproblems that wecan solve to �nd the rest. When the top endpoint ofa vertical segment is encountered, the segment is in-serted into an active list Ai associated with the strip
i in which the segment lies, and later when the bot-tom endpoint is encountered, the segment is deletedfrom Ai. When we encounter a horizontal segmentR, we consider the strips that R passes completelythrough and report all the vertical segments in the ac-tive lists of those strips. Note that horizontal segmentsare only distributed to the two strips containing theirendpoints, thus at each level of recursion each segmentis represented only twice. Once the number of pointsin a recursive subproblem falls below M , we simplysolve the problem in main memory. This process isillustrated in Figure 2.Insertions and vertical segments can be processede�ciently using blocks. With the exception of deletingsegments from active lists, the total number of I/Osperformed by this method is optimal O(� log� � + � ),where � = T=B and T is the number of intersectionsreported. If \vigilant" deletion is used to delete eachsegment as soon as the sweepline reaches the bot-tom endpoint, a nonoptimal O(N ) = O(B�) termis added to the I/O bound. Instead we use the fol-lowing lazy approach: For each strip, we maintaina stack of insertions processed so far. When a newsegment is inserted, we simply add it to the stack.We keep all but the most recently added B elementsof this stack in blocks of size B in external memory.When we are asked to output the active list, we scanthe entire stack, outputting the segments still currentand removing the segments whose deletion time haspassed. A simple amortization argument shows thatthis method achieves the bound of Theorem 1.1.
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4Figure 2: Distribution sweeping for orthogonal seg-ment intersection. Suppose the sweep line (movingdown from the top) has reached horizontal segmenta. At this point the active lists for the four strips areA1 = fbg, A2 = fc; dg, A3 = fe; fg, and A4 = fgg.Note that this assumes lazy deletion. At this point,the intersections of a and c, d, and f are reportedbecause a fully spans 
2 and 
3. Note that the in-tersection of a and b will not be reported until theproblem is solved recursively on 
1. e and g are nowdeleted from A3 and A4 respectively. Finally, we dis-tribute the points to the subproblems correspondingto the strips.2.2 General distribution sweepingIn this section we present the distribution sweepingtechnique at a high level. Our method is based uponthe following \distribution lemma," which we will useto distribute input data into recursive subproblems.Lemma 2.1: [3,37] Let S be a set of N elementstaken from some total order !, and let S be storedin � = N=B blocks in external memory. Then, usingonly O(�) I/O operations, S can be partitioned intos = dp� e = dpM=B e subsets S1;S2; : : : ;Ss suchthat, for all i, 12 Ns � jSij � 32 Ns and each element inSi is less than each element in Si+1.Note that this lemma divides the input into dp� esubsets, whereas in the example in the previous sec-tion we divided the input into d�e strips. The di�er-ence is that this lemma does not require the input tobe sorted by the ! ordering before it is partitioned;in fact this lemma was originally proven for use in

distribution sorting algorithms. Asymptotically, par-titioning the input in this manner does not a�ect theoverall running time of an algorithm since it increasesthe depth of recursion by only a constant factor of 2.We make use of this lemma to process the updates� and the queries � as follows: We �rst merge � and �into a single list ordered by index. This can be done inO(�) I/Os by a simple merging procedure. Moreover,during this same merging procedure we can constructthe set X of all elements referenced in � (possibly withduplicates). We then apply Lemma 2.1 to partition Xinto X1;X2; : : : ;Xs, by the ! ordering. Since the op-erations in � and � are de�ned for a tree structure or-dered by !, this distribution immediately implies thateach �i and �i can be decomposed into suboperations�i;1; �i;2; : : : ; �i;s and �i;1; �i;2; : : : ; �i;s, such that �i;j(resp., �i;j) is de�ned on Xj. The speci�c de�nitions ofthese suboperations will, of course, depend upon theapplication. Note that in the example given in Sec-tion 2.1 they were recursively solving the problem inthe strips 
i. Since � and � are de�ned for a tree struc-ture ordered by !, only O(1) suboperations �i;j (resp.,�i;j) involve a recursive search in Xj, for any i. Theother suboperations for Xj involve an update or querythat can be performed by a single scan (ordered by i)through these non-recursive �i;j and �i;j operations.Since s is O(p�) we may perform these non-recursivesuboperations, as well as construct an ordered list ofeach sequence of recursive suboperations, by a singlepass through the combined �-� list. We formall the re-cursive sublists simultaneously in main memory usings \buckets" of size pMB � B. As soon as a bucket�lls, we \empty" its contents out to external memory.During this pass, for each j, we also maintain an activebucket in main memory that stores information (suchas counts, sums, or pointers into external memory)for the elements in Xj present after performing theoperations on the elements of Xj up to the currentone (a �i;j or �i;j). The active buckets are used toanswer the non-recursive suboperations. Having per-formed all the non-recursive suboperations, we thenrecursively perform each sequence of recursive sub-operations in turn. A single pass requires only O(�)I/Os and results in s subsequences made up of O(�=s)blocks each, which requires only O(�) blocks for allthe subsequences combined. Thus, the total numberof I/Os needed is O(� logs �) = O(� log� �).2.3 Other applications of distributionsweepingThough space precludes a full exposition, the distri-bution sweeping method can be used to solve a num-



ber of other o�-line problems in computational ge-ometry that are traditionally solved by plane sweeptechniques. The resulting algorithms use an optimalO((� + �) log� � + � ) I/Os. Problems in this cate-gory include batched range queries, �nding all nearestneighbors, computing the visibility from a point in theplane, �nding pairwise rectangle intersections, com-puting the measure of a union of rectangles, and the3-d maxima problem. These problems are discussedin greater detail in the full version of this paper.3 Persistent B-treesThe B-tree data structure [6,9] is a fundamentalstructure for maintaining a dynamically-changing dic-tionary in external memory. In some cases, however,it may be advantageous to be able to access previousversions of the data structure. Being able to accesssuch previous versions is known as persistence, andthere exist very general techniques for making mostdata structures persistent [11]. Persistence can be im-plemented either in an on-line fashion (i.e., where thetree updates are coming on-line) or in an o�-line fash-ion (i.e., where one is given the sequence of tree up-dates in advance).For the on-line case, the method of Driscoll etal. [11] can be applied to hysterical B-trees as de-scribed by Maier and Salveter [26]. Since it is on-line,this structure requires O(N log� �) I/Os to construct,which is optimal in an on-line setting. Unfortunately,this is a factor of B away from optimal for the sort ofbatch geometric problems we would like to consider.For these we need an o�-line strategy that requiresonly O(� log� �) I/Os. In the following section we de-scribe just such a method.3.1 O�-line persistenceIn the o�-line case we can build a persistent treeby the distribution sweep method. We slightly modifyour application of distribution sweeping for this con-struction, however, in that we follow the recursive callson the sequences of suboperations by a non-recursive\merge" step.We begin by applying the Lemma 2.1 to divide theset X of elements mentioned in � into s groups ofsize roughly N=s each, where s = dp�; e. This, ofcourse, divides � into s subsequences, one for eachgroup. We then recursively construct a persistent datastructure for each subsequence. Each such recursivecall returns a list of \roots" of s-way trees, each ofwhich is marked with a time stamp that represents theindex in � when this root was created. We mark every

sth element in each list as a \bridge" element and wemerge these bridge elements into a single list Y. Westore pointers from each element y 2 Y to all its bridgepredecessors in the recursively-constructed lists. Thelist Y, together with these pointers, de�nes the rootsof the persistent structure. Since we only choose everysth element from each list as a bridge, it is easy to seethat total space needed is O(�) blocks, and the depthof the resulting (layered dag) persistent structure isO(log� �).A search in the past, say at time position i, beginsby locating the root active for time i and searchingdown in the structure from there, always searching innodes whose time stamp is the largest time stamp lessthan or equal to i. Performing only one such searchwould not be an e�cient strategy, however, unless s =p� is O(B). Nevertheless, as we show in the nextsection, this is a very e�cient data structure (e.g.,for point location) if it is searched using the batched�ltering technique.4 Batch �lteringIn this section we demonstrate how, for many queryproblems in computational geometry, we can representa data structure of size N in � disk blocks in such away that K constant sized output queries of the datastructure can be answered in O((� + �) log� �) I/Ooperations. Because we represent the data structureas a dag through which the K queries �lter down fromsource to sinks, we call this technique batch �ltering.Given a data structure that supports queries, wecan often model the processing of a query as thetraversal of a decision dag isomorphic to the datastructure. We begin at a source node in the dag, andat each node we visit, we make a decision based onthe outcome of comparisons between the query valueand some number d of values stored at the node. Wethen make a decision as to which of the node's O(d)children to visit next. This process continues until wereach a sink in the dag, at which point we report theoutcome of the query.By restricting the class of such dags we are willingto consider, we are able to prove the following lemma,which will serve as a building block for optimal al-gorithms to solve a number of important geometricproblems.Lemma 4.1: Let G = (V;E) be a planar layered de-cision dag with a single source such that the maximumout degree of any node is �. Let the graph be repre-sented in � blocks, with the nodes ordered by level andthe nodes within a level ordered from left to right. Let



N = jV j and let h be the height of G. We can �lter Kinputs through G in O(� + h�) I/O operations.Proof Sketch: We traverse the levels one by one,sending all K inputs to the i'th level before any aresent to the i + 1'st. We do this by maintaining twoFIFO queues, one for the current level and one forthe next level. Each such queue is left to right list ofedges between its level and the next one. If less than Binputs traverse an edge then they are explicitly storedin the queue. If B or more traverse the edge, thenthe queue contains a pointer to a linked list of blocksstoring them. Since the graph is planar, there existsan e�ciently blocked method of producing one queueform the previous queue. 2Luckily, the restrictions imposed on the type of de-cision dags we can handle with batch �ltering is nottoo severe. In particular, many computations use de-cision trees, which clearly constitute a special case ofthe lemma. Often these trees are binary, but we candivide a binary tree into layers of height O(log�) andthen store each node on a layer boundary along withall its descendants in the layer below it as a single nodewith branching factor �. This allows us to reduce hby a factor of O(log�) yet still meet the conditions ofthe lemma. We will see this approach used in solvingsubproblems of the 3-d convex hull problem in Sec-tion 5.3.Another way of using batch �ltering, as is to beseen in Section 4.1, is by structuring more complicateddecision dags as recursive constructions to get aroundthe planarity restrictions of the lemma.4.1 Application: multiple-point planarpoint locationPlanar point location is one of the fundamentalproblems of computational geometry. In the version ofthe problem considered here, we are given a monotoneplanar decomposition having N vertices, and a seriesof K query points. For each query point, we are toreturn the identi�er of the region in which it lies. Inmain memory, this problem can be solved in optimaltimeO((N+K) logN ) using fractional cascading [7,8];O(N logN ) is spent on preprocessing and O(K logN )is needed to perform the queries.Tamassia and Vitter [35] have demonstrated atechnique by which the fractional cascading used tosolve this problem can be implemented in parallel.Their technique can solve our problem in O((N=p +K) logpN ) time on a PRAM with p processors. Wecan use a method based on their construction, but us-ing � in place of p to get a data structure that looks

like a �-ary tree augmented with catalogs. Clearly wecan apply the technique of Lemma 4.1 to the maintree, but the bridge pointers connecting the catalogsmake the dag non-planar. To get around this, we notethat as queries traverse the edges between nodes inthe main tree, they are ordered by the catalog val-ues they query. This ordering is established at theroot of the data structure, where a �-ary tree is usedto locate the queries in the �rst catalog. By relyingon this ordering, we can e�ciently process the queriesthat arrive at each node of the main tree. The over-all complexity of this technique is thereby maintainedat O((� + �) log� �). Full details of the constructionappear in the full version of the paper.5 Convex hull algorithmsThe convex hull problem is that of computing thesmallest convex polytope completely enclosing a setof N points in d-dimensional space. This problemhas important applications ranging from statistics tographics to metallurgy. In this section we will ex-amine the problem in external memory for two andthree dimensions. The three-dimensional case is par-ticularly interesting because of the number of two-dimensional geometric structures closely related to it,such as Voronoi diagrams and Delaunay triangula-tions. In fact, by well-known reductions [17], our 3-d convex hull algorithm immediately gives external-memory algorithms for planar Voronoi diagrams andDelaunay triangulations with the same I/O perfor-mance.In main memory the lower bound for computingthe convex hull of N points in dimension d > 1 is
(N logN ) in the worst case [30]. In secondary mem-ory, this bound becomes 
(� log� �). In this section wegive optimal algorithms that match this lower bound.For the two-dimensional case we show how to beatthis lower bound for the case when the output size T ismuch smaller than N (in the extreme case, T = O(1)).We develop an output-sensitive algorithm based uponan external-memory version of the marriage-before-conquest paradigm of Kirkpatrick and Seidel [22].Our 3-d convex hull is somewhat esoteric, so wealso describe a simpli�ed version which, although notoptimal asymptotically, is simpler to implement, andwill be faster for the vast majority of practical cases.5.1 A worst-case optimal two-dimen-sional convex hull algorithmFor the two-dimensional case, a number of mainmemory algorithms are known that operate in optimal



time O(N logN ) [30]. A simple way to solve the prob-lem optimally in external memory is to modify oneof the main memory approaches, namely Graham'sscan [16]. Graham's scan requires that we sort thepoints, which can be done in O(� log� �) I/O opera-tions, and then scan linearly through them, at timesbacktracking, but only over each input point at mostonce. Clearly this scanning stage can be accomplishedin O(�) I/O operations, so the overall complexity ofthe algorithm is O(� log� �).5.2 An output-sensitive two-dimensionalconvex hull algorithmIf the output size T is signi�cantly smaller than N(for example, T can be O(1)) then we can do betterthan the Graham scan approach. In this section weshow how to construct a two-dimensional convex hullusing a number of I/Os that is output-size sensitive ina stronger sense than any of the algorithms discussedthus far. Note that when T = o(N ), we actually dobetter than Theorem 1.1 indicates. Our results areoptimal, as stated in the following theorem.Theorem 5.1: Let S be a set of N points in the planewhose convex hull has T extreme points. If �� is O(B)for some constant � > 0 then the convex hull of S canbe computed in O(� log� � ) I/Os, which is optimal.We omit details in this preliminary version, but themain idea of our method is as follows: First, we ob-serve that we may restrict our attention to the up-per hull (i.e., edges with normals with positive y-components) without loss of generality. We use theLemma 2.1 to divide the set of input points into s =dp� e buckets divided by vertical lines. We then usean external-memory implementation of a method ofGoodrich [15] for combining prune-and-search bridge�nding [22] with the Graham scan technique [16] to�nd all the upper hull edges intersecting our givenvertical lines. Our implementation uses O(�) I/Os.Given these hull edges we may then recurse on anybuckets that are not completely covered by the hulledges we just discovered. Our analysis is based on thefact that in any such divide step we either reduce thenumber of points under consideration by a constantfraction or we will discover �(s) hull edges (possiblyboth). If �� is O(B) for some constant � > 0, thisimplies that the total number of I/Os is O(� log� � ),which is optimal for any value of T .5.3 Three-dimensional convex hullsEven in main memory, sweep plane algorithms failto solve the 3-d convex hull problem, and we must re-

sort to more advanced divide and conquer approaches[29]. One idea is to use a plane to partition the pointsinto equally sized sets, recursively construct the con-vex hull for each set, and then stitch the recursivesolutions together in linear time. Unfortunately, weknow no way of implementingan algorithmof this typein secondary memory; the problem is that we cannotadequately anticipate all possible paths through thedata that might be traversed during the combiningphase. Another obstacle is that we need to be ableto stitch together O(�") recursive solutions in lineartime, rather than just two. If we use any fewer, thenthe depth of the recursion will not be small enough togive us an optimal algorithm.In order to get around the problems associated witha merging approach, we use a novel formulation of thedistribution method. We consider the dual of the con-vex hull problem, namely that of computing the inter-section of a set of N half spaces all of which containthe origin. Standard geometric duality transforma-tions [30] are used to show the equivalence of convexhull and halfspace intersection. Once we are dealingwith the dual problem, we can use a distribution basedapproach along the lines of that proposed by Reif andSen for computing 3-d convex hulls in parallel [31].Let S be a set of N halfspaces all of which containthe origin. Let the boundary of a halfspace hi 2 Sbe denoted Pi. Suppose we have a subset S0 � Ssuch that jS0j = N ". Let I0 = Thj2S0 hj. A face ofI0 might have up to N " edges. We can reduce thiscomplexity by trangulating each face, which can bedone by sorting the vertices of I0 along a vector notperpendicular to any face and then sweeping a planealong this sorted order. By Euler's law the size of theresulting set of faces is at most O(N "). We can nowdecompose I0 into O(N ") cones Ci, each of which hasone of these faces as a base and the origin as an apex.An obvious way of distributing the halfspaces into sub-problems is to create a subproblem for each cone Ciconsisting of �nding the intersection of all halfspaceshj 2 SnS0 whose bounding planes Pj intersect Ci. Un-fortunately, a given Pj may intersect many cones, so itis not clear that we can continue to work through theO(log logN ) required levels of recursion without caus-ing a very large blow up in the total size of the sub-problems. Luckily, using a form of random samplingcalled polling and eliminating redundant planes fromwithin a cone prior to recursion [31], we can with highprobability get around this problem. (In this discus-sion, the phrase \with high probability" means withprobability 1� N��, for some constant �.)Algorithm 5.1 is the resulting distribution algo-



Halfspace IntersectionInput: A set S of N halfspaces in 3-d space.Output: The set of all halfspaces hi 2 S whose boundingplanes lie on the boundary of the intersection Thj2S0 hj1. For j = 1 to �(log� �), take a random sample Sj ofS, where jSjj = N" for a constant 0 < " < 1.2. Recursively solve the halfspace intersection problemon each sample Sj , giving a set of solutions Ij.3. Use polling ([31]) to estimate the size of the partitionof S � Sj that each sample solution Ij will induce.Let Sr be the sample whose solution Ir generates thesmallest such partition.4. For each cone Ci of Ir, compute Ri, the set of halfs-paces in S � Sr whose boundaries intersect Ci.5. Eliminate redundant planes from each Ri, yieldingR�i .6. Recursively solve the halfspace intersection problemon each set R�i .Algorithm 5.1: An algorithm for computing the 3-dconvex hull of a set of points..rithm for computing the intersection of all hi 2 S.Step 1 can be completed with O(� log� �) I/Os bymaking a linear pass through S for each sample, assuggested by Knuth [23]. Step 2 consists of recursivecalls that will be considered later. In Step 3 we de-compose each Sj into cones using a plane sweep. Thistakes O((jSj j=B) log�(jSj j=B)) I/Os. We then take arandom sample from S � Sj for each Sj . This takesO(� log� �) I/Os. Finally, we solve a tree structuredpoint location problem on all elements of the sam-ple. This is done by batch �ltering as described inSection 4. The number of I/O operations needed byStep 4 is O( rB log� rB ), where r =Pi jRij. In Step 5,redundant planes are eliminated using a variant of the3-d maxima algorithm from Section 2 and a 2-d convexhull algorithm. Both require O( rB log� rB ) I/O opera-tions. Finally, Step 6 recursively solves the subprob-lems.By methods analogous to the approach of Reif andSen [31] for the parallel case, we can develop the fol-lowing recurrence for the running time of our algo-rithm:T (n) = O(� log� �) + T (N ") log� � +Xi T (jRij):The �rst term on the right-hand side is the I/O costfor sampling and partitioning, the second term is theI/O cost for sorting the samples, and the last term isfor the recursive calls. In the recurrence the jSij terms

are actually random variables. It su�ces to use Karp'smethod for solving probabilistic recurrence relations[21] to get the optimal solution T (n) = O(� log� �)with high probability.The \distribution" approach used here is di�erentfrom those of the distribution sort algorithms for thevarious I/O and memory hierarchy models [3,27,37],but has the same asymptotic I/O complexity. In thedistribution sorting, there are two sets of recursivecalls rather than one, but the time to partition isfaster.If desired, the randomization in our algorithm canbe removed by an external memory implementation ofthe technique in [14]. Details are omitted for brevity.In the full version of this paper we demonstratehow, for problems of any reasonable practical size, wecan improve upon this algorithm by using samples ofsize � instead of N ". The result is an algorithm thathas asymptotic I/O performance of O(� log2� �), butis far simpler to implement than Algorithm 5.1 andwill generally perform better in practice. The mainreason for the increase in performance is that to dopolling e�ciently the algorithm requires " < 1=8 (see[31]) and thus in most practical situations � < N ".6 Parallel and multi-level extensionsUp to this point our discussion has centered on thecase where D = 1 and P = 1. As has been men-tioned, even in this restricted model the results pre-sented here are of tremendous practical importance.Our results are even more signi�cant, however, be-cause the paradigms described in this paper continueto work even when parallelism is added and D and Pincrease. Furthermore, they can be made to work op-timally on hierarchical models having more than twolevels; these include the well known HMM [1], BT [2],and UMH [4] (pictured in Figure 3), and their paral-lelizations [27,37] (pictured in Figure 4).Details of the algorithms for these models are dis-cussed in the full version of this paper. To a largeextent they are based on modi�ed versions of two ofthe main paradigms discussed above, namely distribu-tion sweeping and batch �ltering. We can also rely onthe many-way divide-and-conquer approach of Atallahand Tsay [5], which can be extended to the I/O model.To implement distribution sweeping in these modelswe take advantage of deterministic distribution tech-niques recently developed by Nodine and Vitter [27]for optimal deterministic sorting. To implement batch�ltering, we can use disk striping [28].
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Figure 3: Multilevel hierarchy models. (a) The HMM model; access to memory location x takes f(x) time. Weconsider typical access functions like f(x) = lgx and f(x) = x�, for constant �. (b) The BT model; access to the` memory locations x, x� 1, : : : , x� `+ 1 takes f(x) + ` time. (c) The UMH model.
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Figure 4: Parallel multilevel memory hierarchies. TheH hierarchies (of any of the types listed in Figure 3)have their base levels connected by H interconnectedprocessors.7 ConclusionWe have given a number of paradigms for external-memory computational geometry that yield the �rstknown I/O optimal algorithms for several interestinglarge-scale problems in computational geometry. Be-cause they are simple and practical both on currentlycommon systems (P = 1,D = 1), and the parallel I/Osystems likely to replace them in the not too distantfuture, we are convinced that the methods will gainwidespread use.
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