
10 Goodrich et al.the 19th Ann. ACM Symp. on Theory of Computing,pages 83{93, 1987.[4] Omer Berkman, Dany Breslauer, Zvi Galil, BaruchSchieber, and Uzi Vishkin. Highly parallelizable prob-lems. In Proc. of the 21st Ann. ACM Symp. on Theoryof Computing, pages 309{319, 1989.[5] Omer Berkman, Yossi Matias, and Prabhakar L.Ragde. Triply-logarithmic upper and lower bounds forminimum, range minima, and related problems with in-teger inputs. In Proc. of the Third Workshop on Algo-rithms and Data Structures, Springer LNCS 709, pages175{187, 1993.[6] Omer Berkman, Baruch Schieber, and Uzi Vishkin.Optimal doubly logarithmic parallel algorithms basedon �nding all nearest smaller values. Journal ofAlgorithms, 14:344{370, 1993.[7] Richard Cole and Uzi Vishkin. Faster optimal parallelpre�x sums and list ranking. Information and Compu-tation, 81:334{352, 1989.[8] M. Ghouse and Michael T. Goodrich. In-place tech-niques for parallel convex hull algorithms. In 3rd An-nual ACM Symposium on Parallel Algorithms and Ar-chitectures, pages 192{203, 1991.[9] Joseph Gil. Fast load balancing on a PRAM. In Proc.of the 3rd IEEE Symposium on Parallel and DistributedComputing, pages 10{17, December 1991.[10] Joseph Gil and Yossi Matias. Fast hashing on aPRAM|designing by expectation. In Proc. of theSecond Annual ACM-SIAM Symposium on DiscreteAlgorithms, pages 271{280, 1991.[11] Joseph Gil, Yossi Matias, and Uzi Vishkin. Towards atheory of nearly constant time parallel algorithms. InProc. of the 32nd IEEE Annual Symp. on Foundationof Computer Science, pages 698{710, October 1991.[12] Michael T. Goodrich. Using approximation algorithmsto design parallel algorithms that may ignore processorallocation. In Proc. of the 32nd IEEE Annual Symp.on Foundation of Computer Science, pages 711{722,1991.[13] Michael T. Goodrich, Yossi Matias, and Uzi Vishkin.Approximate parallel pre�x computation and its ap-plications. In Proc. of the 7th International ParallelProcessing Symposium, pages 318{325, 1993.[14] Torben Hagerup. Constant-time parallel integer sort-ing. In Proc. of the 23rd Ann. ACM Symp. on Theoryof Computing, pages 299{306, 1991.[15] Torben Hagerup. Fast parallel space allocation, esti-mation and integer sorting. Technical Report 03/91,SFB 124, Fachbereich Informatik, Universit�at des Saar-landes, D-6600 Saarbr�ucken, Germany, 1991.[16] Torben Hagerup and Rajeev Raman. Waste makeshaste: Tight bounds for loose parallel sorting. InProc. of the 33rd IEEE Annual Symp. on Foundationof Computer Science, pages 628{637, 1992.[17] Joseph J�aJ�a. An Introduction to Parallel Algorithms.Addison-Wesley (Reading, Mass.), 1992.[18] Richard M. Karp and Vijaya L. Ramachandran. Paral-lel algorithms for shared-memory machines. In J. van

Leeuwen, editor, Handbook of Theoretical ComputerScience, volume A, pages 869{941. North-Holland,Amsterdam, 1990.[19] Richard E. Ladner and M. J. Fischer. Parallel pre�xcomputation. Journal of the ACM, 27:831{838, 1980.[20] Philip D. MacKenzie. Load balancing requires
(lg� n)time. In Proc. of the Third Annual ACM-SIAMSymposium on Discrete Algorithms, pages 94{99, 1992.[21] Philip D. MacKenzie and Quentin F. Stout. Ultra-fast expected time parallel algorithms. In Proc. of theSecond Annual ACM-SIAM Symposium on DiscreteAlgorithms, pages 414{423, 1991.[22] Yossi Matias. Highly Parallel Randomized Algorith-mics. PhD thesis, Tel Aviv University, Israel, 1992.[23] Yossi Matias and Uzi Vishkin. Converting high prob-ability into nearly-constant time|with applications toparallel hashing. In Proc. of the 23rd Ann. ACM Symp.on Theory of Computing, pages 307{316, 1991.[24] Yossi Matias, Je�rey S. Vitter, and Neal E. Young.Approximate data structures with applications. Theseproceedings.[25] Sanguthevar Rajasekaran and John H. Reif. Optimaland sublogarithmic time randomized parallel sortingalgorithms. SIAM Journal on Computing, 18:594{607,1989.[26] Rajeev Raman. Optimal sub-logarithmic time integersorting on a CRCW PRAM (note). Submitted forpublication, 1991.[27] Sandeep Sen. Finding an approximate median withhigh probability in constant parallel time. InformationProcessing Letters, 34:77{80, March 1990.[28] Harold S. Stone. Parallel tridiagonal equation solvers.ACM Trans. on Mathematical Software, 1(4):289{307,1975.

Parallel Prefix-Sums Approximation 9Let �j be the set of elements of value j, j =1; : : : ; n. The integer-chain sorting algorithm in [11,Sec. 9] consists of t = O(lg� n) iterations. At iterationi, an array Ai of size cn=2i is used. For each set �j aninterval Dij of size dij = O(�ij) may be allocated in Ai,where �ij is an estimate for j�j j computed in this step,and a subset �ij � �j is injectively mapped into Dij . Atthe end of the t = O(lg� n) iterations, each element in�j is mapped into a private cell in one of the intervalsDij. Let �dij = Pik=1 dij , and dj = �dti. The pre�x sums� �dij	i, j = 1; : : : ; n, can be obtained by straightforwardmodi�cations of the integer chain sorting algorithm.After the execution of this algorithm, we can obtainthe padded integer sorting sequence in an array B ofsize 2cn, as follows:Step 1. Allocate from B to each set �j a privateinterval Bj of size dj , so that the allocation isordered according to j.Step 2. For each j, allocate fromBj to each subset �ij aprivate sub-interval of size dij, so that the allocationis ordered according to i. BijStep 3. Copy the contents of each interval Dij intointerval Bij .It is easy to verify that the input elements areindeed sorted in the array B. Step 1 is implemented bythe ordered allocation algorithm of Theorem 5.1. Step 2is implemented using the pre�x sums sequences � �dij	i,j = 1; : : : ; n. Step 3 is trivial. We haveTheorem 5.2. (optimal padded integer sorting)The padded integer sorting problem can be solved in timeO(lg� n), with n-polynomial probability, and linear spaceusing n= lg� n processors.6 Applications.It had been shown in [13] that a number of well-knownproblems in parallel computational geometry can besolved e�ciently and very fast by reductions to paddedsort. We apply the new result of padded integer sortingto get improved results. Each application assumes oneis given a set of geometric objects that are speci�edby integer coordinates in the range [1::O(n)]. Themotivation for studying this restricted domain is that itis the domain that one may �nd in computer graphicsand computer vision applications, where points thatdetermine the geometric objects are pixel coordinates.Convex hulls in the plane. Suppose we are given aset S of n points in the plane. The convex hull problemis to produce a representation of the smallest convexset containing all the points of S. Typically, we desire

that this representation list the edges of the convexhull (possibly with duplicate entries) in clockwise order.Using an algorithm by [8], we showed in [13] that theproblem can be solved in time O(lg� n) plus the timefor padded integer sorting, using an optimal number ofprocessors. We therefore have an optimal-work integer-coordinate convex hull algorithm that runs in O(lg� n)with very high probability. In the full version we showhow to use this to determine the separability of twointeger-coordinate point sets in O(lg� n) time with highprobability using n processors.2-dimensional hidden line elimination. Supposewe are given a set S of n planar line segments that do notintersect, except possibly at endpoints. Suppose furtherthat the endpoints of the segments in S have integercoordinates. The 2-dimensional hidden line eliminationproblem is to produce a sorted list of pairs (xi; yi) suchthat xi is the x-coordinate of a segment endpoint andyi is the y-coordinate of the point visible from (0;�1)at xi (i.e., the lowest point on a segment in S thatintersects the line x = xi). Intuitively, one imagines thepoint (0;�1) to be the \eye" location, and the problemis to produce a representation of what that eye can seeassuming each segment is opaque. The problem can besolved in O(1) steps plus the time needed for paddedinteger sorting using O(n lgn) work, with n-polynomialprobability [13].In the full version we also show how padded sortcan be used to solve the planar dominance countingproblem, where one wishes to determine the numberof points in S dominated by point p in S.Approximate selection revisited. In the fullversion we show how to apply our overcerti�cationand estimate-focusing techniques to improve Sen's [27]parallel approximate median routine to be able to anelement with rank in [(1 + �)�1k; (1 + �)k], for anyk 2 f1; 2; : : : ; ng in constant time with n-polynomialprobability, using n processors, with � being o(1).Acknowledgment. We would like to thank RajeevRaman for some helpful comments regarding paddedinteger sorting.References[1] Leonard M. Adleman. Two theorems on randompolynomial time. In Proc. of the 19th IEEE AnnualSymp. on Foundation of Computer Science, pages 75{83, 1978.[2] Mikhail J. Atallah, Richard Cole, and Michael T.Goodrich. Cascading divide-and-conquer: a techniquefor designing parallel algorithms. SIAM J. Computing,18(3):499{532, 1989.[3] Paul Beame and Johan H�astad. Optimal bounds fordecision problems on the CRCW PRAM. In Proc. of

8 Goodrich et al.\ramp" up this probability to be n-polynomial by usingthe thinning-out principle [22], which is also known asthe failure-sweeping technique [8].If we inductively assume that a subproblem termi-nates after T (m) steps with m-polynomial probability,then after T (m) steps the number of subproblems stillactive is at most n=mb, for some constant b, with n-exponential probability. We can then use linear approx-imate compaction [23] to allocate lgn processors to eachof them. By selecting c = 2=b we obtain that this it isan instance of linear approximate compaction problemwith sparse input and can therefore be implemented inconstant time (e.g., see [12]). Finally, we can run ourmethod of Lemma 4.2 lgn times in parallel for eachactive problem, to have them all successfully solved inT (m) time, with n-polynomial probability. This can beimplemented by using the testing technique, base on thelocal condition. Thus, we have an algorithm that runsin O(lg� n) time, with n-polynomial probability, usingn processors in the CRCW PRAM model.All that remains, then, is to analyze the approxima-tion factor for this algorithm, which we can characterizeusing the following recurrence:�(n) = (1 + 1=(lg lgn)c) �(lgc n);which is bounded by 1 + �, where � � O(1=(lg lg b)c),where b is the number of processors available to us whenwe must solve the base problem in the recursion and cis a chosen constant. This parameter � is currently, ofcourse, not o(1), nor is our method work optimal. Wecan easily deal with both of these issues, however, as weshow next.4.3 The optimal solution. To achieve an optimalalgorithm we produce an initial partitioning of theinput sequence into O(n=m) sequences of size O(m)each, where m is 2O(lg� n), and we apply the well-known deterministic method to produce an exact pre�xsums sequence for each subproblem in O(lg� n) time.We then apply the above method to the sequence ofsums produced from each subproblem. This allows usto assign O(2lg� n= lg� n) processors for each elementin the sequence; hence, it allows us to achieve anapproximation factor of 1 + �, where � is O(1= lg lg� n),which is, of course, o(1), as desired. In addition, italso allows us to implement our O(lg� n)-time methodusing only O(n= lg� n) processors, which is optimal.Therefore, we have the following:Theorem 4.1. Let A = (a1; a2; : : : ; an) be a se-quence of non-negative integers. One can produce an�-approximate pre�x sums sequence for A in time that isO(lg� n) with n-polynomial probability using O(n= lg� n)processors on a CRCW PRAM, where � is o(1).

5 Padded Integer Sorting.One of the most common applications of parallel pre�xis for allocation of resources, where the allocation is byorder of requests.5.1 Ordered allocation. Given a sequencea1; : : : ; an, the ordered allocation problem is to allocatein order a sequence of non-overlapping intervals in anarray of size (1 + �)Pni=1 ai so that the i'th interval isof size � ai. More formally, compute Ii = hLi; Rii, fori = 1; : : : ; n, and Ln+1 such that for all i = 1; : : : ; n, Liand Ri are integers and(a) Ri � Li + 1 � ai (allocation);(b) Ln+1 � (1 + �)Pni=1 ai (approximation);(c) Ri < Li+1 (no overlap and ordering).The ordered allocation problem can be easily com-puted from an approximate parallel pre�x sequence asfollows: De�ne the sequence a01; : : : ; a0n: if ai = 0 thena0i = 0 otherwise a0i = ai+1. Compute the approximateparallel pre�x sequence b01; : : : ; b0n of fa0ig. Let L1 = 0;for i = 1; : : : ; n, let Ri = bbic and let Li+1 = Ri + 1. Itis easy to verify that the resulting sequence I1; : : : ; In isan ordered allocation.By Theorem 3.1 we getTheorem 5.1. (optimal ordered allocation) Theordered allocation problem for a sequence of size n canbe solved in O(lg� n) time with n-polynomial probability,using n= lg� n processors.5.2 Padded integer sorting. Given a sequenceX = fx1; : : : ; xng taken from the integer interval[1; : : : ; n], the padded integer sorting problem is tocompute an injective mapping � : X 7! [1; : : : ; �n]for some constant �, such that � is order preserving;i.e., if xi < xj then �(xi) < �(xj). In other words,the problem is to insert the elements of X in a sortedmanner into an array [1; : : : ; �n], while allowing emptycells between consecutive elements.In [13] we have shown how to use an algorithmfor approximate parallel pre�x to obtain an algorithmfor padded integer sorting that is slower by a factor ofO(lg� n), with high probability. Using the approximateparallel pre�x algorithm of Theorem 3.1 we thereforeget a padded integer sorting algorithm that runs inO((lg� n)2) time with high probability, using an optimalnumber of processors.The algorithm in [13] is based on a modi�cationof the integer chain sorting algorithm of [11, Sec. 9].We now show that the latter algorithm can be usedto obtain O(lg� n) time algorithm for padded integersorting.

Parallel Prefix-Sums Approximation 7children. This implies that the number of leaves in therooted subtree of any internal node of height h > 1 is22h�1 (that is, the square of the number of its children).Clearly, the height of the tree is at most lg lgn + 1.The leaves of the tree correspond to the n inputs of theproblem, and, at a high level, we use it to compute anapproximate summation tree as follows:Step 1. For each internal node v we assign O(nv lgc n)processors, and we compute an �-approximate sumS0(v), where � = 1=(lg lgn)c for some su�cientlyhigh constant c � 1. Each such call succeeds with(lgc n)-exponential probability, so that all of thesecalls succeed with n-polynomial probability.Step 2. For each internal node v we de�ne �S(v) =S0(v)(1 + �)4i, where i is the height of v in T (thereason for this scaling will become clear below), andwe compute an approximate pre�x sums sequenceover the �S(u) values stored at v's children, produc-ing an estimated pre�x sum, s0(u) for each child uof v 2 T . We use the method of the previous sec-tion to implement this step for each v in parallelusing O(nv lgc n) processors per node v 2 T (recallthat the number of children of v is O(pnv)). If anyof these calls takes longer than the expected O(1)time, then we abort this step and start the com-putation over again with Step 1. Of course, all ofthese calls succeed with n-polynomial probability.Step 3. We produce an estimate �s(u) for each s0(u)value by applying the bit-thinning technique toround �s(u) so that the number of signi�cant bitsneeded to represent any �s(u) is O(lg lgn) [24]. Thiswill, of course, cost us at most a factor of (1+ �) inour approximation factor. It is only at this pointthat we check the tree T for consistency, which inthis case we de�ne so that we must satisfy, for eachv 2 T , the condition�S(v) � �s(vr);where vr is the right-most child of v. If any nodefails, then we start the computation over again withStep 1.Step 4. For the i'th leaf v compute bi =Pu2LT (v) �s(u) + ai deterministically in constanttime using O(lgn) processors, by Lemma 3.1.We have:Lemma 4.1. The above method constructs a consis-tent (8�h(T))-approximate summation tree T .Proof. Let a node v 2 T have children v1; : : : ; vr.By the above construction we have�s(vr) � s0(vr)(1 + �)

� (�S(v1) + � � �+ �S(vr))(1 + �)2= S0(v1)(1 + �)4i�2 + � � �+ S0(vr)(1 + �)4i�2� S(v1)(1 + �)4i�1 + � � �+ S(vr)(1 + �)4i�1= S(v)(1 + �)4i�1� S0(v)(1 + �)4i= �S(v);which establishes our consistency condition.By well-known inequalities, for 0 � � � 1,(1 + �)4i � (1 + �)4h(T) � e4�h(T) � 1 + 8�h(T);which establishes the claimed approximation factor.Thus, we have the following:Lemma 4.2. One can solve the �-approximate pre-�x sums problem in O(1) time with n-polynomial prob-ability for � = 1=(lg lgn)c using O(n lgc n) processors,where c � 1 is some constant.Thus we have signi�cantly improved the work forour computation. We can do even better, however.4.2 Further improvements. By using a divide-and-conquer method based upon the above algorithm,we can achieve a very fast parallel method with a near-optimal work bound.Let m = lgc n, where c is a su�ciently largeconstant to be determined in the analysis. The mainidea of our method is to divide the input sequence inton=m sequences of size O(m) each, and recursively solvethe approximate pre�x sums sequence problem for eachin parallel. Then, using the method of Lemma 4.2, wecompute an approximate pre�x sums sequence on thesums returned from the recursive calls. This requiresonly O(n) processors if m is big enough, and we canthen pass down the appropriate pre�x sums to therecursively-computed pre�x sums so as to produce asolution for the entire problem. This, too, can be donein O(1) time using n processors. As for the time bound,it can be characterized by the recurrence relation:T (n) = T (lgc n) + O(1);which implies that T (n) is O(lg� n).The only problem with this approach is that ourmerge algorithm is randomized, not deterministic, asthis approach seems to require. The di�culty is thatthe probability that our algorithm succeeds is directlyproportional to the number of processors used, whichin this case is proportional to the problem size. Thus,if we inductively assume that each subproblem termi-nates in T (m) steps with polynomial probability, thatpolynomial is with respect to m, not n. So we canonly assume that a subproblem terminates with (lgn)-polynomial probability. Fortunately, however, we can

6 Goodrich et al.each node v of T we have an approximation S0(v), suchthat S(v)(1 + �)�1 � S0(v) � S(v)(1 + �): We showedin [13] that if we de�ne �S(v) = (1 + �)2iS0(v), then the�S(v)'s de�ne a consistent (4� lgn)-approximate binarysummation tree. Therefore, given an �-approximatesummation tree, for a su�ciently small �, we canmake T consistent and �0-approximate. Unfortunately,in addition to being inconsistent, known methods forcomputing approximate sums are probabilistic [11, 12,15]|they may return some inaccurate approximatepartial sums (albeit with small probability).In using one of these or a similar method forapproximate sums it would therefore be desirable ifwe could test if the probabilistic method returned acorrect approximation. Unfortunately, we cannot, ingeneral, quickly test if a node in T satis�es the �0-approximate condition, for that would require an exactsummation, which of course has a near-logarithmic timelower bound [3]. Nevertheless, we can test a localcondition that will be su�cient for our purposes.3.3 Overcerti�cation: Using a local conditionfor approximate summation trees. We say thata summation tree T is locally �-bounded if, for everyinternal node v 2 T , rXi=1 S(vi)! (1 + �)�1 � �S(v) � rXi=1 S(vi)! (1 + �);where �S(v) denotes the approximate sum stored at v,and v1; : : : ; vr denote v's children. Note that an �-approximate summation tree is automatically locally �-bounded. Also note that the converse of this statementneed not be true. Nevertheless,Lemma 3.3. If T is a locally �-bounded summationtree, then T is a (2� h(T))-approximate summation tree.Proof. Let �S(v) denote the approximate sum for vin T . By a simple inductive argument, S(v)(1 + �)�i ��S(v) � S(v)(1 + �)i, where i is the height of v in T .Given this, we can show, by well-known inequalities, for0 � � � 1,(1 + �)i � (1 + �)h(T) � e� h(T) � 1 + 2� h(T):Thus, we have a local condition that implies thedesired global approximation condition (assuming the� in Lemma 3.3 is small enough relative to the desiredglobal �). This local condition provides a means to testin constant time if an approximate summation binary-tree that is a basis for computing the output sequenceis a su�ciently good one, which amounts to an instanceof the technique we call overcerti�cation. We also have

a scheme for converting an inconsistent approximatesummation tree into a consistent approximation tree.Thus, we have only yet to show how to construct alocally �-bounded summation tree.To construct such a tree using N � n1+1=k proces-sors we assign Nnv=n processors to each node v in T ,where nv denotes the number of leaf descendents of v,and we call Corollary 2.1 to produce an approximatesum, for each v 2 T in parallel, of the values storedat v's leaf descendents. Each such sum has accuracy� = 1= lgcN with (N=n)-exponential probability. Sincethere are O(n) nodes in T , all of these calls succeedwith n-polynomial probability. Moreover, if all thesecalls succeed, then T is locally �-bounded. Thus, it issu�cient to test this local condition to decide if we needto repeat the parallel application of Corollary 2.1 or not.Therefore, we have the following:Theorem 3.1. Let A = (a1; a2; : : : ; an) be a se-quence of non-negative integers. Then one can com-pute an (8� lg2 n)-approximate pre�x sums sequence forA in time that is O(1) with n-polynomial probability us-ing N processors in the CRCW PRAM model, where� = 1= lgkN and N � n1+1=k, for any �xed constantk � 1.4 Optimal Approximate Pre�x Sums.While the method of the previous section is extremelyfast, running in constant time with very high probabil-ity, it is also quite ine�cient, requiring O(n1+1=k) pro-cessors for a constant k � 1. In this section we showhow to develop a more e�cient algorithm. Not surpris-ingly, our method involves the use of techniques some-what more sophisticated than those used to derive theconstant-time ine�cient method. To obtain our mainresult, we design a series of re�ned algorithms, begin-ning with one that runs in constant time with O(n lgc n)processors, for some constant c � 1.4.1 An O(n lgc n)-work method. In the previoussection we gave a constant time method for constructingan �-approximate pre�x sums sequence using O(n1+1=k)processors for some constant k � 1. In this subsectionwe show how to use this method to derive a more work-e�cient constant-time method.Our method mimics our work-ine�cient methodat a high level in that we �rst construct a consistentapproximate summation tree and then use that to buildan approximate pre�x sums sequence. The main ideais that instead of using a binary tree, we let T be abalanced doubly logarithmic height tree [6]. Such a treeis de�ned so that any internal node of height h > 1 has22h�2 children. An internal node of height one has two

Parallel Prefix-Sums Approximation 5v 2 T , such thatS(v)(1 + �)�1 � �S(v) � S(v)(1 + �):We say that such an approximate summation tree isconsistent if �S(v) � �S(v1) + � � �+ �S(vr);where v1; : : : ; vr are the r children of v in T , orderedfrom left to right. We use h(T) to denote the height ofthe tree T .In the remainder of this section we explain how wereduce the �-approximate pre�x sums problem to the �-approximate summation tree problem, and we then showhow to quickly solve this problem. All the steps wedescribe in this section will run in O(1) time using arather large number of processors. We postpone untilSection 4 our techniques for solving the approximatepre�x sums problem optimally.3.1 A reduction to the approximate summationtree problem. So, suppose we have a consistent�-approximate summation tree, T , built on top ofthe given sequence a1; : : : ; an. We wish to use thisto compute a consistent �-approximate pre�x sumssequence. We begin with a de�nition. For any leaf v ina rooted tree T we de�ne LT (v) to be the set of nodesu 2 T on the left fringe of the path from v to the root,i.e., the nodes that are left siblings of v's ancestors inT . Our method for computing a pre�x sums sequence,then, is that we de�ne T to be a binary tree, and wecompute, for each leaf v 2 T ,bi = Xu2LT (v) �S(u) + ai;where ai is the value stored at v. Since we desirea constant-time method, we must of course performthis summation in constant time. Fortunately, for eachv 2 T , we need only sumO(lgn) numbers, each of whichcan be de�ned using only O(lgn) bits; hence, we mayapply the following well-known lemma:Lemma 3.1. Suppose one is given m non-negativeintegers s1; s2; : : : ; sm, each of which is de�ned by astring of l � b bits4 stored in a memory cell of sizeb. Then one can compute s = Pmi=1 si in O(k)time using O(minf2(ml)1=k ;m2b1=kg) processors in theCRCW PRAM model.By applying this to compute each bi as above, then,we have the following:4Note: we do not require that si � 2l, just that there is someconsistent way to represent each si using l bits.

Lemma 3.2. Suppose one is given a sequence A =a1; a2; : : : ; an of non-negative integers, and a consistentsolution to the �-approximate summation tree problemfor A and a binary tree T . Then one can construct aconsistent �-approximate parallel pre�x sums sequenceb0 = 0; b1; : : : ; bn in O(1) time using O(n1+1=k) proces-sors for any constant k � 1.Proof. The time and processor bounds followimmediately from Lemma 3.1, so let us establish thecorrectness of this method. Let v be the i'th leaf andv0 be the (i � 1)'st leaf. Consider the lowest commonancestor of v and v0 in T , lca(v; v0), and let w be thechild of lca(v; v0) that is an ancestor of v0. Let T 0 bethe subtree of T rooted at w. It is easy to verify thatL(v)nL(v0) = fwg and that L(v0)nL(v) = LT 0(v0). Wenote that v0 is the rightmost leaf of T 0, and therefore,as can be derived from the consistency of T (and easilyproved by induction) �S(w) � Pu2LT 0 (v0) �S(u) + ai�1.Therefore,bi � bi�1 = Xu2L(v) �S(u) + ai �0@ Xu2L(v0) �S(u) + ai�11A= Xu2L(v)nL(v0)�S(u) � Xu2L(v0)nL(v)�S(u) + ai � ai�1= �S(w)� Xu2LT 0 (v0) �S(u) + ai � ai�1� ai�1 + ai � ai�1= ai :Thus, the sequence is consistent. It is easy to verify thatPij=1 aj =Pu2L(v) S(u) + ai. Therefore, since T is an�-approximate summation tree,bi = Xu2L(v) �S(u) + ai� (1 + �) Xu2L(v)S(u) + ai = (1 + �) iXj=1 aj :Thus, the sequence is an �-approximate parallel pre�xsequence.Therefore, if T is a binary tree, then it is su�cientfor us to construct a consistent �-approximate summa-tion tree for T in order to produce a consistent solutionto the approximate pre�x sums problem. Producing an�-approximate summation tree is complicated by a num-ber of factors, however, not the least of which is thatprevious summation approximation schemes [11, 12, 15]do not yield consistent sums.3.2 Achieving consistency. Suppose we have an�-approximate binary summation tree T . That is, for

4 Goodrich et al.on these multiple instances in parallel, and then callan approximate median-�nding algorithm upon theapproximations. As we show in the lemma below, thissimple idea signi�cantly improves the con�dence of ourapproximation.Lemma 2.1. Let � > 0 be given, and let S =fs1; s2; : : : ; sng be a set of independent random variablessuch that, for a given value s > 0, si fails to satisfy(1+�)�1s � si � (1+�)s with probability pi � 1=12, foreach i 2 f1; 2; : : : ; ng. If s� is an element whose rankin S is between n=4 and 3n=4, then the probability thats� does not satisfy (1+ �)�1s � s� � (1+ �)s is at most(4e�=n)n=4 � (e=3)n=4, where � =Pni=1 pi.Proof. Let X denote the number of si's that fail tosatisfy the above inequality. Observe that the ranks ofall the \good" si's forma contiguous integral subintervalof [1; n]. Thus, observing that � = E(X), we can boundthe failure of s� as a good estimate byPr(X � n=4) = Pr(X � (1 + �)�);for � = n=(4�) � 1 � 2 (since � � n=12). By a well-known Cherno� bound this probability is at most� e�(1 + �)1+��� = e(n=4)��(4�=n)n=4� (4e�=n)n=4� (e=3)n=4:Sen [27] gives a constant time randomized parallelalgorithm for approximate median �nding; for an in-put set of size n, his algorithm uses n processors to�nd a set element s� whose rank in the set is betweenn=4 and 3n=4 with n-polynomial probability.2 Sen'salgorithm can be adapted to enable �nding an approxi-mate median within the same complexity bounds, withn-exponential probability.3 We therefore have:Lemma 2.2. Assume that an �-accurate estimatefor a number x can be computed in time T with proba-bility at least 1=12, using n processors. Then, using Nprocessors an �-accurate estimate for x can be computedin time T + O(1) with (N=n)-exponential probability.Proof. The estimation algorithm is executed N=ntimes in parallel, to provide N=n estimates, each be-ing �-accurate with probability at least 1=12. Sen'salgorithm [27] is used to compute in constant time2We say that an event occurs with f(n)-polynomialprobabilityit it occurs with probability 1� f(n)�c for some constant c > 0.3We say that an event occurs with f(n)-exponential probabil-ity if it occurs with probability 1 � 2�f(n)c for some constantc > 0.

an approximate median among the estimates, with N -exponential probability. By Lemma 2.1, the approxi-mate median is an �-accurate estimate with probability1� 2
(N=n).2.2 Computing an approximate sum. Whenestimating the sum of n numbers we may have someexibility in obtaining a tradeo� between accuracy andsuccess probability.Lemma 2.3. Suppose an �(n)-estimate for the sums of n numbers can be computed in time T (n) usingn processors with probability � 1=12. Then, using Nprocessors and for any m, N � m � n, an �(m)-estimate for s can be computed in time T (m) + O(1),with (N=m)-exponential probability.Proof. The input set is �rst duplicated m=n timesto be of size m, with its sum becoming ms=n. Now, an�(m)-estimate for ms=n can be computed in time T (m)with probability at least 1=12. Dividing the estimate bym=n will yield an �(m)-estimate for s, with probabilityat least 1=12. The lemma follows by Lemma 2.2.Let d > 0 be a constant. Given a set of n numbers,a (1= lgd n)-estimate for the sum of these numbers canbe computed in O(1) time, using n processors, with n-polynomial probability [11]. By Lemma 2.3 we thereforehaveCorollary 2.1. Let A = fa1; a2; : : : ; ang and s =Pni=1 ai. Using N processors an (1= lgdm)-estimate fors can be computed in O(1) time with (N=m)-exponentialprobability, for any m, N � m � n.3 Constant-Time Approximate Pre�x Sums.Let A = a1; a2; : : : ; an be a given sequence of non-negative integers. In this section we show how toproduce a consistent �-approximate parallel pre�x sumssequence for A. Our method runs in O(1) time withvery high probability, albeit with a rather large numberof processors. Although this method is work-ine�cient,it lays a foundation upon which we will build a very fastoptimal-work method.Our method loosely follows an approach we usedin [13] for approximate parallel pre�x by reducing itto an approximate version of a related problem, whichwe call the summation tree problem. In this problemone considers a balanced tree T de�ned \on top" ofthe sequence a1; a2; : : : ; an and, for each internal nodev 2 T , one wishes to compute the sum, which we denoteby S(v), of the elements stored in v's descendants.We previously considered only the case when T wasbinary [13], but here we allow more general trees.Speci�cally, we de�ne the �-approximate summation treeproblem, as that of producing a value �S(v), for each

Parallel Prefix-Sums Approximation 3as a subroutine, in spite of its widely-recognized use-fulness in polylogarithmic parallel algorithms. Severalproblems were suggested instead, which may be viewedas much relaxed versions of the pre�x sums problem,and for which nearly-constant time algorithms were de-veloped [9, 11, 12, 15, 22, 23]. These problems includethe linear approximate compaction [23], load balanc-ing [9], interval allocation [15], and density partition-ing [12]. (See also [22].) While these problems can beused, often in concert, to replace parallel pre�x for someapplications, their use is not always as natural as is thecase for parallel pre�x computations in polylogarithmic-time algorithms. Indeed, this de�ciency motivated usto re-examine the parallel pre�x problem in an approx-imate setting in [13], and was perhaps also a motivat-ing factor for the similar independent re-examinationby Hagerup and Raman [16], which resulted in optimal-work methods with sub-optimal doubly-logarithmic [16](or slightly sub-doubly-logarithmic [13]) running times.As justi�cation for this re-examination, we gave a num-ber of applications of our result to computational geom-etry problems [13] (which we review and expand uponin this paper).Possibly the most signi�cant application of our newmethod, however, as mentioned above, is for an ap-proximate version of parallel integer sorting, which alsohas a rich history in the literature. Rajasekaran andReif [25] gave the �rst optimal randomized parallel al-gorithm for integer sorting in O(lgn) time. An improve-ment to O(lgn= lg lgn) time, matching the lower boundwhich is implied by [3], was given in [14, 23, 26]. Re-cently, MacKenzie and Stout [21] gave an algorithm forpadded sorting. Their algorithm takes doubly logarith-mic time with high probability, but the input is assumedto be taken uniformly at random from the unit inter-val. They also considered some applications to compu-tational geometry, but it seems these applications useheavily the assumption that input is taken uniformly atrandom from the unit square. Hagerup [14] de�ned theinteger chain sorting problem, and gave an optimal ran-domized algorithm in the doubly logarithmic level. Analgorithm in the O(lg� n) time level was subsequentlygiven by Gil et al. [11]. While this is also an interestingapproximate version of parallel integer sorting, its appli-cations are limited in that it amounts to a reduction ofsorting to the well-known list ranking problem [17], forwhich the near-logarithmic lower bound still holds [3].This lack of applicability motivated us to re-examinethe padded integer sorting problem (allowing for arbi-trary inputs) [13], so as to achieve a running time ofO(lg lgn lg� n= lg lg lgn) with very high probability us-ing an optimal number of processors, and may havealso been a motivating factor for the independent re-

examination by Hagerup and Raman [16], who achievea running time of O(lg lgn) time with very high proba-bility using an optimal number of processors1 .As for our applications in parallel computationalgeometry, previous related results include our previouspaper [13] (albeit with sub-optimal running times), arandomized method by Ghouse and Goodrich [8] for�nding the convex hull of a sorted set of points inalmost surely O(lg� n) time using an optimal num-ber of processors, an O(lg lgn) time method by Berk-man et al. [4] for triangulating a one-sided monotonepolygon, an O(lg lg lg(s + n)) time algorithm by Berk-man, Matias and Ragde [5] for the same problem, whenthe input is taken from the integer domain [1::s], andO(lgn) time deterministic methods by Atallah, Cole,and Goodrich [2] for solving 2-dimensional hidden-lineelimination and the dominance problems we address.In the sections that follow we present the mainideas behind our results as well as giving the outlinesof several applications.2 Summation Estimation.A basic subroutine used extensively in our approximatepre�x sums algorithm is one which estimates the sumof a given set of numbers. Such an algorithm wasgiven by [11]. However, our application will involvealso small sets for which the con�dence bounds arenot su�ciently high. The next subsection gives ageneral technique for boosting the con�dence boundsof estimation algorithms.2.1 Estimate-focusing: A technique for boost-ing approximation con�dence. The primary di�-culty in boosting the con�dence of our parallel approx-imate summation algorithm is that we have no way ofquickly testing if a certain call to the algorithm is cor-rect or not [3], i.e., our method is a randomized algo-rithm of the Monte Carlo type [18]. Thus, if we want aconstant-time algorithm with a much higher con�dencebound, it is not possible for us to apply the standardcon�dence-boosting technique of replicating the prob-lem many times and taking the best estimate producedby calling our algorithm on these multiple instances inparallel.Nevertheless, we may mimic this approach by usingan alternate con�dence-boosting technique, which wecall estimate-focusing. Simply put, the idea is toreplicate the problem several times, call our algorithm1Interestingly, the approximate parallel pre�x of Hagerup andRaman uses padded integer sorting as a subroutine, whereas theO(lg� n)-time padded integer sorting routine of the present paperuses approximate parallel pre�x as a subroutine.

2 Goodrich et al.1.1 Our results. In this paper we give a ran-domized parallel algorithm for constructing a consis-tent �-approximate pre�x sums sequence with � be-ing o(1) in O(lg� n) time using O(n) work, with veryhigh probability. Our method clearly beats the lowerbound for the exact version of this problem, and itimproves the previous approximate parallel pre�x al-gorithms of Goodrich, Matias, and Vishkin [13], whichran in O(lg lgn= lg lg lgn) time and O(n) work, withvery high probability, and of Hagerup and Raman [16],which ran in O(lg lgn) time and O(n) work, with veryhigh probability. Our method establishes the true com-plexity for this approximation problem, for our methodis optimal, by a simple reduction from the load balanc-ing problem, for which MacKenzie [20] has establishedan
(lg� n) lower bound, even in a randomized setting.Moreover, our randomized algorithm is of the Las Ve-gas type [18], indicating that the randomization a�ectsthe running time of the method, not the accuracy ofour approximation, for our method always produces anaccurate approximation. This was not the case, for ex-ample, with our previous method [13], which was of thealternate Monte Carlo type. We believe the Las Vegasnature of our new method is somewhat surprising, sincecomputing a sum exactly (and then checking it againstour approximation) has a near-logarithmic time lowerbound [3].We show the utility of this result by deriving a fastrandomized parallel algorithm for a \relaxed," but stillquite natural, version of the integer sorting problem,known as padded integer sorting [13, 21, 20, 16]. In thisversion of integer sorting we allow for gaps in the orderedlisting, so long as the total space needed for the arraycontaining these elements is still linear. Our methodruns in O(lg� n) time and O(n) work, with very highprobability, which is optimal [20] and improves the pre-vious algorithm of Hagerup and Raman [16], which runsin O(lg lgn) time and O(n) work, with very high proba-bility. Even though this is a relaxed version of sorting itis still quite powerful, as we demonstrate by giving sev-eral applications to integer-coordinate versions of manywell-known problems in parallel computational geom-etry, including convex hull construction, point set tri-angulation, 2-dimensional hidden-line elimination, andseveral dominance problems. This class of inputs is mo-tivated by applications in computer vision and computergraphics, where coordinates are determined by integergrid points. Finally, we give an improved constant-timemethod for approximate selection.We achieve our optimal algorithms through theuse of a number of interesting techniques, which webelieve will �nd applications in other algorithms thatuse randomization, parallelism, or approximation:

New techniques:� overcerti�cation. This technique is useful for pro-ducing a fast randomized algorithm of the Las Ve-gas type. It involves replacing a test of correctness(which may be impossible or, as in our case, maytake too long) with a collection of local consistencytests, which, if all true, imply correctness. Theremay be some correct answers that get rejected, butthis is �ne, since we wish to guarantee the correct-ness of the output we �nally produce, not detectevery possible correct output instance.� estimate-focusing. This is a simple, but powerful,technique for boosting the con�dence one has in anapproximation without actually testing it againstthe true value. It involves computing severalindependent approximations and then choosing anapproximate median from this group to be thechosen value.Known techniques adapted to achieve our re-sults:� failure-sweeping [8], also known as the thinning-out principle [23] (see also [10]). This techniqueis a useful method for making probabilistic divide-and-conquer algorithms \act" more like determin-istic ones. It involves the compaction of all er-roneous recursive calls in a multi-way probabilis-tic divide-and-conquer algorithm so that their re-spective subproblems may be re-solved using addi-tional resources. We adapt this technique here tobe used in conjunction with our overcerti�cationand estimate-focusing techniques.� bit-thinning. This technique, used in [16, 24],involves reducing the number of signi�cant bits inan approximation so that it is more e�cient touse this value as an index in a look-up table. Itenables us to achieve constant-time solutions forsmall subproblems with not-so-small word sizes.Because our methods are provably optimal in bothtime and work, we believe our results can be viewedas the completion of a rather long list of results onvery fast parallel approximation algorithms for somefundamental combinatorial problems, which we reviewbelow.1.2 Related previous work. As mentioned above,the parallel pre�x problem can be solved exactly inO(lgn= lg lgn) time using an optimal number of pro-cessors [7], and this is the fastest time possible us-ing a polynomial number of processors [3], even in arandomized setting [1]. Perhaps because of this lowerbound result, research on near constant-time parallelalgorithms abandoned using the pre�x sums problem

Chapter 1Optimal Parallel Approximation Algorithms forPre�x Sums and Integer Sorting(Extended Abstract)Michael T. Goodrich� Yossi Matiasy Uzi VishkinzAbstractParallel pre�x computation is perhaps the most fre-quently used subroutine in parallel algorithms today. Itstime complexity on the CRCWPRAM is �(lgn= lg lgn)using a polynomial number of processors, even in a ran-domized setting. Nevertheless, there are a number ofnon-trivial applications that have been shown to be solv-able using only an approximate version of the pre�xsums problem. In this paper we resolve the issue ofapproximating parallel pre�x by introducing an algo-rithm that runs in O(lg� n) time with very high prob-ability, using n= lg� n processors, which is optimal interms of both work and running time. Our approxi-mate pre�x sums are guaranteed to come within a factorof (1 + �) of the values of the true sums in a \consis-tent fashion", where � is o(1). We achieve this resultthrough the use of a number of interesting new tech-niques, such as overcerti�cation and estimate-focusing,as well as through new adaptations of known techniques,such as failure-sweeping and bit-thinning.We give a number of non-trivial applications of our ap-proximate parallel pre�x routine. Perhaps the most inter-esting application is for padded integer sorting, an approxi-mation version of another fundamental problem in parallelalgorithm design|integer sorting|where one wishes to sortn integers into an array of size O(n), allowing for gaps be-tween consecutive elements. We show that this problem canalso be solved in O(lg� n) time, with very high probabil-ity, using a linear amount of work, which is also optimal inboth time and work. Finally, we show several applications�Department of Computer Science, Johns Hopkins University,Baltimore, MD 21218. E-mail: goodrich&cs.jhu.edu. Thisresearch supported by the NSF and DARPA under Grant CCR-8908092, and by the NSF under Grants IRI-9116843 and CCR-9300079.yAT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill,NJ 07974. E-mail: matias@research.att.com.zInstitute for Advanced Computer Studies and Department ofElectrical Engineering, University of Maryland, College Park, MD20742. Also with the Department of Computer Science, Tel AvivUniversity, Israel. E-mail: vishkin@umiacs.umd.edu. Partiallysupported by NSF grants CCR-9111348 and CCR-8906949.

to integer-coordinate (non-approximate) problems in com-putational geometry, such as convex hulls and hidden-lineelimination, as well as for approximate selection.1 Introduction.Let A = (a1; a2; : : : ; an) be a given sequence of non-negative integers. The parallel pre�x problem [19, 28] isto compute in parallel all the pre�x sumsbi = iXj=1 aj ;for i = 1; : : : ; n. Deterministically, one can �nd allsuch sums in logarithmic time using an optimal numberof processors, as shown by Stone [28] and Ladner andFischer [19]. In the CRCW PRAM model one can doeven better, in that, as shown by Cole and Vishkin [7],one can achieve a running time of O(lgn= lg lgn) usingan optimal number of processors. This time was shownto be the best possible with any polynomial numberof processors by Beame and H�astad [3], even if arandomized algorithm is sought (using a theorem byAdleman [1]).Interestingly, this lower bound does not hold for theapproximation version of the parallel pre�x sums prob-lem, however, and, as we show in this paper, there areseveral applications where one needs only an approx-imate pre�x sums sequence. Speci�cally, given some� � 0, the �-approximate parallel pre�x problem [13, 16]is to compute in parallel an approximate pre�x sums se-quence, i.e. a sequence b0 = 0; b1; b2; : : : ; bn, such that,for i = 1; : : : ; n,(iXj=1 aj)(1 + �)�1 � bi � (iXj=1 aj)(1 + �):We say that such a sequence is consistent if bi � bi�1 �ai, for i = 1; : : : ; n (so that we automatically getbi �Pij=1 aj).1

