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Abstract

We present a method for maintaining biased search
trees so as to support fast finger updates (i.e., updates
in which one is given a pointer to the part of the tree
being changed). We illustrate the power of such biased
finger trees by showing how they can be used to derive

an optimal O (n log n) algorithm for the 3-dimensional

layers-of-maxima problem and also obtain an improved

method for dynamic point location.

1 Introduction

Binary search trees are one of the most useful data

structures, and are ubiquitous throughout the design

and analysis of efficient algorithms [14]. In some cases

thW serve as a stand-alone structure (e.g., implement-

ing a dictionary or a heap), while in many cases they

are used in tandem with other structures, either as pri-

mary or secondary structures (or both, as in the range

tree [36]). In many dynamic computational geometry
algorithms they may even be found as tertiary struc-
tures, e.g., Goodrich and Tamassia [19].
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1.1 Background and Motivation

When a binary search tree T is maintained dynamically
as a primary structure it is appropriate to count, as a
part of the update time, the time to perform atop-down
search for the node(s) in T being changed. This may

not be appropriate when T is used in tandem with other

structures, however, for one may be given, as part of the

input to an update operation, pointers, or “fingers” [20,

25, 22], directly into the part of T being changed. Such

a pointer could come, for example, from a query in

some auxiliary data structure. This may, in fact, have

been a prime motivating factor behind the method of

Huddleston and Mehlhorn [22] for designing a dynamic

search tree that has an ~(1) update time performance
for insertions and deletions when the search time is not

counted, where we use “O(. ) time” to refer to a worst-

case time bound that is amortized over a sequence of

updates.

Another important variant concerns the case when

each item z in the search tree is given a weight, wi.
This weight is a positive integer that may be propor-

tional to an access probability, as in an optimal binary
search tree structure [3, 24]. Or it may represent the

size of some auxiliary structure associated with item z,
as in a link-cut structure [40] (which itself has many

applications [12, 17, 18] ) or in a point location struc-

ture built using the trapezoid method [8, 35, 38]. In

cases with weighted items such as these one desires a
search tree satisfying a bias property that the depth of

each item z in the tree be inversely proportional to w..
Bent, Sleator and Tarjan [5] give a method for main-
taining such a structure subject to update operations,

such as insertions, deletions, joins, and splits, as well as
predecessor query operations. Most of their update and

query operations take O(log W/w~) time (in some cases
as an amortized bound), with the rest taking slightly
more time, where W is the sum of all weights in the

tree.
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1.2 Our Results

In thk paper we examine a framework for achieving

fast finger-tree updates in a biased search tree, and we

refer to the resulting structure as a biased jinger tree.

We know of no previous work for a structure such as

this. We show that insertions and deletions in a biased
finger tree can be implemented in O (log w,) time, not

counting search time, while still maintaining the prop-
erty that each item i is at depth O (log W/ w%) in the

tree. Moreover, we show that, while split operations
will take ~ (log W/wz ) time (which is unavoidable), we

can implement join operations in O(1) time.

Our structure is topologically equivalent to that

given by Bent, Sleator, and Tarjan [5]. In fact, if each

item z has weight w, = 1, then our structure is topologi-

cally equivalent to a red-black tree [14, 21, 41]. It is our

update methods and amortized analysis that are differ-

ent, and this is what allows us to achieve running times
that are significant improvements over those obtained

by Bent, Sleator, and Tarjan, even if one ignores the

search times in their update procedures. Moreover, we

provide an alternative proof that red-black trees sup-

port constant-time amortized finger updates (which is

a fact known to folklore).

We show the utility of the biased finger tree structure

by giving an optimal O(n log n)-time space-sweeping

algorithm for the well-known 3-dimensional layers-of-
maxima problem [2, 7, 15, 27]. We also give improved
methods for dynamic point location in a convex subdi-

vision [35, 8], and present a method for dynamic point

location in staircase subdivision with logarithmic query

and update times. We note that although the stair-

case subdivision we consider is a very restricted form

of subdivision, it is the only subdivision we know of for

which there is a method achieving logarithmic query

and update times. In addition, the optimal algorithm

for three-dimensional layers of maxima problem uses

our dynamic data structure for staircase subdivision.

2 Biased Finger Trees

Suppose we are given a totally ordered universe U of

weighted items, and we wish to represent a collection

of disjoint subsets of U in binary search trees subject

to the “standard” tree search queries, as well as item

insertion and deletion in a tree, and join and split oper-

ations on trees (consistent with the total order). Aho,
Hopcroft, and Unman [3] refer to these as the concaten-

able queue operations.
In this section we describe a new data structure that

efficiently supports all of the these operations. So as
to concentrate on the changes required by an update

operation, we will assume that each update operation
comes with a pointer to the node(s) in the tree(s) where
this update is to begin. Formally, we define our update

operations as follows:

Insert (t, w., Pi-, T) : Insert item z with wei,ght w, into

T, where pi- is a pointer to the predecessor, i–,

of z in T (if i has no predecessor in T, then we let

this point to Z’S successor).

Delete (i, p,, T) : Remove item z from the tree T, given

a pointer pi to the node storing i.

Split(i, T) : Partition T into three trees: T1, which con-

tains all items in T less than i, the item z itself,

and T,, which contains all items in T greater than
a.

Join(T., Ty) : Construct a single tree from T. and Tv,

where all the items in Tz are smaller than the items

in TV.

Change-weight (i, w;, T, p,) : Change the weight of the

item i in T from w, to w,!, given the pointer p%to

the node storing the item i.

Slice(i, T,z, il, iz) : Break the item i in T into two

items al and i2 such that i- ~ il ~ i:! ~ i+, and

the weight of item il is x e w, and the weight of
item 22 is (1 — z) * w,, where O < z z: 1, and Z–

and i+ are predecessor and successor items of i in

T respectively.

Fuse(il, i2, i,T) : Combine the items il amd i2 in T

into a single item i of weight wil + W,z such that
ZI ~ i ~ i2 in T, The items il and i2 need not be

siblings, but should be adjacent in the total order.

As mentioned above, our structure is topologically

similar to the biased search treel of Bent, Sleator and
Tarjan [5]. Our methods for updating and analyzing

these structures are significantly different, however, and

achieve run times better than those of Bent et al. in

most cases (see Table 1).

We assume that items are stored in the leaves, and

each internal node stores two items, lefi! and right,

which are pointers to the largest item in the left subtree

and the smallest item in the right subtree, respectively.

In addition, the root maintains pointers to the mini-
mum and maximum leaf items. Every nc)de z of the

tree stores a non-negative integer rank r(z) that satis-
fies the natural extensions of red-black tree rank [41] to
weighted sets [5]:

1. If z is a leaf, then r(x) = [log w~], where z is the

item z stores.

2. If node z has parent y, then r(x) ~ r(g); if x is

a leaf, then r(z) S r(y) – 1. Node x is major if
r(z) = r(y) – 1 and minor if r(x) < r(y) – 1.

3. If node z has grandparent y, then r(x) ~ r(y) – 1.

In addition to the above rank conditions, we also require

that a node be minor if and only if its sibling or a child

1Bent Sleator ~~d Ta~j~~ actually introduce two Kinds of bi-

ased search trees; our biased finger trees are structurally equiva-
lent to the ones they call locally biased.
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Update Operation

Search(i,T)

Insert (i, w,, p,-, T)

Delete(i, T, p,)

Split(i, T)

Join(Tz, Tv)

Change.Weight (i, w,,, T, pi)

Slice(i, T, z, Zl, 22)

Fuse(zl, Z2, z, T)

Previous Biased Trees [5]

O(log w/wz)

O(llog *I + 1)
.—

O(log Wt)

O(log w/wL)

0(1)

O(1 logwz/w,/ 1)

‘(lOgrnin(~y~,w., ) )

O(min(log w,,, log wi, ))

Table 1: Summary of Time Bounds for Biased Tree Operations. W and W’ are the sum of the weights of

all the items before and after the update operation respectively, J$’~ (Wy ) denotes the sum of weights in T. (TY ),
and i- (Z+) denotes the predecessor (successor) of i. All the complexities for update operations only count the

time to perform the update, and do not include search times.

of its sibling is a major leaf [5]. We refer to this as the

bias property.
In the remainder of this section we provide algo-

rithms for various update operations on biased finger

trees, and also analyze their amortized complexities.

2.1 Rebalancing a Biased Finger Tree

We begin our discussion by analyzing the time needed

to rebalance a biased tree after an update has occurred.

We use the banker’s view of amortization [42] to ana-

lyze the rebalancing and update operations. With each
node x of a biased finger tree we associate2 a value,

C(x), of “credits” , with O g C(x). Moreover, we par-

tition these credits into three types—one type that is
similar to those used in the analysis of Bent, Sleator,
and Tarjan [5], one type that assigns 1 credit to the
nodes on the spine of the tree, and one type suggested

by Kosaraju [26]. We omit details here.

After an update operation, we perform promote or

demote operations on the ranks of some of the nodes

of the biased finger tree, which increase or decrease

the rank of the nodes, respectively. These operations
locally preserve the rank properties, but may cause vi-
olation of the rank property on other nodes, which may
require further promotions or demotions or may even
require rebalancing to globally preserve the rank prop-

erties. We show that the total complexity of promotion,
demotion and rebalancing operations due to a single

promote or demote operation is ~(l). The structure of

our case analysis follows closely that Tarjan [41] used
for red-black trees. We again omit the details here, and

in the full version prove the following:

Lemma 2.1 The total complexity of promotion, demo-
tion and rebalancing operations on a biased jinger tree

2This credit notion is only used for analysis purposes. No
actual credits are stored anywhere.

due to a single promote/demote operation is O(1) (ac-
tually at most 8 credits). Also, each operation adds at

most two pairs of equal rank siblings to the tree.

2.2 Update Operations

We now discuss the methods for various update opera-

tions. We begin with the join operation. We describe a

‘(bottom-up” strategy, which, contrasts with the “top-

down” approach of Bent, Sleator and Tarjan [5].

Join: Consider the join of two biased trees T. and TY.

Let u and v be the rightmost leaf and the leftmost leaf

of Tz and Ty respectively. Let w and 1 be the parent of
u and v respectively (see Fig. 1). The nodes u and v

can be accessed using the pointers in the root nodes x
and y respectively. We have the following cases:

Case 1. r(x) = r(y). In this case we create a new

node .z with T= as the left subtree and Ty as the

right subtree, and we assign a rank of r(x) + 1 to

z. We then proceed up the tree as in the promote

operation.

Case 2. r(z) < r(y). In this case we traverse the right-
most path of T. and the leftmost path of TV, both
bottom up, in the increasing order of ranks of the
spine nodes. As we proceed we store the pointers

to the nodes encountered and also tags indicating
whether they are from T. or Tv in an array A or-

dered by node ranks. We also keep track of the
nodes of equal ranks last encountered in the two

paths and we terminate the traversal when reach-
ing the root z. Suppose t is the smallest rank node

along the leftmost path of Ty having rank greater

than x. Suppose a and b are the last encountered
equal rank nodes during the traversal, and note
that the node x was stored as the last node in ar-
ray A. We attach x along with its left subtree to
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Figure 1: Join of trees Tz and Tg.

t as the left child of t. For the other nodes in A,
we proceed as follows (see Fig. 1): Consider the
next node, c, in the array A. Suppose c is part of

T.. If the successor of c in A is a node d from T.,

we attach c and its left subtree as a right child of

d. If the successor of c in A is a node d from TV,

we attach c and its left subtree as a left child of d.

Suppose c is part of TV. If the successor of c in A is

a node d from T%, we attach c and its right subtree

as a right child of d. If the successor of c in A is a

node d from TY, we attach c and its right subtree

as a left child of d. We continue this process until

the nodes a and b are encountered. Then, we cre-

ate a new node z with T. and Tb as left and right

subtrees respectively. We assign a rank of r(a) + 1

to z and rebalance if required through a promote

operation. This terminates the join. If there are

no equal rank spine nodes a and b, then we join all

the nodes in the array A in the above manner.

Case 3. r(y) < r(z). Symmetrical to above case.

Analysis: We show in the full version that the to-

tal number of credits needed to perform this update is
~(l). This, and Lemma 2.1, establishes that the run-

ning time for a join is 0(1).

Split: We perform the split operation as in [5]. We

show that with the same complexity we can preserve

all three types of credits in the nodes of the resulting

trees.
Insertion: Consider the insertion of an item z with

weight w, to a biased finger tree T. Recall that i–

denotes the immediate predecessor of item i in T if it

exists, and immediate successor of i in T otherwise. We
provide a pointer to i–. In the full version we describe
how to perform a bottom-up insertion from i–. The

most interesting case occurs when the new item has

weight much larger than i–, for we must then splay i

up the tree to its proper position while joining together

the trees whose roots become siblings in this process
(so as to maintain our minor-n~de bias property). We
show that this can be done in O ([ log wl/wl- 1) time.
Deletion: Consider the deletion of an item i with

weight w~ from the biased finger tree T for which a

pointer to the item i is provided. This operation is simi-

lar to that of insertion and we have different cases based

on whether the node deleted is minor jmajor. We use

different operations to preserve bias property in each

case. We give details in the full version where we show

the complexity of deletion to be O(log wi).

We summarize:

Theorem 2.2 One can maintain a collection of biased

search trees subject to tree searches, element insertion

and deletion, change of weight of element, slicing and

fusing of elements, as well as tree joining and splitting,

in the bounds quoted in Table 1 for biased finger trees,

not counting the search times.

Bent et al. [5] show that repeated single-node joins

on the right hand side can construct a biased finger tree

in O(n) worst-case time. In our case, however, we can

show the following:

Theorem 2.3 Any sequence of joins that constructs a

biased finger tree of n items can be implemented in O(n)

worst-case time.

Proofi The proof follows immediately from the fact

that our join algorithm on biased finger trees takes ~(l)

time.
Let us now turn our attention to some non-trivial

applications.

3 The Layers-of-Maxima Prob-

lem

In this section, we use the biased finger tree data struc-

ture to solve an open (static) computational geometry
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Figure 2: Computation of Layer for a New Point p.

problem: the 3-dimensional layers-of-maxima problem.

Before we describe our method, however, we introduce

some definitions. A point p E $?3 dominates a point

g ● 3?3, if z(q) < z(p), y(q) < y(p), and z(q) < z(p).
Given a set S of points in $?3, a point p is a maximum
point in S, if it is not dominated by any other point in

S. We define the dominance region of a point p in R3 as

a set D c %3 such that p dominates every point q 6 D.

The maxima set problem is to find all the maximum

points in S. Kung, Luccio, and Preparata [27] showed

that this problem can be solved in O(n log n) time. In
the related layers-of-maxima problem, one imagines an

iterative process, where one finds a maxima set M in

S, removes all the points of kf from S, and repeats this
process until S is empty. The iteration number in which

a point p is removed from S is called p’s layer, and we
denote it by l(p), and the layers-of-maxima problem
is to determine the layer of each point p in S. This

is related to the well-known convez layers problem [7],

and it appears that it can be solved for a 3-dimensional

point set Sin O(n log n log log n) time [1] using the dy-

namic fractional cascading technique of Mehlhorn and
Naher [32]. We show how to solve the 3-dimensional

layers-of-maxima problem in O(rz log n) time, which is

optimal 3.

We solve this problem using a three-dimensional

sweep, and a dynamic method for point location in a
staircase subdivision. Given a set S of n points in $t3,

we first sort the points along the z axis, and then sweep
the points in the decreasing order of their z coordinates
to construct the maxima layers. When we sweep across

a point, we compute its layer using the information

about the layers computed so far. The information we
maintain for each layer is the union of the dominance

3A simple linear time reduction can be shown from sorting

problem to three-dimensional layers-of-maxima problem, thereby
showing a lower bound of Q(n log n) for three-dimensional layers
of maxima problem.

regions of the points in that layer. We denote this by
D(l), for a layer 1. We show that to correctly compute

the layers, it is sufficient to maintain for each layer 1, the

boundary of the intersection of the sweep plane, say r,
with D(l). The intersection region is two dimensional,

and we call its boundary a staircase.

The shape of the staircase representing a layer

changes, as we continue the sweep. During the sweep,

we maintain only a subset of points that belong to each

layer. This is because, if points, say p and q, belong to

a layer 1, and if the projection of dominance region of

p onto ~ dominates that of q, then point q will not be
part of the boundary of intersection. This simplifies the
identification of layer for a new point. Let S’ c S be the

current set of points maintained by the algorithm. We
show that S’ has the property that the the staircases

corresponding to the layers of points in S’, subdivide

the zy-plane into disjoint regions (as defined earlier).

We call this a staircase subdivision. We show that this

property is preserved at each step of the sweep, when

we compute the layer for a new point. Hence, at any in-

stant the current set of maxima layers form a staircase

subdivision, and we reduce the computation of layer
for a new point to operations on the staircase subdivi-

sion. We call the region in the subdivision between two

staircases, a face. Hence, if there are m layers, they

subdivide the zy-plane into m + 1 faces, The projec-

tion of each new point onto the xy-plane belongs to a

unique face among these m + 1 faces. We work with

the staircase subdivision, and the projection of a new

point, to identify the point’s layer.
The algorithm for computing the layer number of a

new point p is, then, as follows:

1.

2.

3.

4.

Identify the two staircases in the staircase subdi-

vision between which the new point p lies. Assign

p to higher-numbered layer of these two. For ex-

ample, in Figure 2, p lies between the layers 1 and

2, and gets assigned to layer 2. If p lies below the

highest-numbered layer, say m, then assign p to a

new layer m + 1.

Compute the horizontal segment h, and the verti-
cal segment v from p, which hit the boundary or

some layer (of course the layer hit by h is the same
layer that is hit by v, and has same number as p’s

just computed layer).

Insert the segment h and the segment v into the
subdivision.

Delete the segments in the layer l(p), which are

dominated by-p in the xy-plane. F&’ example, in
Figure 2, we delete segments in portion A of layer
2.

Correctness and Analysis: We now show that each
new point p is identified with its correct layer. We use

Figure 2 to illustrate the idea. Consider layer 2. The
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staircase of layer 2 is the boundary of the intersection of

the union of the dominance regions of the points in the

layer 2 with the sweep plane n. Since the points are pro-

cessed in decreasing order of their z coordinates, when

we insert p, the dominance region of point p does not

dominate any of the points in layer 2. Also the points

in layer 2 do not dominate p along x and y coordinates.

So, point p belongs to layer 2 (i.e., 1(p) = 2), as identi-

fied by the algorithm. Now to update the boundary of
intersection with r, we delete the portion A from layer

2, and include the segments h and v into the subdivi-

sion. To see why only the boundary is maintained, we

observe that if point q is introduced later, the algorithm

will identify q with layer 1(p). But q does not belong to

layer l(p) , since q is dominated by p. So, it should ei-

ther initiate a new layer, or belong to an existing layer

(see Figure 2). In any case, l(q) = l(p) + 1. Also, we

observe that after deleting points in portion A, the new
boundary for layer 2 is in the form of a staircase, thus

preserving the property.

Suppose location, insertion and deletion of a

vertex/edge in a staircase subdivision take time

Q(n), l(n), and D(n) time respectively. We implement

step 1 as a point location in staircase subdivision, and

it takes O (Q (n) ) time. We represent the staircase cor-

responding to each layer by a dictionary, for ordering

along z and y axes (since both are same ordering). Us-

ing these data structures, we compute in O (log n) time

the horizontal segment h, and the vertical segment v
for a new point p. Hence, step 2 takes O(log n) time.

Therefore, the total time for computing the layer of

each point is O(log n + Q(n) + I(n) + k * D(n)), where

k is the number of points deleted in step 4. Since each

point is deleted at most once, and is not inserted back,
we amortize the cost of k deletions on each of the k

points. Hence, the complexity of computing layer of

each new point is ~(logn + Q(n) + I(n) + D(n)). In

the next section, we show a method which achieves

Q(n) = l(n) = D(n) = O(log n), resulting in a

O(log n) algorithm for computing the layer of a single

point. This gives us an O (n log n) algorithm for com-
puting the three dimensional layers-of-maxima, and is

optimal.

4 Dynamic Point Location

In this section, we address the general problem of dy-

namic point location in a convex subdivision. So,

suppose we are given a connected subdivision S of
the plane such that S partitions the plane into two-

dimensional cells bounded by straight line segments.
The point location problem is to construct a data

structure that allows one to determine for any query
point p the name of the cell in S that contains p (see

[13, 15, 16, 23, 28, 29, 35, 36, 39]). It is well-known

that one can construct a linear-space data structure for

answering such queries in O(log n) time [13, 16, 23, 39].

These optimal data structures are static, however,

in that they do not allow for any changes to S to oc-

cur after the data structure is constructed. There has,

therefore, been an increasing interest more recently into

methods for performing point location in a dynamic

setting, where one is allowed to make changes to S,

such as adding or deleting edges and vertices. It is

easy to see that, by a simple reduction from the sort-
ing problem, a sequence of n queries and updates to

S requires fl(n log n) time in the comparison model,

yet there is no existing fully dynamic framework that

achieves O (log n) time for both queries and updates

(even in an amortized sense). The currently best meth-

ods are summarized in Table 2. The results in that ta-

ble are distinguished by the assumptions they make on

the structure of S. For example, a convex subdivision is

one in which each face is convex (except for the external

face), a staircase subdivision is one in which each face

is a region bounded between two infinite staircases, a

rectilinear subdivision is one in which each edge is par-
allel to the m or y-axis, a monotone subdivision is one

in which each face is monotone with respect to (say)

the x-axis, a connected subdivision is one which forms

a connected graph, and a general subdivision is one that

may contain “holes.” The interested reader is referred

to the excellent survey by Chiang and Tamassia [9] for

a discussion of these and other results in dynamic com-

putational geometry.

4.1 Our Data Structure

Suppose we are given a convex subdivision S that we

would like to maintain dynamically subject to point lo-

cation queries and edge and vertex insertions and dele-

tions. As mentioned above, our method fen- maintain-

ing S is based upon a dynamic implementation of the

“trapezoid method” of Preparata [35] for static point

location. Incidentally, this is also the apprc,ach used by

Chiang and Tamassia [8], albeit in a different way. Let
us assume, for the time being, that the x-coordinates

of the segment endpoints are integers in the range [1, n]
(we will show later how to get around this restriction us-

ing the the BB [a] tree). We define our structure recur-

sively, following the general approach of Preparata [35].

Our structure is a rooted tree, T, each of whose nodes

is associated with a trapezoid r whose parallel bound-

ary edges are vertical. We imagine the trapezoid T as
being a “window” on S, with the remaining task being

that of locating a query point in S restricted to this
trapezoidal window. With the root of T we associate a
bounding rectangle for S.

4Cheng and Janardan’s update method is actually a de-
amortizai, ion of an amortized scheme via the “rebuild-while-you-

work” technique of Overmars [34],

5Our method can actually used for any dynamic point location
environment satisfying a certain pseudo-edge property.

155



Type Queries Insert Delete Reference

general O(log n log log n) O(log n log log n) 0(log2 n) Baumgarten et al. [4]

connected 0(log2 n) O(logn) O(logn) Cheng-Janardan [11]4

connected O(logn) 0(log3 n) 0(log3 n) Chiang et al. [10]

monotone O(logn) 0(log2 n) 0(log2 n) Chiang-Tamassia [8]

monotone 0(log2 n) Q(logn) O(log n) Goodrich-Tamassia [18]

rectilinear O(log n log log n) O(log n log log n) O(log n log log n) Mehlhorn-Naher [32]

convex O(logn + log N) O(log n log N) O(log n log N) Preparata-Tamassia [38]

convex5 O(log n) O(log n) 0(log2 n) this paper

staircase O(log n) O(log n) O(log n) this paper

Table 2: Previous and New results in dynamic point location. N denotes the number of possible y-coordinates for

edge endpoints in the subdivision.

Let v therefore be a node in T with trapezoid T asso-

ciated with it. If no vertex or edge of S intersects the

interior of T, then we say that T is empty, in which case

v is a leaf of T. Note that in this case any point deter-

mined to be inside 7 is immediately located in the cell

of S containing ~. Let us therefore inductively assume
that ~ contains at least one endpoint of a segment in
S. There are two cases:

1.

2.

There is no face of S that intersects -r’s left and

right boundaries while not intersecting r’s top or

bottom boundary. In this case we divide T in two

by a vertical line down the “middle” (we choose a

vertical line which balances the height of the tree

on both sides) of ~, an action we refer to as a ver-

tical cut. Thk creates two new trapezoids rl and

T., which are ordered by the “right of” relation.

We create two new nodes V1 and u,, which are
respectively the left and right child of v, with V1

associated with rl and v. associated with r..

There is at least one face of S that intersects both

the left and right boundaries of T and does not

have a spanning edge of r as its top or bottom

boundary. In this case we “cut” T through each
of the faces of S that intersect ~’s left and right

boundaries. This creates a collection of trapezoids
T1,T2,. ... rk ordered by the “above” relation. We
refer to this action as a collection of horizontal

pseudo-cuts (even though it would be more accu-
rate to call them “non-vertical pseudo-cuts” ). We

associate a node vi in T with each r, and make
this set of nodes be the children of v in T, ordered

from left-to-right by the “above” relation on their

respective associated trapezoids.

Repeating the above trapezoidal cutting operations
recursively at each child of v creates our tree T (see
Figure 3). The tree T, of course, cannot yet be used to

perform an efficient point location query, since a node
v in T may have many children if its associated action
forms a collection of horizontal cuts. To help deal with

this issue we define the weight of a node v ~ T to be the

number of leaf descendants of v in T, and we use w(v) to

denote this quantity. Given this weight function, then,

we store the children of each node v in T as leaves in a

biased finger tree Tv and doubly link all the leaves of T..

Of course, such a biased finger tree is a trivial tree for
each node v corresponding to a vertical cut, but this is
not a problem, for it gives us a way to efficiently search

the children of a node whose corresponding action is a

collection of horizontal cuts.

The structure of T satisfies an invariant that if a face

f spans a trapezoid, then either it has a spanning edge

e of the subdivision on its top or bottom boundary or

it is split into two by a pseudo-cut. In either case, the

face ~ has a bounding spanning edge if it spans T. We

say that a face f or an edge e of the subdivision covers
a trapezoid T if it spans T horizontally and it does not

span any ancestor of ~ in T. The structure of T has the

property that any face or edge covers at most O(log n)

trapezoids and also each face or edge covers at most

two nodes at any level of T. These properties follow

easily from segment tree like arguments [31].

We now describe the point-location query algo-
rithm for our data structure. Consider the operation

query (r, x, y), where x and y represent the coordinates
of the query point and T is a current trapezoid in the
subdivision (which represents a node in our primary
data structure). We alternately make comparisons with
nodes in the primary and secondary data structures.
In the primary data structure (triangular nodes rep-

resenting trapezoids), we compare the z value of the

point against the z value of the vertical cut at r. This

identifies the left or right secondary data structure of ~

containing the query point. We then use the secondary
data structure to identify a trapezoid containing the

query point among the several trapezoids separated by
horizontal cuts. In the secondary data structure i.e.,
in the biased finger tree stored in the trapezoid r, we

compare the (x, y) value of the point against the sup-
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3: Trapezoidal Decomposition of a Convex Subdivision with Pseudo-Edge Cuts. The triangular

vertical cuts and the circular nodes denote horizontal cuts.

porting line of the spanning edge or pseudo-cut 6. This

identifies a leaf node, say q, in the biased finger tree

that represents a trapezoid, say Tq, in the primary data

structure. We now recursively locate the point by call-
ing quer-g(~q, z, y).

The arguments in the previous section on the struc-

ture of our data structure imply that, starting from the

root of T, we can perform the point location query in

O(log w(r) + depth(r)) time in the worst case, where

r denotes the root of T. This is because the times to

perform the biased merge tree queries down a path in

T form a telescoping sum that is O(log w(r)). Noting

that w(r) is O(n log n) [35] and depth(T) is O(log n)

(since our primary data structure is kept balanced)

gives us the desired result that a point location query

takes O(log n) time.

Our method for updating this structure is rather in-

volved; hence, for space reasons, we can only sketch

the main ideas in this extended abstract. In the case

of an insertion of an edge e into a face j our method

traverses down the tree for the endpoints of e. At each

node that f covers and such that e cuts so that the new

faces no longer cover we must perform O(1) join oper-

ations. Since there are O (log n) such nodes, the total

time for these updates, then, is O(log n). In addition,
there are also O (log n) places in the tree where we must
insert this new edge, each of which can be implemented

in ~(1) time, given a pointer to the location for this in-

sertion (which we obtain from the A list for $). Thus,
the total time for an insertion is ~(log n). The case of

GWhe~ We use the query algorithm to locate edges, if the edge
spans the trapezoid T then we compare the y-value of the point

of intersection of the edge with the left boundary of T against the

y-values of the points of intersections of the horizontal cuts with

the left boundary of T.

nodes

a deletion is essentially the reverse of the above opera-

tions. This operation runs in 0(log2 n) time, however,
since we now may have to perform O (log n) split op-

erations (and their complexity, unfortunately, does not
form a telescoping sum).

4.2 Rebalancing the Primary Structure

In this section we show how to relax the constraint that

the endpoints have x coordinates in the range [1, n]. We

use a BB [a]-tree as a primary tree for vertical cuts with

biased finger tree as a secondary structure in each node.

We briefly review the properties of BB[a]-tree. Let ~(l)

denote the time to update the secondary structures af-

ter a rotation at a node whose subtree has 1 leaves.

Also, assume that we perform a sequence of n update

operations, each an insertion or a deletion, into an ini-

tially empty BB[a]-tree. Now, we have the following

times for rebalancing [30]:

● If j(l) = 0(1 Iogc 1), with c > 0, then the rebalanc-
ing time for an update operation is O (logc+l n).

● If ~(l) = 0(1”), with a < 1, then the rebalancing
time for an update operation is O(1).

In our case, we show ~(n) = O(n) and ISOthe rebal-

ancing cost is O (log n). We give the details in the full
version.

Thus we show,

Theorem 4.1 Given a convex subdivision S of n ver-

tices, there exists a data structure which allows point
location queries in O(log n) time, vertexledge insertion

in O(log n) time, and vertezledge deletion in ~(log2 n)

time.
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a. A Spanning Face Without any Pseudo-cut

Figure 4: Pseudo-Cut for

4.3 Dynamic Point Location in Stair-

case Subdivisions

In this section, we construct an O(log n) depth trape-

zoidal structure for staircase subsubdivisions similar to

the one for convex subdivision, which allows us to per-

form query in O(log n) time, and updates in ~(log n)

time. We always require that deletion of an edges (ver-

tices) should always be accompanied by an insertion of

an edge (vertices).

The trapezoidal structure for staircase subdivision

satisfies a slightly different invariant from that of con-

vex subdivision. Here we use an invariant that if a face

~ spans a trapezoid T and ~ can be split into two faces
by a (truly) horizontal spanning segment, say e, of ~,

then we split T into two trapezoids using e. So, unlike

convex subdivision, not every spanning face of r will

have a pseudo-cut (see Figures 4.a and 4.b) here. Us-

ing this invariant, we can easily do an analysis similar

to that of convex subdivision to show that the insert op-

eration in a staircase subdivision takes takes ~(log n)

time. The details are omitted.

Using this invariant, we can easily do an analysis
similar to that of convex subdivision to show that the

insert operation in a staircase subdivision takes takes

O(log n) time. The details are omitted. We observe

that, each edge deleted is always bounded on the top
and on the right by “long” edges. This implies that we

already have a horizontal spanning pseudo edge for the
face resulting after deletion, and hence deletion of an

edge does not require an introduction of a new pseudo-

cut into the subdivision. This eliminates the costlier

case of deletion which takes ~ (log2 n), and all the other
cases take O (log n) time. We give details in full ver-

sion. Thus, this observation results in a ~(log n) time
method for deletion of an edge in the staircase subdi-
vision.

Thus we show,

a

b-l-lr

F=l
b. A Spanning Face With a Pseudo-cut

staircase spanning face.

Theorem 4.2 Given a staircase subdivision S of n

vertices, there exists a data structure which allows point
location queries in O(log n) time, edge (vertex) inser-

tion in ~(log n) time, and edge (vertex) deletion in

~(log n) time (the deletions are always coupled with in-

sertions, however).

The edge insertion and deletions performed on stair-

case subdivision in our three-dimensional layers of max-

ima algorithm satisfy the constraints specified in The-

orem 4.2. Therefore we have,

Theorem 4.3 Given a set S of n points in !R3, one

can construct the layers of maxima for S in O(n log n)

time, which is optimal.
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