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Abstract
We present techniques for matching point-sets in two and three dimensions under rigid-body
transformations. We prove bounds on the worst-case performance of these algorithms to be within
a small constant factor of optimal, and conduct experiments to show that the average performance
of these matching algorithms is often better than that predicted by the worst-case bounds.

Index Terms: Hausdorff distance, pattern matching, registration.

1 Introduction

Suppose we are given a set B of n points in IR%, which we shall call the background, and a set P
of m points in IR?, which we shall call the pattern. The geometric pattern matching problem is to
determine a rigid motion, taken from some class of motions, such that each point in P is moved to a
point in B.

It is easy to solve this problem if we insist on ezactly matching points in P to points in B: Store
B in a dictionary, designate one point of P as a “reference point,” and consider the n placements of
P corresponding to the reference point coinciding with each point of B; for each placement, do m — 1
queries into the dictionary to determine if all m points of P are matched. Unfortunately, this approach
is very sensitive to noise. Thus, it is more natural to pose the approzimate geometric pattern matching
problem: Find a rigid motion of P such that each point of P is moved near to a point in B. Formally,
we desire a rigid motion T', taken from some class of motions C, such that the directed Hausdorff
distance from T'(P) to B is minimized. Recall that the directed Hausdorff distance!, h(C, D), from
a point set C' to another point set D is defined as h(C, D) = max.cc mingep p(c, d), where p is the
usual Euclidean distance between ¢ and d. Thus, hA(C, D) is the smallest amount by which we need to
“grow” the points of D in order that all of C is covered by the grown set. Using the directed Hausdorff
distance as the matching criterion thus allows us to find the pattern in the background. (In contrast,
a least squares fit would not produce this type of match since all background points, including those
that do not correspond to any of the pattern points, would influence what is considered to be the
optimal placement of the pattern.)
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1.1 Previous Work

Point set pattern matching has been an important problem in machine vision for some time. A
number of different general strategies have been used to approach the problem. Four such strategies,
along with their advantages and disadvantages are outlined below.

The Cluster Approach. The clustering approach ([28, 29, 31, 34, 36, 38|) involves associating
confidence values with locations in a discretized configuration space of possible orientations of the
pattern with respect to the background and then choosing the match that is associated with the largest
cluster or peak in the confidence values in the configuration space. These strategies are particularly
effective at matching patterns that are partially occluded, or have points missing for other reasons,
and patterns in which some points are severely corrupted, as demonstrated by the experimental work
of the authors. The methods, however, require that the tolerance ¢ be prespecified, and sometimes
“tweaked”, and produce matches in which those points that do not fall within ¢ of an associated point
are neglected in terms of the degree to which they actually deviate from the nearest matching point.

The Absolute Orientation Approach. The absolute orientation approach ([7, 20, 23, 24, 37]) is
concerned with determining the pose (see, e.g., [16, 20]) of the pattern with respect to the background
that minimizes the least squares error. These results assume that the size of the pattern set and the
size of the background set are the same, and even more limiting, that a correspondence between the
points in the pattern and the points in the background has already been established.

The Extracted Information Approach. Another general strategy, which we call the eztracted
information approach, attempts to match the pattern to the background based on information ex-
tracted from the sets of points. See, e.g., [2, 4, 17, 19, 32]. As shown by the authors, these methods
work very well, theoretically and experimentally, for patterns and backgrounds that are related to
each other by certain, sometimes strict, criteria. These methods do not, in general, work very well
for the cases of missing points, and in some cases, the extracted information will change severely and
abruptly with infinitesimal changes in a single pattern point.

The Computational Geometry Approach. Using computational geometry techniques, Alt et
al. [5] give methods for finding congruences between two sets of points A and B under rigid motions.
In addition to exact methods, they introduce an approzimate version of the problem, for a given
tolerance € > 0, and ask to find a motion T, if it exists, that allows a matching between each point
in T(A) and a point in B at distance < e. They also consider the optimization version, to compute
the smallest € admitting such a motion; unfortunately, their running times for this version are quite
high. This version of the problem is very close to the problem we address in this paper.

Imai et al. [27] show that these bounds can be reduced somewhat if an assignment of points in
A to points in B is given. Similarly, Arkin et al. [6] show that one can improve the running times
in the approximate case if the “noise regions” are disjoint. Even so, the methods in these papers are
relatively sophisticated, with rather high running times for all but the most simple motions.

In work more directly related to this paper, several researchers [9, 10, 25, 26] have studied methods
for finding rigid motions that minimize either the directed or undirected Hausdorff distance between



the two point sets. All of these methods are based on intersecting higher-degree curves and/or surfaces,
which are then searched (sometimes parametrically [1, 11, 12, 13, 30]) to find a global minimum. This
reliance upon intersection computations leads to algorithms that are potentially numerically unstable,
are conceptually complex, and have running times that are high for all but the most trivial motions.
Indeed, Rucklidge [35] gives evidence that such methods must have high running times.

The high running times of these methods motivated Heffernan [21] and Heffernan and Schirra [22]
to consider an approximate decision problem for approximate point set congruence (they did not study
point set pattern matching). Their general framework, for a given parameter ¢ > 0, is to solve the
approximate set congruence problem [5], except that one is allowed to “give up” if one discovers that e
is “too close” to the optimal value €* (i.e., the Hausdorff distance between T'(A) and B). By allowing
algorithms to be “lazy” in this way, they show that the running times can be significantly improved.
Unfortunately, this approach can result in a large computing time that yields no approximation, with
the time increasing substantially if one tries to get a yes-or-no answer for an e close to €*. Thus, it is
difficult to use their methods to approximate €*.

1.2 Owur Results

In this paper we present a very simple approach for approximate point set pattern matching under
rigid motions, where one is given a pattern set P of m points in IR? and a background B of n points
in IR? and asked to find a rigid motion 7' that minimizes h(T(P), B). Our methods are based on a
simple “pinning” strategy. They are fast, easy to implement, and numerically stable. Moreover, since
they are defined for the (more general) directed Hausdorff measure, they are tolerant of noise in the
background.

Our methods are not exact, however. Instead, in the spirit of approximation methods for other
hard optimization problems (e.g., NP-hard problems [14]), we derive algorithms that are guaranteed
to come close to the optimal value, €*. In particular, each of our methods gives a rigid motion T" such
that h(T'(P),B) < ae*, for some small constant & > 1. (We note that a similar use of approximation
algorithms is taken by Alt et al. [3] for the problem of polygon matching.) Our results are summarized
in Table 1.

We justify the implementability of our methods through an empirical study of the running time
and the quality of the match of our methods when run on various input instances. We compare the
performance with that of a more conventional procedure based on a branch-and-bound search of a
discretized configuration space. Our results show that, in practice, our methods are fast and produce
rigid motions with good matches. We also give some heuristics that speed up the running time in

practice, while not improving the worst-case running time.

2  Our Algorithms

The input to our algorithms is a set B of n points in IR% and a set P of m points in IR, where
dimension d is considered constant.



‘ Motion ‘ Optimal Match ‘ Our Method ‘ Factor ‘

T in R? nm?logn [25] nmlogn 2
TR inIR? | n?m3logn [9] n’mlogn 4
T inR® | n®m?log?n [25] | nmlogn 2+€
T in IRY - nmlogn 2+ €
R in IR? - n’mlogn 4+¢€
TR in IR? - n®mlogn 8+¢€

Table 1: The asymptotic running times for an optimal match and for our approximately opti-
mal match, having a worst-case approximation factor guarantee. Transformations considered are
T =translation and R =rotation, and their combination. Here, 0 < € < 1 is a fixed constant. (The
optimal match method for translation in IR? is for the undirected Hausdorff distance.)

2.1 Pure Translation in R?

In this subsection we give an efficient method for finding a translation 7" such that h(T'(P), B) is at
most 2h(Topt (P), B), where Ty is an optimal translation, i.e., one that minimizes h(T'(P), B), taken
over all translations 7.

Pick some point p € P as a “representative” for P. For each b € B, define T}, to be the translation
that takes p to b. Our method, then, is to find minye g{h(T,(P), B)} as our best approximate match,
and let 7" be the translation 7}, that achieves this bound. This can clearly be done in O(nm -
Nearesty(n)), where Nearesty(n) is the time needed to perform a nearest-neighbor query in an n-
point set (in this case B) in IR%.

Of course, if d = 2, then we can achieve Nearesto(n) = O(logn) by answering nearest-neighbor
queries using point location in a Voronoi diagram for B (e.g., [15, 33]), which requires O(nlogn)
preprocessing. For higher dimensions, this approach is not as efficient, however. So, our method for
implementing nearest neighbors will instead be based on the (practical) method of Arya et al. [8],
which finds approzimate nearest neighbors in O(logn) time in IR¢, for any constant dimension d > 2,
after O(nlogn) preprocessing. Their method can be tuned to return a point whose distance is at
most a (1 + €)-factor larger than the nearest-neighbor distance, for any constant 0 < e < 1.

Lemma 2.1 h(T'(P), B) < 2h(Topt(P), B) in IR? and h(T'(P), B) < (2+ €)h(Topt (P), B) in RY, for
d > 3 and for any constant € € (0,1).

Proof: (For IR?) For simplicity of expression, define hopt = h(Topt(P), B). Observe that for each
P € Topt (P), there exists an associated b € B that is within a distance hop of p. Consider the process
of translating the entire pattern T,p((P) so that a particular point p now coincides with its associated
background point b. This translation will cover a distance of at most hop; and will therefore increase
the distance from any other point in the pattern to its associated background point by at most hgps.
Therefore, it will have a directed Hausdorff distance of at most twice that of T, (P). This translation
will be one of those generated and checked by our algorithm. Thus, our algorithm will produce a
translation that results in a directed Hausdorff distance that is at most a factor of two times the
minimal.



(For TRY) For the case of IR?, with d > 3, an identical argument would apply if we were to use
an exact nearest-neighbor algorithm to compute the quality of the various translations considered.
However, we are using the approzimate nearest-neighbor algorithm of Arya et al. [8], so the observed
directed Hausdorff distance of any translation 7'(P) may appear to be greater (worse) than its actual
value by a factor of up to 1+¢', where €’ is a parameter of the approximate nearest neighbor algorithm.
Since one of the candidate translations will have a directed Hausdorff distance within a factor of 2 of
the absolute optimal (by the argument above), our algorithm will select as the best translation one
that has a directed Hausdorff distance no greater than 2(1+ €')hopt. Selecting € = €/2 then gives the
desired result.

|

2.2 Translation and Rotation in R?

For points in the plane, we give an efficient method for finding a Euclidean motion (translation and
rotation) E’ such that h(E'(P),B) is at most 4h(Eqpt(P),B), where Eqpy is an optimal Euclidean
motion, i.e., one that minimizes h(E(P), B), taken over all valid motions E.

Select from the pattern diametrically opposing points and call them r and k; this can be done
trivially in time O(m?2), but O(mlogm) suffices [33]. Point r is treated as both the distinct repre-
sentative of the pattern for the translation part of the transformation and it is treated as the center
of rotation for the rotation part of the transformation. Specifically, for each b € B, define T} to be
the translation that takes r to b. Also for a b’ € B,b’ # b, define Ry to be the rotation about r that
makes 7, b, and k collinear. Let Ejj; be the Euclidean motion that is the combination of T}, and
Ry. Our method is to find ming e g{h(Epy (P), B)} as our best approximate match, and let E' be
the Euclidean motion Ej,j that achieves this bound. This can be done in O(n?m - Nearest3(n)) time,
which is O(n?m log? n) if one uses the best current point location method for a 3-dimensional convex
subdivision [18] to query nearest neighbors in a 3-dimensional Voronoi diagram (e.g., see [15, 33]).
Our preference, however, is to achieve a faster (and more practical) O(n?mlogn) time bound using
the approximate nearest neighbors method of Arya et al. [8], at a slight cost in the approximation
factor.

Lemma 2.2 h(E'(P),B) < (4 + €)h(Eopt(P), B), for any constant 0 < € < 1.

Proof: Since the € term is a direct consequence of our using approximate nearest neighbor searching
to achieve Nearestsz(n) = O(logn), it is sufficient to show that actual nearest neighbors would give an
approximation factor of 4. For simplicity of expression, define hopy = h(Eqpt(P), B). Observe that
for each p € Eypi(P), there exists an associated b € B that is within a distance hp, of p. Consider
the process of translating the entire pattern Eqp(P) so that the particular point r now coincides with
its associated background point b. This translation will cover a distance of at most hqpy and will
therefore increase the distance from any other point in the pattern to its associated background point
by at most hgpi. Now consider the process of rotating the entire pattern about point r so that the
line containing r and k£ now passes through the background point associated with k in Fqp(P). This
rotation will have the effect of moving point k by at most 2h,p;. Since k is the furthest point in the
pattern from the center of rotation, all other pattern points will be moved by a distance of at most
2hopt- Thus, any given point in the pattern can be moved by at most hgpy during the translation



and at most 2hqp; during the rotation, and could have been initially at most hop; away from its
associated background point. Therefore, each point in the pattern will be at most a distance of 4hqp;
from a background point. The pattern in its current position coincides with one of the Euclidean
transformations generated and checked by our algorithm. [

2.3 Pure Rotation in IR?

For points in IR3, we give an efficient method for finding a (pure) rotation R’, about the origin,
such that h(R'(P), B) is at most 4h(Ropt(P), B), where Ryt (P) is an optimal rotation, i.e., one that
minimizes h(R(P), B), taken over all rotations R.

Find a point p; € P that is furthest from the origin. Find a point ps € P that has the maximum
perpendicular distance to the line defined by the origin and point p;. (It takes O(m) time to find py
and po.) For each O’ € B, define Rly to be the rotation that makes the origin, p; and o’ collinear.
For each b € B,b" # V', define R2y» to be the rotation about the origin-p; axis that makes the
origin, pi, p2, and b” coplanar. Our method, then, is to find miny pyrcp{h(R2y (R1y(P)),B)} as
our best approximate match, and let R’ be the resultant rotation R2j:(R1ly (P)) that achieves this
bound. This requires O(n?m - Nearests(n)) time. As above, we achieve Nearests(n) = O(logn) using
approximate nearest-neighbor searching [8], and end up with the following result:

Lemma 2.3 h(R'(P),B) < (4 + €)h(Ropt(P), B), for any constant 0 < € < 1.

Proof: For simplicity of expression, define hopt = h(Ropt(P), B). Observe that for each p € Ropt (P),
there exists an associated b € B that is within a distance hqp of p. Consider the process of rotating the
entire pattern Rgp(P) so that pi, the furthest pattern point from the origin, now becomes collinear
with its associated background point b and the origin. This process can move any point in the pattern
by at most hopt. Now consider the second rotation (about the line through the origin and p;) that
brings ps coplanar with its matching background point. This rotation may move po a distance of at
most 2hp;, and therefore it may move any point in the pattern by at most 2h,p;. These combined
rotations move any pattern point at most a distance of 3hp; from its original position, which is known
to be within a distance of hop; of a background point. Therefore, each point in the pattern will be a
distance of at most 4hp; away from a background point. This rotation will be one of those generated
and checked by our algorithm. [

2.4 Translation and Rotation in IR?

For points in IR3, we give an efficient method for finding a Euclidean transformation E' such that
h(E'(P), B) is at most (8 + €)h(Eopt (P), B), where Eqp is an optimal Euclidean transformation, i.e.,
one that minimizes h(E(P), B), taken over all such transformations E.

Select from the pattern diametrically opposing points? and call them r and k. Choose a point
l € P such that the perpendicular distance from [ to the line 7k is maximum. For each b € B, define
T, to be the translation that takes pattern point r to b. For each b’ € B,b # b, define R1y to be the

2While subquadratic algorithms exist for computing the diameter, we found it reasonable to use a simple O(m?)
algorithm as a preprocessing step since we only need to perform this calculation once for the entire algorithm.



rotation that causes 7, k and b’ to become collinear. For each b € B,b" # V',b" # b, define R2y: to
be the rotation about the rk axis that brings b” into the (r, k,[)-plane.

Our method, then, is to compute the value of miny y e g{h(R2y (R1y (T5(P))), B)} as our best
approximate match, and let E’ be the Euclidean transformation R2y (R1y (T,(P)) that achieves this
bound. This can be done in O(n3m - Nearest3(n)) time. As above, we achieve Nearest3(n) = O(logn)
using approximate nearest-neighbor searching [8], and end up with the following result:

Lemma 2.4 h(E'(P),B) < (8 + ¢)h(Eopt(P), B), for any constant 0 < € < 1.

Proof:  For simplicity of expression, define hopy = h(Eopt(P), B). In addition, as in previous
proofs, we show that the expansion factor is 8 if one were to use actual nearest neighbors instead of
approximate nearest neighbors. Observe that for each p € Eqpi(P), there exists an associated b € B
that is within a distance hqp; of p. Consider the process of translating the entire pattern Eypu(P) so
that r becomes coincident with its associated background point. This process can move any point in
the pattern by a distance of at most hqp;. Now consider the process of rotating the entire pattern
so that line rk passes through the background point that is associated with k. This rotation can
move any point in the pattern by at most 2h,p. Now consider a second rotation that brings the
background point associated with [ into the (r,(, k)-plane. This rotation may move pattern point po
a distance of at most 4hpi, and therefore it may move any point in the pattern by at most 4hgps.
This rotation will be one of those generated and checked by our algorithm. The translation may have
moved any point a distance of at most hqp, the first rotation may have moved any point a distance
of at most 2h.p farther, and the second rotation may have moved any point a distance of at most
4hopt still farther. Considering that any given pattern point may have been a distance of hqpy away
from its associated background point to start with, no pattern point can be farther than 8hqp; from
its associated background point. [

3 Experimental Results

We have implemented our methods and conducted experiments comparing them with a method that
produces best matches to an arbitrary precision using a conventional branch-and-bound search of
a discretized configuration space. This conventional method seems to be the most practical pre-
vious best match procedure (we did not feel it was practically feasible to implement the previous
intersection-based methods). As we show through our experimental results, however, this conven-
tional method is still quite slow compared to our method, and the matches it finds are not that much
better than the ones that our method finds.

Example Generation. The background points B are generated uniformly at random in the unit
d-cube. We then randomly select m points from B to be an unperturbed pattern. We obtain a
perturbed pattern, P, by perturbing each pattern point by a small amount (uniformly, in a ball of
radius ¢), so that the pattern no longer identically resembles a subset of the background points.



3.1 Implementation of the Approximate Match Algorithms

Pure Translation in IR?.  As described in Section 2.1, our approximate pattern matching algorithm
translates the pattern so that the distinct representative of the pattern coincides with each of the
n background points in succession. For each such translation, the directed Hausdorff distance is
calculated and compared with the best found so far. If the new directed Hausdorff distance is smaller
than the best found so far, the position of the pattern (i.e., the position of the distinct representative)
and this new best distance replace those recorded so far. After the pattern has been translated to
each of the background points, we output the best translation found (which is guaranteed to be within
factor two of optimal).

There are various possible heuristics one can apply, which do not improve the worst-case running
time, but which do improve the running time in practice. We use a condition that terminates the
while-loop early once it is known that a particular placement need not be further considered. Observe
that in the calculation of the directed Hausdorff distance, we are finding the maximum amount by
which a pattern point deviates from its nearest background point. As we determine this quantity
for each of the pattern points we have a current maximum at any given point in the loop. If this
current maximum ever exceeds the best directed Hausdorff distance found so far, the placement that
we are checking is known to be suboptimal and does not warrant further consideration. We therefore
terminate the while loop as soon the partial computation of the directed Hausdorff distance exceeds
the global best found so far.

Translation and Rotation in IR?. Diametrically opposing pattern points are chosen from the
convex hull (in O(m?) time, as a preprocessing step), one of which will serve both as the distinct
representative of the pattern and as the center of rotation. The algorithm then translates the pattern
so that the distinct representative coincides with each of the n background points in succession. After
each translation, the pattern is rotated about the current position of the distinct representative a
total of n — 1 times so that after each rotation, the other antipodal point is aligned with another one
of the background points. We now have the pattern in one of the n(n — 1) positions at which we check
the directed Hausdorff distance. As with the translation-only case, we maintain the best directed
Hausdorff distance found so far and the position of the pattern that produced it. If at any time one
of the n(n — 1) placements has a directed Hausdorff distance that is better than the best found so
far, our records are updated to reflect this new best position and directed Hausdorff distance. Again,
we use an early loop-termination heuristic for speed.

Translation and Rotation in IR3. We select the distinct representative and the antipode of the
pattern, as we have done in IR? above. In this case, we also select a third pattern point, called the
radial point, which has the property that it is the greatest distance away from the line passing through
the distinct representative and the antipode. Our approximate match algorithm is comprised of three
nested for-loops. The outer-most loop translates the pattern such that the distinct representative of
the pattern coincides with each of the n background points in succession. The next loop chooses one
of the remaining n — 1 background points and rotates the pattern about the current position of the
distinct representative so that the antipode becomes aligned with this selected background point. The
inner-most for-loop selects a third background point from the remaining n — 2 and performs a second



rotation of the pattern, this time about the line passing through the current position of the distinct
representative and the current position of the antipode, to bring the plane defined by the distinct
representative, the antipode, and the radial point into a position that includes the background point
chosen by this third for-loop. For each of the n(n — 1)(n — 2) placements produced by the above
described for-loops, the directed Hausdorff distance of the placement is generated and the current
best is kept. At the termination of our algorithm, we output the best placement found.

3.2 Implementation of the Branch and Bound Algorithms

Pure Translation in IR?. The conventional method against which we compared our method is
a recursive algorithm. It receives a square defined by a center point and a side length. It then
“probes” the center of the square by translating the pattern so that the distinct representative of
the pattern is in the center of the square. For the pattern in this position, the directed Hausdorff
distance is calculated. If this distance is the best found so far, it is recorded along with the probe
point (center of square). The algorithm then recurses on each of the four quadrants. The recursion
is terminated when it reaches a predefined maximum depth or if it is certain that placement of the
distinct representative at any point in the square will not produce a directed Hausdorff distance that is
better than the best found so far. One observation that we can use to terminate a branch of recursion
early is that the directed Hausdorff distance can be decreased by an amount of at most x when the
pattern is translated by a distance of z. If the value of the directed Hausdorff distance produced by
probing the center of the square is so great relative to the best found so far that placing the distinct
representative at any point in the square is known to produce a directed Hausdorff distance that
does not beat the best found so far, we no longer need to search recursively this square and we can
terminate this branch of the recursion.

Translation and Rotation in IR?. The conventional method for translation and rotation in IR?
involves searching the three-dimensional configuration space in which the z and y positions of the
distinct representative of the pattern comprise two of the dimensions, and the angular position, @, of
the pattern about the distinct representative comprises the third.

Translation and Rotation in IR3. The conventional method for Translation and Rotation in IR?
is again the search of a configuration space, which is now 6-dimensional: three degrees of freedom
(z, y, and z) in placing the distinct representative of the pattern, and three rotational degrees of
freedom (two in locating the antipode, and one in orienting the pattern about the axis line through
the antipode).

3.3 Experiment 1: Comparison of Match Qualities

While we have proved upper bounds on the worst-case behavior of our approximation algorithms, the
goal of our first experiment is to see how close to optimal Hausdorff distance our method comes, in
practice.

Pure Translation in IR?2. We have proved an upper bound of 2 on the ratio of the directed
Hausdorff distance of our approximation to the directed Hausdorff distance of the optimal match



under translation. It is our conjecture that for large sparse B’s and large sparse P’s, the approximate
match algorithms will produce matches that are (1 + A)hgpt, where X is the ratio of the ezpected
distance by which a point will be perturbed divided by the mazimum distance by which a point
will be perturbed; for our perturbation strategy in IR?, this ratio will be A = 01 r%ﬁ—qgﬁ = 2/3. Our
reasoning is as follows. If the pattern is large, it is likely that the absolute optimal placement of
the pattern with respect to the background will be such that quite a few pattern points will be
hopt away from the nearest background point. The approximate-match algorithm produces, with
high probability (especially, given the pattern-generation method used in these experiments), the
match that is identical to this optimal match, differing only in that it is translated such that the
distinct representative of the pattern is made to coincide with its associated background point. This
translation will be in a direction that moves one or more of the poorly matching pattern points almost
directly away from the associated background points. Thus, since A = %, the expected Hausdorff
distance for our algorithm will be g * hopt -

We conducted an experiment to test this hypothesis. One hundred sets of background points
were generated, each having between 50 and 500 points. From each background, a pattern of size 10
was selected and perturbed. The pattern was then matched to its associated background using both
the approximate match algorithm and a conventional match algorithm. The ratio of the directed
Hausdorff distance of the match produced by the approximate match algorithm to the directed Haus-
dorff distance of the match produced by the conventional match algorithm is plotted in Figure 1.
The average of the ratios plotted is 1.44, which is close to the predicted value of 1.66. Note that the
predicted value of this ratio assumes an infinitely large pattern and an unlimited depth of recursion in
the conventional method. Decreasing either the pattern size or the depth of recursion would decrease
the predicted value of the ratio and this too is reflected in this experiment. For this experiment, the
conventional match algorithm was run to a depth of eleven.

Translation and Rotation in IR?. In Section 2.2, we have proved an upper bound of 4 on the
approximation factor for our method. In order to determine the approximation factor observed in
practice, 110 background point sets were generated, each having between 10 and 30 points. From
each of these backgrounds, a 10 point pattern was selected and perturbed. The results of comparing
the quality of the approximate match algorithm to the conventional branch-and-bound algorithm is
plotted in Figure 2. The average ratio of the trials in this experiment is 1.60, which is substantially
better than the worst-case ratio of 4.

Pure Translation in IR3. For approximate matching under translation-only in IR® we can again
expect match qualities that are in general better than the worst case bound. In a manner similar to
that outlined for IR?, the expected Hausdorff distance produced by the approximate match algorithm
for matching under pure translation in IR?® can be calculated: the expected Hausdorff distance for
matches produced is (14 X)hopt, where again X is the expected distance by which a point is perturbed.
For our perturbation strategy in IR3, A = fol 7“% = 3/4.

Our experiment used 45 sets of background points, each having between 5 and 100 points. From
each background, a pattern of size 5 was selected and perturbed. The pattern was then matched to
its associated background using both the approximate match algorithm and a conventional match

algorithm. The ratio of the directed Hausdorff distance of the approximate match algorithm to

10



the directed Hausdorff distance of the conventional match algorithm is plotted in Figure 3. The
average of the ratios plotted is 1.679, which is close to the predicted value of 1.75. The fact that the
experimental average is less than the predicted value can be attributed to the relatively small pattern
size of b points, which decreases the probability that one of the pattern points will be translated by a
nearly maximal amount when the distinct representative of the pattern is translated to its associated
background point.

3.4 Experiment 2: Running Times

The approximate match algorithms have worst-case time complexities that are much lower than those
of the branch-and-bound match algorithms. We conjectured that the approximate match algorithms
should also run faster in practice. Experiment 2 examines the extent to which they do, comparing
them to what should be a good practical algorithm — branch-and-bound. To eliminate any system
effects on the running time data, we keep a counter of floating point operations used by each algorithm.

Pure Translation in IR?. In this case, 30 sets of background points were generated, each having
between 50 and 500 points. From each background, a pattern of size 10 was selected and perturbed.
The pattern was then matched to its associated background using both the approximate match
algorithm and a conventional match algorithm, both with and without heuristic speedups. The
results of this experiment are shown in Figure 4. In every case the approximate match algorithm,
even without the heuristic speedup, had a smaller running time than the conventional algorithms.

Translation and Rotation in IR?. In this case, 110 sets of background points were generated,
each having between 10 and 30 points. From each background, a pattern of size 10 was selected and
perturbed. The pattern was then matched to its associated background using both the approximate
match algorithm and a conventional match algorithm (with heuristic speedups). The results of this
experiment are shown in Figure 5. In all 110 trials, the conventional match algorithm was slower than
the approximate match algorithm by at least a factor of 442; the average slowdown being a factor of
1199.

Translation and Rotation in IR3. In this case, 24 sets of background points were generated,
each having between 5 and 25 points. From each background, a pattern of size 5 was selected and
perturbed. The pattern was then matched to its associated background using the approximate match
algorithm with heuristic speedups, a depth-first branch-and-bound algorithm and a breadth-first
branch-and-bound algorithm. The running times of the depth-first and breadth-first branch-and-
bound algorithms were, in all instances within a factor of 0.01 of each other and are therefore plotted
as a single line in Figure 6, which depicts the results of this experiment.

The branch-and-bound algorithms search a six-dimensional space comprised of three degrees of
freedom in the translation of the pattern and three degrees of freedom in the rotation of the pattern.
This produces a rather large branching factor of 26 = 64 in the recursive algorithms, and necessi-
tated the depth of these algorithms to be limited to 3. With this (necessary) depth limitation, the
approximate-match algorithm actually found better matches than the branch-and-bound algorithm
did in all of the 24 cases, in spite of the fact that the branch-and-bound algorithms required on
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average 4479 times as many floating-point operations. The ratio of the directed Hausdorff distance
of the match produced by the depth-limited search to the directed Hausdorff distance of the match
produced by the approximate match algorithm is plotted in Figure 7. It should be noted that the
largest of the breadth-first searches in this experiment consumed between one and two hours of real
time on an otherwise unloaded Sun Sparc Station ELC running Sun OS 4.1.1.

3.5 Experiment 3: Running Times vs. Depth of Recursion

The depth of search of the conventional match algorithms that we have implemented must be limited.
This experiment depicts the extent to which the running time of the algorithm increases as the depth
of recursion is increased. Further, it shows the substantial speedup obtained by pruning the search.
The results of this experiment are depicted in Figure 8.

Four backgrounds were generated, each having 50 points. From each background, a pattern of
size 10 was selected and perturbed. The conventional method with and without pruning was run ten
times on each of the four data sets with the depth of recursion being varied from 1 to 10. An average
of the running times of each of the four cases was taken and the results were plotted in Figure 8.

4 Discussion and Conclusion

We have given approximate pattern matching algorithms for translation, rotation, and Euclidean
transformations for point sets in two or more dimensions. Our algorithms are guaranteed to give a
match with a directed Hausdorff distance that is no greater than a small constant times the best
achievable directed Hausdorff distance. In addition, they have a time complexity that is substantially
smaller than those of existing pattern matching algorithms, they are easy to implement, and they run
fast in practice.

Improving the Approximation Factors. We can extend our methods so that the match pro-
duced by the algorithm is arbitrarily close to optimal (within factor (1 + €)), while increasing the
running time of the algorithm by only a constant factor (dependent on €). We sketch the idea briefly
for the case of matching under translation only in IR%. When we pin the distinct representative of the
pattern at a background point, we construct a d-dimensional uniform grid of points around that back-
ground point and pin the distinct representative at each of these grid points in succession. (The grid
can be generated within a box whose size is given by the approximate Hausdorff distance computed
using our unmodified approximation algorithm; the number of grid points depends on €.) At each of
these placements, we compute the Hausdorff distance and compare it against the best found so far.
For cases such as Translation and Rotation in which placements are generated based on two or more
background points (for example, a translation to place the distinct representative at one background
point and then a rotation to align the antipode of the pattern with another background point, etc.),
we can extend this idea using multiple grids in the obvious way.
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Figure 1: Ratio of the Hausdorff distances: Pure translation in IR?.

Ratio of Hausdorff Distances
(Approximate to Conventional)

3.00
250
2.00

150 T~~~

1.00

0.50 —

0.00
10 15 20 25 30

Number of Points in the Background

Figure 2: Ratio of the Hausdorff distances: Translation and rotation in IR2.
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Figure 8: Running times with and without pruning.

18



