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Abstract
We give fast randomized and deterministic parallel meth-
ods for constructing convex hulls in IR , for any fixed .
Our methods are for the weakest shared-memory model,
the EREW PRAM, and have optimal work bounds (with
high probability for the randomized methods). In partic-
ular, we show that the convex hull of points in IR can
be constructed in log time using log 2

work, with high probability. We also show that it can
be constructed deterministically in log2 time using

log work for 3 and in log time using
2 log 2 2 work, for 4, where 0

is a constant, which is optimal for even 4. We also show
how to make our 3-dimensional methods output-sensitive
with only a small increase in running time.

These methods can be applied to other problems as well.
A variation of the convex hull algorithm for even dimen-
sions deterministically constructs a 1 -cutting of hy-
perplanes in IR in log time using optimal 1

work; when , we obtain their arrangement and a point
location data structure for it. With appropriate modifica-
tions, our deterministic 3-dimensionalconvex hull algorithm
can be used to compute, in the same resource bounds, the
intersection of balls of equal radius in IR3. This leads to a
sequential algorithm for computing the diameter of a point
set in IR3 with running time log3 , which is arguably
simpler than an algorithm with the same running time by
Brönnimann et al.

1 Introduction
The convex hull is a well studied structure, and the convex
hull construction problem is a fundamental problem in com-
putational geometry. Besides being of interest in its own
right, the convex hull construction problem has as a dual
the important problem of computing the intersection of
halfspaces. Moreover, the construction of -dimensional
Delaunay triangulations and Voronoi diagrams can be re-
duced to the construction of 1 -dimensional convex
hulls [23]. In IR , the size of the convex hull of points
is Θ 2 in the worst case, and its construction requires
Ω log 2 work [23, 48].
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1.1 Related work
Optimal deterministic sequential algorithms have long been
known for the cases 2 3 [28, 47]. In higher dimensions,

4, Seidel proposed two deterministic algorithms. His
first algorithm [54] ran in log 2 time1, which
is optimal for even , and later he gave an 2 log
solution [55]. For some time, the only solutions optimal
in higher dimensions were the randomized incremental al-
gorithm of Clarkson and Shor [15], and the subsequent ran-
domizedmethodofSeidel [56]. Recently, Chazelle [10] gave
the first deterministic algorithm that is optimal in higher di-
mensions, which was simplified by Brönnimann et al. [8].
The optimality of the above algorithms is measured with
respect to the worst-case size complexity of the resulting
convex hull. However, when the size of the output is con-
sidered, it may be possible to beat the worst-case lower
bounds since the size of the convex hull may range from
1 to 2 . Accounting for output size, the lower

bound becomes Ω log , where is the size of the
convex hull. The first output-sensitive algorithm, due to
Kirkpatrick and Seidel [33], computed the convex hull in IR2
in log time. Clarkson and Shor [15] gave an optimal
randomized output-sensitivesolution for 3-dimensional con-
vex hulls, which was optimally derandomized by Chazelle
and Matoušek [13]. In higher dimensions, the only deter-
ministic output-sensitivemethod known, due to Seidel [55],
runs in time 2 log , which can be slightly improved
to 2 2 2 1 log , for any fixed 0, us-
ing a technique of Matoušek [42]. All of these methods for

3 seem inherently sequential.
The parallel construction of the convex hull has also

received much attention. For exclusive-write PRAMs (the
EREW and CREWmodels) it is known thatΩ log time is
required to compute the convex hull in IR , 2 [19]. Opti-
mal deterministic 2-dimensional convex hull algorithms run-
ning in log time using log work for the CREW
PRAM were given by Atallah and Goodrich [6, 7] and Ag-
garwal et al. [2], and for the EREW PRAM by Miller and
Stout [44]. For 3-dimensional convex hulls, using pro-
cessors on a CREW PRAM, log3 time was achieved
by Chow [14] and Aggarwal et al. [2], log2 log
time was obtained by Dadoun and Kirkpatrick [20], and
log2 time was achieved Amato and Preparata [3]. For

some time, the only solution to the 3-dimensional convex
hull problem optimal with respect to time or work was the
log time and log work randomized algorithm

for the CREWPRAMof Reif and Sen [51]. Recently, by de-
1Throughout this paper we assume is a fixed constant.



randomizingReif and Sen’s algorithm,Goodrich obtained an
log2 time work-optimalmethod for the EREWPRAM,

and a time-optimal method using 1 work was given
by Amato and Preparata [4] for the CREW PRAM, where

0 is any fixed constant. There is also a parallel output-
sensitive algorithm by Ghouse and Goodrich [25]. Using
the CRCW PRAM model, they give an log time and

log work method for IR2, and an log2 time and
min log2 log work method for IR3. We know

of no previous parallel algorithms for -dimensional convex
hull construction for 3.

1.2 Our results
We give fast randomized and deterministic parallel methods
for constructing the convex hull of a set of points in
IR , which is the smallest convex set containing the points
in . Our methods are actually for the dual problem of
computing the intersection of a set of halfspaces
in IR containing some known point . In particular, we
give log -time randomized parallel algorithms that use
optimal log 2 work, with high probability. In
addition,wegive deterministicmethods that run in log2
time using log work for 3 and in log
time using 2 log 2 2 work, for 4,
where 0 is a constant, which is optimal for even .
For 3 we also show how to make our methods output-
sensitive so as to have a workboundof log while only
slowing down the construction by an log factor. Our
methods are for the EREW PRAM, which is the weakest
of the synchronous shared-memory models. It is also the
easiest to simulate on more-realistic parallel models, and,
by a scheme due to Cole [16, 17], algorithms for this model
can sometimes be used to derive faster sequential parametric
searching algorithms (e.g., see [1, 11, 43]) than would be
possible using concurrent-read parallel methods.

Our methods are all based upon a parallel divide-and-
conquer scheme, where one subdivides the space into cells
that should contain fewer halfspaces and then recurses on
each cell in parallel. The difficulty in applying this ap-
proach, however, is that existing methods for producing effi-
cient partitionswould produce a constant-factor“blow up” in
the total problem size with each recursive call. Eventually,
this blow-up leads to the total problem size becoming too
large to process optimally. We get around this problem us-
ing a number of new ideas. For example, in our randomized
method for 4 we show how to use a parallel analogue
to Matoušek’s shallow-cutting lemma [39], together with a
technique we call biased sampling, to “garbage collect” the
size blow-up after a certain number of iterations. (Inciden-
tally, this biased sampling techniquewas recently discovered
independently in a slightly different form byRajasekaran and
Ramaswami [49].) In addition, so as to get an -polynomial
probability2 bound, rather than just an expected-time bound,

2We use “ -polynomial” to refer to a probability that is at least 1 1 ,
for some constant 1; we use “ -exponential” to refer to a probability

we use a duration-unknown scheduling lemma for random-
ized computations. In our optimal deterministic method for
even dimensions we get around the size blow-up problem
by using a shallow-cutting analogue to a partition sparsity
concept introduced by Chazelle [9]. Finally, we get around
the size blow-up problem for the 3-dimensional halfspace
intersection by using a new “pruning” computation, which
removes halfspaces that cannot ultimately contribute ver-
tices to the final intersection. This type of technique was
first introduced by Reif and Sen [51] in their randomized
3-dimensional halfspace intersection algorithm. Our prun-
ing computation is quite different from theirs, however, and
is considerably simpler. Incidentally, Reif and Sen pose as
open problems whether one can achieve log time and
optimal-work with high probability in the EREW PRAM
model, and whether one can improve the confidence for ran-
domized CREW PRAM log -time optimal-work con-
struction from -polynomial to -exponential. Our methods
answer both of these questions in the affirmative.

The methods developed in our convex hull algorithms
can be applied to other problems as well. We give a simple
variation of our convex hull algorithm for even dimensions
that deterministically constructs a 1 -cutting of hy-
perplanes in IR in log time using optimal 1

work. When , thismethod yields the entire hyperplane
arrangement and a point location data structure for it.
We also show that with appropriate modifications, our de-
terministic 3-dimensional convex hull algorithm can be used
to compute, in the same resource bounds, the intersection
of balls of equal radius in IR3. Using the algorithm for
ball intersection together with parametric search [43] as in
previous works [11, 40], we obtain a sequential algorithm
for computing the diameter of a point set in IR3 with running
time log3 that is arguably simpler than the algorithm
with the same running time by Brönnimann et al. [8].

We present some important constructions for hyperplane
set systems in the next section. In Section 3 we give our
convex hull methods for 4, andwe give some specialized
methods for 3 in Section 4.

2 Hyperplane Set Systems
We begin by describing a general framework for set systems,
which is most similar to a framework given by Clarkson
and Shor [15]. Let be an -generated set system,
i.e., let be a set of elements and let be a function,
called the generator function, that maps subsets of to
subsets of 2 , whose elements are commonly referred to as
ranges. For example, in what we will call the hyperplane
set system, would denote a set of hyperplanes and the set
of ranges , , could represent all the subsets of
defined by the intersection of the hyperplanes in with

the interiors of simplices whose vertices are also vertices
in the arrangement of the hyperplanes in . The

that is at least 1 1 2 , for some constant 0.



VC-exponent [5]3 of such a set system is the infimum of all
numbers such that is . For set systemswith
finite VC-exponent, , we will assume that is defined so
that each range in is determined by some subset
of at most members of , which are called the triggers
for . It is easy to see, for example, that the hyperplane
set system has finite VC-exponent, since there are at most

1 combinatorially distinct simplices defined by
vertices in . That is, each range in is
determined by at most 1 “trigger” hyperplanes. Let
us therefore assume for the remainder of this section that we
are dealing with set systems with finite VC-exponent.

Adapting a definition from [57], we say that a 1 -
approximation [37] of is a subset such that, for any

,
1

Matoušek [37] shows how to compute a 1 -
approximation of size 2 log in 1 time. Spe-
cializing to hyperplanes, we also have the following:

Lemma 2.1 One can construct a 1 -approximation of a
set of hyperplanes in IR with the followingcomplexities
in the EREW PRAM model:

1. size 2 in log time using work,
for any fixed constant 0 and some constant 1,

2. size 2 in log time using work, for
any fixed constant 0 and some constant 1,
which is a 1 -approximation with -exponential
probability4,

3. size in log log time using log
work, provided , for some constant 0.

Proof: Part (1) is a special case of a result ofGoodrich [27]
for set systems with finite VC-exponent. Part (2) follows
by taking a random sample of size 2 , which by a
Chernoff bound (e.g., see [29]), can be shown to form a
1 -approximation with -exponential probability. Part
(3) follows from a straightforward parallelization of a result
of Matoušek [41].

As it turns out, these size bounds are too large to be of
direct use in our convex hull algorithms, however.

2.1 Semi-nets
Let be a subset of , and let a parameter 1 be
given. Further, let denote the number of ranges
from generated by of size such that .
We say such ranges are missed by . Define 0 to be the

3There is a related notion, known as the VC-dimension [30, 37], and this
is subsumed in the above definition, since a set system with VC-dimension
has VC-exponent as well [53, 57].
4Note that the probability is on the event that the construction yields a

1 -approximation, not on the running time.

expected number of missed ranges generated by an -sized
(fully independent) random sample of (with all such
samples equally likely). is a 1 -semi-net 5 of order

0 if

0
max 1 0

where the sum ranges over all values of from 0 to for
which is non-zero. The next lemma implies
that a suitably-defined random sample is a 1 -semi-net,
even if it is defined by random variables that are only -wise
independent. It is a -wise independent version of a result
of Chazelle and Friedman [12].

Lemma 2.2 Let be an -generated set system with
constant VC-exponent . If is a subset of defined
by -wise independent indicator random variables, for

3 2 4, each of which is 1 with probability ,
then, with probability at least 1/2, is a 1 -semi-net of
order with size , provided that 0 is non-decreasing.

Proof: Goodrich [27] shows that if is defined as above,
then with probability at least 3/4, Θ 1 2 . Let

denote the set of ranges in of size . To
establish the probability that is a 1 -semi-net, let us
apply Markov’s inequality to a bound on the expectation

0

max 1 (1)

If we let 1 denote the probability Pr and we let
2 denote the probability Pr , then
we can re-write (1) as

0
1 2 max 1

Using a result from [27], we can bound 1 by
min 2 1 , for some constant 1. Moreover,
this requires just -wise independence [27]. Thus,
since each range in is determined by at most trig-
gers, we can bound 2 by using the additional -
wise independence available in the random variables. Thus,
we can bound (1) by

0

min 2 1 max 1

which can be re-written

0 1 1

2

Clarkson and Shor [15] show (using a slightly different no-
tation) that

0
0

5Our definition of a semi-net is motivated by the 1 -semi-cutting
notion introduced by Chazelle [10], as well as proof techniques given in
[12, 27, 38].



for some constant 0. Thus, the expectation (1) is at
most

0
1

0
2

which can be bounded by

0
1

0
2

0

for some constant 1, provided that 0 is non-decreasing.

This, in turn, allows us to derive the following:

Lemma 2.3 Let be an -generated set system with
finite VC-exponent. Then one can construct a 1 -semi-
net of constant order for of size in log
time using work, for some constant 1, in the
EREW PRAM model.

Proof: (Sketch) Given Lemma 2.2, the proof is a straight-
forward application of the limited independence parallel de-
randomization technique (e.g., see Luby [34, 35] or Karloff
and Mansour [32]).

The only possibly difficult step in the above proof is in the
computation of 0 for a given set system. Note, however,
that it is sufficient for us to use an upper bound for 0
in such a case, as that can only improve the probability of
acceptance of some . In any case, the above construction
is, of course, not work-efficient. To achieve work efficiency
we employ a “composition” lemma like the following:

Lemma 2.4 If is a 1 2 -approximation to a set system
, and is a 1 2 -semi-net of order for , then

is a 1 -semi-net of order for , provided 2
2 for some constant 0.

Proof: The sum

0

max 1 (2)

can be viewed as a weighted sum over all ranges in
with each range being given weight max 1 .
Since is a 1 2 -semi-net for ,

0 2

2 max 1 0 2 (3)

which can be viewed as a weighted sum over all ranges in
(restricted to ) with each range , ,

being given weight max 2 1 . Since
is a 1 -approximation, 1 2 .
Thus, for each range given weight in (2) there is a
corresponding range given weight at least 2 1
in (3). Therefore, since 2 1 for 1 ,

0

max 1 0 2

which is 0 by assumption.
This immediately gives us the following:

Lemma 2.5 Let be an -generated set system with
finite VC-exponent, so that 2 2 for all 1

. Then one can construct a 1 -semi-net of constant
order for of size in the EREW PRAM model
with the following complexities:

1. in log time using work, for some con-
stant 1, or

2. log time using log work, provided that
, for some constant 0, yielding a 1 -

semi-net with -exponential probability, or

3. log log time using log work, provided
that , for some constant 0.

Proof: Each of the bounds follows from applying
Lemma 2.4 to a 1 2 -semi-net constructed via Lemma 2.3
from a 1 2 -approximation constructed via Lemma 2.1.

We next give an application of this lemma in the hyper-
plane set system.

2.2 Cuttings
Let be a collection of hyperplanes in IR . For any
simplex , let denote the set of hyperplanes of in-
tersecting the interior of . The set is often referred to
as the conflict list for relative to [15]. In hyperplane
set systems the ranges are sets. A 1 -cutting [38]
of is a partition of (possibly unbounded) -simplices
that cover IR and such that for each .
Chazelle and Friedman [12] show that there exists a 1 -
cutting of size , where the size of a 1 -cutting is
the number of simplices in . Chazelle [9] shows that such
a 1 -cutting can be constructed in 1 time, for
any 1 , and Matoušek [41] shows that such a cutting
can be constructed in log time for , for some
small constant 0 that depends upon . Goodrich [27]
gives parallel analogues to these results, showing that 1 -
cuttings of size can be constructed in log log
time in the EREW PRAM model with 1 work for
any 1 (the log factor is removed in subsection 3.5)
and with log work for .

For the purposes of convex hull construction, however,
these results are not quite what we need, for a generic 1 -
cutting has too many simplices. We can produce more spe-
cialized 1 -cuttings, however, via semi-nets.

As we have already observed, in the case of hyperplane
set systems, ranges in are determined by simplices,
whose vertices are taken from the vertices of . De-
fine 0 to be the set of simplices for ranges generated
by that miss (i.e., a simplex is in 0 if its
corresponding range is in and ). In ad-
dition, define to be the set of simplices in a canonical
triangulation [12] of the arrangement of , restricted
to those simplices in 0 .



Lemma 2.6 Let be a collection of hyperplanes in IR ,
and let be an -sized 1 -semi-net for of order at
least (in some hyperplane set system), for some constant

1. Given , together with the conflict lists
for its simplices, one can construct a 1 -cutting of size

(complete with its conflict lists) in log time
using work in the EREW PRAM model.

Proof: We use an adaptation of proof techniques used
by Chazelle and Friedman [12] and Matoušek [38]. For
each simplex in , if , then we form a
1 -cutting of size at most 1 for , where

. This can be done deterministically in log
time using work, for some constant 1,
by a method of Goodrich [27]. We can also easily construct
the new conflict lists with this complexity. If has order ,
then the total size and work bounds are as claimed above.

On the surface this appears to be no better than the ex-
isting 1 -cutting constructions [9, 12, 27, 41], for in the
standard hyperplane set system is . We can do
better than this, however, by restricting the way ranges are
generated in our set system.

2.3 Shallow cuttings
The first such restriction we consider is to “shallow” cut-
tings [39]. Let denote a fixed origin with respect to IR .
Define the level of a point IR relative to to be the
number of hyperplanes in that are crossed by the open
segment . Given , a collection of simplices in
IR is an -shallow 1 -cutting of if the simplices in
cover all points of level at most (and possibly more than
this) and if for each . Matoušek [39]
shows that an -shallow 1 -cutting of hyperplanes in
IR of size 2 1 2 can be constructed in
polynomial time for any 1 , and in log time
for . Our construction loosely follows his.

Let be a given subset of . We define a set system,
which we call the -shallow hyperplane system so that
is the set of subsets of that are defined by simplices
generated by in the usual hyperplane set system restricted
to simplices that contain some point on level at most in

. This set system is a subset of the usual hyperplane
set system; hence, it too has finite VC-exponent.

Fact 2.7 ([15]) The number of vertices on level at most in
is 2 1 2 .

Lemma 2.8 Let be an -sized 1 -semi-net of of
order 0 (with respect to the -shallow hyperplane set
system). Then is 2 1 2 .

Proof: Note that 0 (with
respect to the -shallow hyperplane set system); hence, it is

0 , where, in this case, 0 is proportional to the
expected number of vertices in , taken over all -sized
random samples . The probability that any vertex on

level at most in becomes a vertex in such a is
. Thus, by Fact 2.7 and the linearity of expectation,

is 2 1 2 , which can also
be expressed as 2 1 2 .

Thus, by Lemma 2.3, we can construct a semi-net as
above in log time using polynomialwork. We can also
derive a composition lemma for such “shallow” semi-nets:

Lemma 2.9 If is a 1 2 -approximation to in the
hyperplane set system and is a 1 2 -semi-net of order
for in the -shallow set system, where 1 ,
then is a 1 -semi-net of order for in the -shallow
set system.

Proof: The proof follows that for Lemma 2.4, with the
added observation that any point on level at most in
must be on level at most in .

This allows us to derive the following:

Theorem 2.10 Given a set of hyperplanes in IR , one
can construct an -shallow 1 -cutting for , including
conflict lists, with 2 1 2 simplices,
in the EREW PRAM model with the following complexities:

1. in log time using work, for some
constant 1,

2. log time using log work, for
some constant 1, with -polynomial probability
(or allowing for concurrent reads), provided that
, for some constant 0,

3. log log timeusing log work,
for some constant 1, provided that , for
some constant 0.

Proof: Lemma 2.1 gives the complexities for construct-
ing a 1 2 -approximation and Lemma 2.3 gives the
complexity of constructing a 1 2 -semi-net for . In
log time and work it is a simple matter to

then construct . In order to apply Lemma 2.6, then,
to complete the construction, we need only construct the

lists for each . We can easily do this
in log time and work in the EREW PRAM
model. Alternatively, we could build a data structure for

(actually, its dual) and use this structure to build
each of the lists. The method, which we describe in
the full version, yields a running time of log time
using log work, with -polynomial
probability (or using concurrent reads), or, alternatively in
log log time with log work.

2.4 Sparse cuttings
Another notion that will prove important in some of our
methods is that of sparsity. This concept was introduced by
Chazelle [10], extended to the parallel domain by Goodrich



[27], and, more recently, used by Pellegrini [46] in the design
of efficient sequential data structures.

Define to be the set of all vertices in an ar-
rangement of a set of hyperplanes, , that are in the
interior of a simplex . In addition, define a restriction of
the -shallow set systems to the hyperplanes in and to
simplices for each simplex generated by the usual
hyperplane set system. Call this the -restricted -shallow
set system, and observe that it too has finite VC-exponent.
In addition, define an -restricted -shallow 1 -cutting
to be an -shallow 1 -cutting for the hyperplanes in ,
restricted to completely lie in .

Lemma 2.11 Given a simplex , let be an -sized
1 -semi-net of of constant order 0 (with
respect to the -restricted -shallow hyperplane set sys-
tem). Then is 1 2 1 1 2

.

Proof: The proof follows that of Lemma 2.8 for the first
term, which reflects the complexity of the simplices in
that intersect the boundary of . For the second term simply
observe that the probability that a vertex in becomes
a vertex in is .

Thus, by Lemma 2.3, we can construct such a semi-
net in log time using polynomial work. To do this
more efficiently, however, we need yet another composition
lemma.

Lemma 2.12 Given a simplex IR , let be a 1 -
approximation of in the standard hyperplane set system,
and let be a 1 2 -semi-net of order for in the
-restricted -shallow set system, where
1 . Then is a 1 -semi-net of order for
in the -restricted -shallow set system with being

1 2 1 1 2 .

Proof: The proof follows that of Lemmas 2.4 and 2.9
to establish the semi-net and shallowness properties for .
This also establishes the first term in the size bound for

. Thus, we have only to establish the second term in
that bound. Chazelle [9] shows that can be used to
estimate :

1

Thus, is 1 , which
establishes the lemma.

Finally, we can use this to prove the following:

Theorem 2.13 Given a simplex and a set of
hyperplanes in IR , one can construct an -restricted -
shallow 1 -cutting for , including conflict lists, with

1 2 1 1 2

simplices, in the EREW PRAM model with the complexi-
ties being the same as in Theorem 2.10 (using this value of
).

Proof: The proof follows that of Theorem 2.10.

This parallel result will prove useful in our deterministic
method for even dimensions.

Having presented the important ingredients in our meth-
ods, let us now describe our algorithms.

3 -Dimensional Convex Hulls
Given a set of halfspaces in IR containing a point
, we show in this section how to optimally construct the
intersection in parallel. Let us first give a simple sub-
optimal method, however.

3.1 A simple sub-optimal method
We begin by observing that Theorem 2.10 can be used to
design a fast, simple EREW PRAM algorithm that uses

2 log work, for some constant 0. We
begin by finding a 0-shallow 1 -cutting, , of size

2 , where , together with its conflict lists,
using Theorem 2.10(1), for some constant 1 2 .
We then recurse on each non-empty , . At
the bottom level, when the problem size is constant, we
complete the construction using a “brute force” method.
It is easy to show that there are log log levels in
this recursion and the work bound can be characterized

1 1 2 . Thus, we get
the following:

Lemma 3.1 Given a set of halfspaces (all containing
) in IR , 4, one can compute in log time
using 2 log work, for some constant 0, in
the EREW PRAM model.

3.2 Optimal expected work
The above procedure runs very fast, but it is not work effi-
cient. As mentioned above, Chazelle [10] gives a sequential
deterministic method for intersecting -dimensional half-
spaces that is optimal, but which is difficult to parallelize.
This is because it involves a seemingly inherently-sequential
application of the conditional probabilities derandomization
method. Interestingly, the randomized method Chazelle
gives is easy to parallelize to run in log2 expected time
using 2 expected work in the EREW PRAMmodel.
It is not so clear how one could speed this running time up,
however, nor is it clear how one could increase the success
probabilitywithoutmaking the work bound sub-optimal. To
achieve these results we design a new method.

3.3 Optimal work with high probability
To perform this construction faster and with higher proba-
bility we begin by forming a random sample of of size

log 0 , for some constant 0 0 to be determined
in the analysis. By Lemma 2.2, is a 1 -semi-net with



probability at least 1 2. We then run the log -time,
work-inefficientmethod of Lemma 3.1 on , except that we
only consider hyperplanes from when forming the shallow
cuttings. This is the bias in our sampling. We terminate this
procedure when we have formed a complete description of
, together with its triangulation and a representation

of the conflict list, with respect to , for each edge in this
triangulation. We then remove all edges from that do
not belong to a canonical triangulation of , and form a
canonical triangulation using the edges that remain.

We can choose 0 large enough so that the total work
for this step is 2 log . This gives us all the pre-
conditionsneeded to be able to applyLemma 2.6 to construct
a 0-shallow 1 -cutting for , together with all the conflict
lists for this cutting. If is indeed a 1 -semi-net, then
the size of this cutting is 2 , and each conflict list has
size at most . Thus, we may complete the construction
by applying the following Duration-Unknown Scheduling
Lemma6 to the collection of tasks defined by running the
method of Section 3.2 on , for each simplex in :

Lemma 3.2 Suppose one is given a set of tasks, each
of which runs (independently) in steps with work on
an EREW PRAM, with probability at least 1 2. Then one
can perform all tasks in log log log time us-
ing work on an EREW PRAM, with -exponential
probability.

Proof: (Sketch) The method is based upon be a com-
bination of parallel divide-and-conquer and failure sweep-
ing [25, 36]. If is smaller than some suitably large con-
stant, we solve the duration-unknown scheduling problem
by replicating the tasks a constant number of times and
running all copies in parallel. Otherwise, we divide the
tasks into 1 2 groups of size 1 2 each and recursively solve
the duration-unknown scheduling problem for each in par-
allel, except that we terminate any recursive calls that take
more than the specified time with their 1 2 processors.
We then perform a parallel prefix computation to compress
all the unfinished tasks into an array of size 3 4, if possible.
Finally, we make 1 6 copies of each unfinished task and run
all these copies in parallel. In the full versionwe show, using
Chernoff bounds [29], that this scheme runs in the claimed
bounds with -exponential probability.

Again, assuming that is a 1 -semi-net, the total run-
ning time is therefore log using 2 work, with
-exponential probability. Of course, the assumption on
simply implies that this algorithm runs with these bounds
with probability at least 1 2. To turn this into an algorithm
that has these bounds with high probability we replicate the
first phase of our algorithm log times and run all these
versions in parallel. With -polynomial probability, one
of these calls will terminate in the specified time and work
bounds with our discovery that the originally-chosen is
indeed a semi-net. We then complete the algorithm as above
using this . This gives us the following:

6This is a probabilistic analogue of a result of Cole and Vishkin [18].

Theorem 3.3 One can compute the intersection of half-
spaces in IR in log time using 2 work in
the EREW PRAM model, with -polynomial probability, for

4.

3.4 An optimal deterministic method for even
dimensions

We can also derive an optimal-work deterministic convex
hull method for even dimensions. Our method is the same
as that in Section 3.1 except that in each level of the re-
cursion we compute an -restricted 0-shallow 1 -cutting
(Theorem 2.13). Although at first glance this algorithmmay
appear to suffer from the “constant-factor” blow-up problem
mentioned in Section 3.1, a careful analysis shows that it is
actually work-optimal for even dimensions.

The basis cutting 0 consists of a constant number of
simplices that cover all vertices of , with 0 and
0 1 (a 0 with simplices can be constructed from a large
simplex 0 covering all vertices of by connecting to
each 1 -face of 0). Inductively, we have a collection of
simplices 1 with common apex (the origin) that cover all
vertices of level 0, and no vertices of level 1 in ,
such that 1 for each 1, where 1

2 1 and 1 2. is obtained from 1 by
refining 1, if , using an -restricted 0-
shallow 1 -cutting of , where 1
(so each has 1 ).

Thus, 1 for 0, 1 1 for 1, and
there will be log log iterations before we obtain a
set that covers only the vertices of level 0 in , i.e.,

.
We first examine the size of . From Theorem 2.13 we

get the recurrence

1

1
2

1
2

1
1

2 2
1

1
2

1
1

2

for some constants 1. The bound on
follows from Fact 2.7 since 1 covers no vertices of
with level 1. This recurrence’s solution is

1
2 , for some constant . Verifying this

inductively we need

1
2 1 1

2

2

1
2 1 1

1

2

∆1



where ∆1 1 2 2 1 2 1 .
Note that ∆1 0 for odd. However, if is even, then can
be chosen sufficiently small, e.g., 1 , so that ∆1 0.
Thus, the solution is valid for even and large enough,
e.g., . Also, since and 1 are constant, the
size of the final cutting is 2 .

We now show that the algorithm is work optimal for
even 4. By Theorem 2.13, for each we perform

1 work, for some constant 2 .

1

0
1

1

0
1 2 2

1

2

1

1

1 2 2 1

2

1

1

1 1∆2

where ∆2 1 2 1 . Thus, for
sufficiently small, ∆2 0, 1

1 1∆2 1 and
the total work is 2 .

This implies the following:

Theorem 3.4 Given a set of halfspaces in IR , for even
4, one can (deterministically) compute in log

time using 2 work in the EREW PRAM model.

By well-known reductions, this theorem immediately
implies deterministic optimal-work parallel methods for 3-
dimensional Delaunay triangulations and Voronoi diagrams,
which have a wide number of applications (see e.g., [24]).

3.5 Cuttings, arrangements, & point location
The same method used to construct convex hulls for even
dimensions, when applied to the whole arrangement
of hyperplanes rather than to a single cell, can be used to
construct 1 -cuttings for with optimal work 1

(when the conflict list for each simplex is part of the output)
in log time in the EREW PRAM model. From this,
solutions follow for the problems of constructing hyperplane
arrangements and point location data structures for hyper-
plane arrangements.

For a 1 -cutting, the basis 0 is a single simplex cov-
ering all the vertices of and the set of simplices 1
covers all of the vertices of (the simplices are not re-
quired to have a common apex). For refining a simplex

1, if , we use an -restricted -
shallow 1 -cutting where 1, with

1 1 for an appropriate . With this choice,
1 1 , so after log log iterations

we have .
Since

1
, we obtain the re-

currence 1
1 1 , whose solu-

tion is 1 for an appropriate . Thus,

. For some constant , and appropri-
ate 0, the total work performed is 1

0 1
1 .

When , we obtain the complete hyperplane ar-
rangement (actually, it is split into pieces, but it can be
put together by going backwards in the construction). This
provides an EREW PRAM analogue to a CREW PRAM
result of Goodrich [26].

Theorem 3.5 Given a set of hyperplanes in IR , a
1 -cutting for of size can be constructed in
log time using 1 work in the EREW PRAM

model. In particular, can be constructed in log
time using work in the EREW PRAM model.

The hierarchical structure obtained can be used to per-
form point location, as indicated by Chazelle [9]. Since we
are interested in the ability to answer simultaneous queries,
we construct for each the point location data struc-
ture of Dobkin and Lipton [21]. This reduces the problem
to point location in a collection of slabs, a collection of hy-
perplanes restricted to an infinite prism whose section is a
simplex, so that they do not intersect inside the prism. We
give the details in the full version and summarize here the
result as follows.

Theorem 3.6 Given a set of hyperplanes in IR , a point
location data structure of size can be constructed in
log time and work in the EREW PRAM model.

searches can be performed in log log log time
or in log time with -polynomial probability in the
EREW PRAM model, and in log time in the CREW
PRAM model.

The deterministic result for the EREW PRAM model
uses an appropriate replication of the data structure, while
the randomized result uses a technique of Reif and Sen [52].

4 3-Dimensional Convex Hulls
Let be a set of halfspaces in IR3 containing a known
point . We wish to compute their intersection .

4.1 A simple optimal expected work method
We begin by describing a simple randomized method that
achieves an expected running time of log and performs

log expected work. The structure of the algorithm
is similar to the sub-optimal method for IR of Section 3.1.
This general approach was first used for IR3 by Clarkson and
Shor [15] in their sequential randomized output-sensitive
algorithm, and was also used in the randomized parallel
algorithmof Reif and Sen [51] for the CREWPRAMmodel.

We select a random sample , construct the convex
polyhedron , and triangulate its boundary. Then, we
decompose into a set of simplices, where a simplex
is formed by a triangular face of and the point . Next, for



each simplex , we find the conflict list .
This method is then applied recursively to each simplex

, with input , to compute . Clarkson
and Shor [15] show that, for appropriate constants 0 and
1, both of the following conditions hold with probability at
least 1 2: (i) 0 , and (ii) max
1 log .
We examine the resource bounds of one level in the re-

cursion for a sample size , 0 1. We construct
(and triangulate) in log time using 2 log
work [4]. As noted by Reif and Sen [51], the set of sim-
plices cut by a halfspace can be found by lo-
cating the point in the arrangement , where

, is the vertex set of , and
is the standard duality transformwhich in IR3 maps points

to planes and planes to points. By Theorem 3.6, the set
of simplices cut by each halfspace in can be found
in log time using 4 log log ex-
pected work. Then, processor allocation (i.e., one processor
for each plane/simplex pair) can be done by a prefix sums
computation. Therefore, each level in the recursion takes
log time using log work, where is the input

size for the level.
Since the size of each subproblem is roughly 1 ,

the expected depth of the recursion is log log , and the
total expected running time log . In order for the entire
algorithm to perform log work the total size of the
subproblems at any level in the recursion must not exceed

. Unfortunately, since halfspaces can appear inmultiple
subproblems, this method has same the “constant-factor”
blow-up problem as the method for IR of Section 3.1, i.e.,
over the log log recursive calls the total size of the
subproblems can only be bounded by log 1 .

4.1.1 Pruning

In their CREW PRAM algorithm, Reif and Sen [51] over-
come this size blow-up problem by first constructing ,
where is a subset of the halfspaces in that are known to
be boundinghalfspaces of . They then use to identify
redundant halfspaces in .

We use a different approach to avoid this problem. Our
basic strategy is to eliminate any known redundancy in the
input to the subproblems. Specifically, before the recursive
call on a simplex , we remove those halfspaces from that
we know cannot contribute a vertex to in . This gives
a simple, efficient way to avoid the size blow-up problem.

Consider a simplex . We show that a sufficient number
of redundant halfspaces in can be found using only the
intersection of with bd , the boundary of . This in-
tersection consists of three two-dimensional convex polygon
chains, called contours, one on each of the three faces of
that contain . We can construct the contours in log
time and log work using the optimal EREW PRAM
planar convex hull algorithm of Miller and Stout [44]. Note
that all halfspaces contributing an edge to a contour con-
tribute a face to . It is convenient to separately consider

the set of halfspaces that contribute an edge to
one of the contours, and the set . Define

, , and .

Identifying redundant halfspaces in . A halfspace
may or may not contribute a vertex to . We say

that a halfspace and a contour7 of generate the
ray that originates at the closest point on that contour to
the bounding plane of , “shoots” through the interior of ,
and is contained in the bounding planes of the (at most two)
halfspaces in that contributed to the contour.

Observation 4.1 If a ray generated from and a
contour of does not intersect the bounding plane of , then
cannot contribute to , i.e., can be pruned from .

We say that the halfspace is pinned to the simplex
if its bounding plane is pierced (not necessarily in ) by

all three rays generated from and a contour of . By
Observation 4.1, only those halfspaces pinned to a
simplex need to be retained in . The closest point queries
needed to construct the rays can be done by binary search
on the contours in log time using work on an
EREW PRAM [45]. The following lemma shows that after
pruning .

Lemma 4.2 A halfspace is pinned to at most one
simplex .

Proof: Suppose that some is pinned to both
and , . In this case, the bounding plane of

must be pierced by all the rays generated from and the six
contours of and . However, this violates the convexity of

, and .

Identifying redundant halfspaces in . Consider a half-
space . If does not contribute a vertex to , then
it must contribute a face to that is bounded by edges on
at least two of the contours on bd . We call such a face
trivial, and remove from . The trivial faces can be iden-
tified by labeling each contour edge with the halfspaces that
define it, and lexicographically sorting the labels; this takes
log time using log work on an EREW PRAM

[17]. The fact that the contours can be used to identify the
trivial faces was noted by Clarkson and Shor [15], and was
also used in the parallel algorithm of Reif and Sen [51].

Lemma 4.3 After removing trivial faces, .

Proof: This follows from the facts that , a
halfspace retained in contributes a vertex to , and
vertices have degree three (assuming nondegeneracy).

In order to construct , the trivial faces removed in the
th level of the recursion must be replaced before returning
to the 1 st level. Fortunately, this is not difficult.

7In the full version we also deal with some boundary cases that are not
explicitly covered by this definition.



Lemma 4.4 Let be a maximal subset of such that
every contributes a trivial face to and these
faces define at most one subchain on each contour of .
Then the portion of the convex polyhedron returned from the
previous level that lies beyond (i.e., in ) is defined
by the (at most three) halfspaces responsible for the contour
edges incident to the contour subchains associated with .

Proof: We give the proof in the full version.
Thus, we can achieve optimal expected time and work.

4.2 Achieving high probability
We can modify the algorithm of the previous subsection,
however, to achieve the time and work bounds with high
probability. Here 0 denotes the size of the initial problem,
and the size of a subproblem in some stage of the recursion.
0-polynomial probability. Assuming that sufficient pro-
cessors are available at each stage, time log 0 with 0-
polynomial probability can be achieved by stopping the re-
cursion when log 0 for an appropriate , and then
finishingwith a nonoptimal algorithm, for example the algo-
rithmofAmato and Preparata [3]. The total expected work is

0 log 0 (and 0 log2 0 with 0-polynomial prob-
ability). To obtain optimal work with 0-polynomial prob-
ability, we use the polling technique of Reif and Sen [51].
This applies to the EREW PRAM model.
0-exponential probability. To achieve even higher proba-
bility we need two tools. The first one is to obtain a “good”
sample at each stage with -exponential probability using
Theorem 2.10 to obtain a 0-shallow 1 -cutting in the
CREW PRAM model. This is algorithm to be used
below. Its resource bounds hold with failure probability
exp for some 0 1 for a subproblem of size
. Since decreases as the algorithm progresses, we need
a second technique to boost the degrading exponential prob-
ability to 0-exponential. This is achieved with the failure
sweeping technique [25, 36]. Let algorithm 0 be as fol-
lows: Run 0 until subproblems of size 0 , 0 1
are obtained, for each middle stage where 0 log 0
do failure sweeping, and substitute the last stages by the de-
terministic algorithm of [4].

We summarize the results in the following theorem. Both
solve open problems of Reif and Sen [51].

Theorem 4.5 The convex hull problem in IR3 of size can
be solved in the EREW PRAM model with work log
and time log with -polynomial probability, and in
the CREW PRAM model with the same bounds with -
exponential probability.

4.3 Deterministic and output sensitive algo-
rithms

Goodrich [27] has derandomized Reif and Sen’s [51] three-
dimensional convex hull algorithm to obtain a determinis-
tic algorithm with optimal work and log2 time on an

EREW PRAM. His techniques [27] can be applied to our
algorithm yielding a simpler deterministic algorithm with
the same resource bounds.

We obtain a deterministic output-sensitive parallel algo-
rithm using optimal log work, where , but
increased running time log3 , by applying the technique
used in the sequential randomized output-sensitive method
of Clarkson and Shor [15], which was also used in its deran-
domized version by Chazelle and Matoušek [13].

Suppose that we know the value of , and that
, for some 0 (otherwise the log work

method suffices). By Theorem 2.10(3), we obtain a 0-
shallow 1 -cutting of size . Everything proceeds
as before except the contours are computed using a paral-
lel version of Kirkpatrick and Seidel’s [33] output-sensitive
planar convex hull algorithm, due to Ghouse and Goodrich
[25], which can be implemented to run in log2 time
using log work on an EREW PRAM. Note that since
the contours are part of , their size is bounded by .
We then recurse on the with non-empty . We
spend log2 time and perform log at the th
stage of the recursion, where is the total input size for
the th stage, and 0 . From the 1 -cutting, and
since there are at most simplices at any stage (prun-
ing ensures that if there is no vertex of in
), 1 , 1. Therefore the total work
is log

0 log log , and the time is
log
0 log2 log3 log .
Since is not known in advance, we try a sequence

of output sizes 1 2 3 , where 1 is some appropri-
ate constant, and 1

2. The output-sensitive method
is run using the values as estimates of . If the th
execution performs more than log work, for some
appropriate constant , or, at any stage of the recursion,
finds that there are more than simplices containing ver-
tices of , then execution is stopped and the next value
is tried. This process terminates when . The total
work is log log

0 log 2
1 log , and the time is

log log
0 log3 log 2

1 log3 .

Theorem 4.6 The convex hull of points in 3 can be
constructed in log2 time and log work, or in
log3 time and log work, in the EREW PRAM

model.

4.4 Ball intersection and diameter in IR3

Let be a set of points in IR3. For 0 and
let be the (closed) ball of radius centered at .
Let : . We are interested
in computing the intersection of these balls, a convex
body with linear boundary complexity [31]. The interest
in this object originates in its relevance to the computation
of the diameter of , the largest distance between any pair
of points in . The relation was pointed out by Clarkson
and Shor [15] who gave optimal log time random-



ized algorithms for both problems. Deterministically, the
current best algorithms have running times log and

log3 respectively [8]. The algorithms we describe
here match those running times and are arguably simpler8.

Ball intersection. With appropriate variations, the method
used to compute the intersection of halfspaces can be used
to compute in log time using log work in
the EREW PRAM model. We only describe the necessary
variations, further details are given in the full version. Some
of the other required ingredients have been described in [40].

(i) A point in the interior can be determined using
techniques similar to those for solving linear programming
problems, in log2 time with work. (ii) For a sam-
ple , can be computed by a brute force method. A
canonical triangulation can be obtained as follows [40]:
the boundary is triangulated by drawing for each face and
vertex the segment of great circle on the face through the
vertex and the poles; then the trapezoids on the boundary
are joined to the interior point to form bricks. (iii) For
brick , let : . Our set
system consists of sets . In [40], using a linearization
technique, it is shown that a sample of size with
appropriate properties ( 1 log for each and

2 ) can be computed in log time.
Using the techniques of [27], that sample can be obtained in
log2 time with log work in the EREW PRAM

model. (iv) The conflict lists can be computed using
point location in an arrangement of hyperplanes as in [40]
by using the mentioned linearization technique. (Alterna-
tively, in a sequential algorithm, the conflict lists can be
obtained using a hierarchical decomposition [22] to deter-
mine a first intersection point between each bounding sphere
and the boundary of , and then walking to determine all
the intersection.) (v) The contours are computed using a
two-dimensional version of the same method (note that each
portion of contour lies on a type of cylindrical surface; still
the complexity of a contour is linear in the number of balls
involved). (vi) Let and be defined as for halfspaces.

can be computed by first recursively computing
and then using a hierarchical decomposition ( if

). Note that in the recursive computation always
is empty. This was used in [51]. (vii) The detection

and removal of trivial faces is similar to that for the case of
halfspaces, we only point out that a single ball can contribute
more than one piece of trivial face inside a brick .

Diameter. Using the algorithm for ball intersection together
with parametric search [43] as in previous works [11, 40],
we obtain a sequential algorithm for the diameter problem
with running time log3 .

First, we need to make the ball intersection algorithm
into an oracle that determines whether , or

. For this each point of is located inside a brick
8Previous work, using only elementary techniques (not using geometric

sampling) could only achieve running times log 2 and log5
respectively [50].

in each stage of the algorithm. Using the lineariza-
tion technique of [40], this becomes a problem of point
location among hyperplanes. The total work is log .
If at any moment, a point is not in any brick then .
Otherwise with if some points are exactly on
the boundary of .

Second, using parametric search, one obtains in a
straightforward manner a diameter algorithm with running
time log4 (and a parallel algorithm running in time
log5 ): a log2 factor due to the parallel algorithm,

a log factor due to the number of times the oracle
must be run to resolve a batch of comparisons, and a fac-
tor log due to the oracle. We need a closer look
to save a log factor. Specifically, we find that, except
for the construction of an approximation of size with
work log , all the algorithm can be implemented so
that the comparisons involving the radius are presented in
log parallel batches. The problem with the approx-

imation construction is that it consists of log stages
each requiring the construction of a 1 -approximation,
for some constant , using work as described in [27],
which in turn requires Θ log log stages (so a running
time log3 log log can be achieved). One can verify
that the game of Cole [16, 17] can be played on the com-
putation graph of the algorithm for constructing a 1 -
approximation, so that the log log factor is saved. The
bound log3 on the running time follows.
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