
E f f i c i e n t P l a n e S w e e p i n g in P a r a l l e l °
(Pre l iminary Version)

Mikhail J. Atallah
Michael T. Goodrich

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907

1

A b s t r a c t
We present techniques which result in improved

parallel algorithms for a number of problems whose
efficient sequential algorithms use the plane-sweeping
paradigm. The problems for which we give improved
algorithms include intersection detection, trapezoidal
decomposition, triangulation, and planar point loca-
tion. Our technique can be used to improve on the
previous time bound while keeping the space and pro-
cessor bounds the same, or improve on the previous
space bound while keeping the time and processor
bounds the same. We also give efficient parallel algo-
rithms for visibility from a point, 3-dimensional max-
ima, multiple range-counting, and rectilinear segment
intersection counting. We never use the AKS sorting
network in any of our algorithms.

Introduction

The plane-sweeping technique has proven effective for developing
efficient sequential algorithms for a variety of geometric problems.
This technique, in 2-dimensions, involves sweeping a line through
a set of geometric objects (such as line segments), updating global
data structures at each critical point (such as an endpoint). It
has been used to find efficient sequential algorithms for a host of
computational geometry problems (see [16]). It also seems to be
a very sequential technique.

Most of the sequential algorithms which use plane-sweeping
are already optimal to within a multiplicative constant. There
is already a small but growing body of work on finding effi-
cient parallel algorithms for computational geometry problems
[1,2,3,9,12], addressing the question of what kinds of speed-ups
can be achieved through parallelism. In this paper we present
efficient parallel algorithms for a number of problems whose effi-
cient sequential algorithms use the plane-sweeping paradigm. We
list the problems addressed in this paper below, and summarize
our results in Table 1.

1. T r a p e z o i d a l D e c o m p o s i t i o n [6]t~ Given a simple n-
vertex polygon P, determine the trapezoidal edge(s) for
each each vertex. A trapezoidal edge for a vertex v~ is an
edge s of P which is directly above or below v~ and such
that the vertical line segment from vi to s is interior to P .

*This work was supported by the National Science Foundation under
Grant DCR-84-51393 and by the Office of Naval Research under Grant
N00014-K-0502.

tSee [16] for other references.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1986 ACM 0-89791-194-6/86/0600/0216 $00.75

Problem Previous Bounds Our Bounds

Trapezoidal (log 2 n, n log n) [1] (log n log log n, n log n)
Decomposition or (log 2 n, n)

(log n log log n, n log n)
Triangulation (log 2 n, n log n) [1] or (log 2 n, n)

Planar Point (log 2 n, n log n) [1] (log n log log n, n log n)
Location Q(n) = O(log 2 n) Q(n) = O(log n)

intersection (logan, n l o g n) [1] (log2n, n) '
Detection

Int. Detection
not considered (log n log log n, n log n)

(CRCW model)

Visibility not considered (log n log log n, n)

3-D Maxima " (log n log log n, n)

Multiple Range- , (log n log log n, n)
Counting

Rect. Segment . (log n log log n, n /
Int. Counting

Table 1: S u m m a r y of Resu l t s . The pair (t(n), s(n))
denotes that the parallel algorithm runs in O(t(n)) time
and O(s(n)) space, using O(n) processors.

2. Triangulation [6It: Given a simple n-vertex polygon P,
augment P with diagonal edges so that each interior face
is a triangle.

3. P l a n a r P o i n t L o c a t i o n [13]t: Given a planar subdivision
consisting of n edges, construct in parallel a data structure
which, once built, enables one processor to quickly deter-
mine for any query point p the face containing p. We let
Q(n) denote the time for performing such a query.

4. I n t e r s e c t i o n D e t e c t i o n [19]t: Given n line segments in
the plane, determine if any two intersect.

5. V i s i b i l i t y f r o m a P o i n t [11]t: Given n line segments such
that no two intersect (except possibly at endpoints) and a
point p, determine that part of the plane visible from p.

6. 3 - D i m e n s i o n a l M a x i m a [15]t: Given a set S of n points
in 3-dimensional space, determine which points are max-
ima. A mazimum in S is any point p such that no other
point of S has x, y, and z coordinates that simultaneously
exceed the corresponding coordinates of p.

7. M u l t i p l e R a n g e - C o u n t i n g [17]t: Given i points in the
plane and m isothetic rectangles (ranges) determine the
number of points interior to each rectangle. The probiem
size is n -- l -b m .

8. R e c t i l i n e a r S e g m e n t I n t e r s e c t i o n C o u n t i n g [16]:
Given n horizontal and vertical line segments in the plane,
determine for each segment the number of other segments
which intersect it.

216

As in [1,2] our framework is one in which we have O(n) pro-
cessors with which we wish to achieve the best time and space
performance possible. Unless otherwise stated, our algorithms
will be for the CREW PRAM parallel model (as in [1,2]). Recall
that this is the synchronous parallel model in which processors
share a common memory where concurrent reads are allowed,
but not concurrent writes.

In [1] Aggarwal et al. show that several problems whose effi-
cient sequential algorithms use the plane-sweeping paradigm can
be solved in parallel in O(log 2 n) time and O(n log n) space using
O(n) processors in the CREW PRAM model. The problems ad-
dressed in [1] include intersection detection, trapezoidal decom-
position, triangulation, and planar point location, among others.
We reduce the time bound from O(log ~ n) to O(log n log log n) for
each of these problems (keeping the space bound at O(n log n))
by using a special data structure, which we call the plane-sweep
tree, which is similar to a data structure used in [1], but differs
from it in some important ways. We build this data structure
by using parallel merging and a technique similar to the sequen-
tial "fractional cascading" technique of Chazeile and Guibas [8].
If space is important, then our technique can be modified to
achieve O(n) space and O(log 2 n) time. We manage to achieve
O(n) space performance, even though this data structure takes
O(n log n) space, by never completely building it. Instead, we use
it as we are constructing parts of it and destroying other parts
of it. Also, the previous algorithms use the AKS sorting network
[4], which introduces a large constant into the time complexity.
We never use the AKS network.

We also present a technique which we use to efficiently solve
other problems as well: namely, visibility from a point, 3-
dimensional maxima, multiple range-counting, and rectilinear
segment intersection counting. This technique is based on the

divide-and-conquer paradigm and for each of these problems it
achieves O(log n log log n) time and O(n) space bounds using
O(n) processors. Instead of dividing and merging in the usual
way, however, we divide based on how sequential plane-sweeping
stores objects during the sweep, and we "marry" subproblem so-
lutions by merging lists of critical points and computing labels
associated with each critical point. The key to this technique is
in selecting critical-point labels which can be computed quickly
in parallel and which can be used to solve the problem at hand
once we have completed the divide-and-conquer procedure.

In the next section we give some preliminary definitions and
observations. In Section 3 we present the plane-sweep tree tech-
nique, and in Section 4 we present our second technique.

2 Pre l iminar ie s

In this section we introduce some notation and review some
known results which we will use later in the paper. For any
point p in the plane we use z(p) and y(p) to denote, respectively,
the z and y coordinates of p. If p E ~s, then we use z(p) to de-
note the z-coordinate of p. Given a set S of non-intersecting line
segments in the plane, we define a partial order on the elements
of S such that two segments in S are comparable iff there is a
vertical line which intersects both segments. The segment with
the lower intersection is said to be the smaller of the two. Note
tha t if there is a vertical line which intersects all the segments in
S, then this partial order is actually total.

Given a sorted (nondecreasing) list B = (bl ,b~,. . . ,bin) and
an element a taken from the same total order as the by's, we
define the cousin of a in B to be the greatest element in B which
is less than or equal to a. If there is no such bj in B, then we say
that the cousin of a is ~b (~ is a special symbol such tha t ~b < b for

every element b in the total order). Clearly, we can use binary
search to locate the cousin in B of any such a. In the next lemma
we show that if we have two sorted lists A and B whose elements
are taken from the same total order, we can find the cousin in B
of every element in A efficiently in parallel.

L e m m a 2.1: Given two sorted arrays A and B whose elements
are taken from the same total order, the cousin in B of each
element in A can be determined in O(log log n) time using O(n)
processors on a CREW PRAM, where n = IAI + IBI.

Proof : The parallel merging algorithm of [20] (which is imple-
mentable in the CREW PRAM model [5]) first finds cousins and
then does the merge. Thus, the lemma follows directly from the
work of [5] and [20]. •

Parallel merging is a powerful tool in designing efficient par-
allel algorithms, and we make repeated use of it in this paper.
Another powerful parallel technique is the parallel prefiz tech-
nique [14]. Stated in its simplest form, given an array of integers
A = (al, a2, . . . , an}, it allows us to compute all the partial sums
c~ = ~ = 1 aj in O(logn) time using O(n/log n) processors (see
[14] for details). Parallel prefix is used as a building block in
many of our algorithms.

3 The Plane-Sweep Tree Technique

In this section we present the plane-sweep tree technique. We
present it for the case when the objects under consideration are
line segments, but essentially the same technique applies for other
objects as well. We describe the technique in a very general
setting, and in the subsequent subsections we show how it can
be applied to solve specific problems.

3 .1 D e f i n i t i o n s a n d O b s e r v a t i o n s

Let S --- {sl, s2 , . . . ,sn} be a set of non-intersecting line segments
in the plane. To simplify the exposition we assume that no two
endpoihts have the same z-coordinate.

The idea of using a tree to parallelize plane-sweeping is due
to [1] and is based on a data structure of [7I. We review some
of the definitions and observations from [1] and [7] as it relates
to our work. Let T be the complete binary tree with its leaves
corresponding to the 2n + 1 intervals formed by projecting the
segments' endpoints onto the z-axis. Associated with each node
v E T is an interval [av, bu] on the x-axis which is the union of
the intervals associated with the descendants of v. Let II~ denote
the vertical strip [au, bu] x (-co , co). A segment s, covers a node
v E T if it spans II U but not IIz, where z is the parent of v.

L e m m a 3.1 [1]: No segment covers more than g nodes of any
level of T; hence, every segment covers at most O(log n) nodes
o f T . |

As in [1] and [7], we define H(v) and W(v) for each node
v E T as follows:

H(v) = {sd I si covers v} ,

W(v) = {st [si has at least one endpoint in l-Iv}.

However, here we also define two other sets. Let left(ii~)
(right(ii,)) denote the left (right) vertical boundary of II~.

L(v) = {st [s t e W (v) a n d s t N l e f t (I I v) ¢ O } ,

RCv) = {st I st e W(v) and stnright(Hv) • O}.

We study the relationships between H, L, and R in the fol-
lowing lemma. The observations made in this iemma are needed
in the construction presented in the next subsection.

'217

W U f)2

Figure 1: A configuration of nodes in T.

L e n n n a 3.2: Let v be a node in T with children vt and e2, s ib l ing
w, and parent z (Figure 1 illustrates the case when to is to the
left of v). Let A + B denote the union o/ two disjoint sets A and
B, and let A - B denote set difference where B C A. Then we
have the following:

(1) L(v) = n (v l) + L(Vl);

(2) n(v) = H(v2) + R(v2);
(3) n(v) = R(w) - (R(w) N L(v)) if ,~ is the right child o f ,

(as is the case in Figure 1); H(v) = L(w)- (L(w)NR(v)) ,
if v is the left child of z.

P roof : The proof is given in the technical report [3]. •
Lemma 3.2 essentially states tha t the sets L, R, and H as-

sociated with a node in the tree T can be defined in terms of
sets associated with nodes one level below it in T. An important
property of the sets L(~), R(v), and H(~) is tha t for any v E T
the segments in L(v) U H(v) (resp., R(v) U H(v)) can be linearly
ordered. We use this fact, and Lemma 3.2, in the next subsection
to show how to efficiently construct H(v) for every node v in T.

3 .2 C o n s t r u c t i n g t h e P l a n e - S w e e p T r e e

In this subsection we show how to efficiently construct and tra-
verse the plane-sweep tree T. The next lamina states tha t the
set operations + and - of Lamina 3.2 can both be performed in
O(log log n) time.

Lemxna 3.3: Let A and B be two sets represented as sorted ar-
rags. I / A N B = 0, then A + B can be competed in O(log log n)
time using O(n) processors. I f B C_ A, then A - B can be com-
puted in O(log log n) time using O(n) processors.

Proof : If A n B = ~, then the set A + B can be constructed by
simply merging A and B into one sorted list [5,20]. If B C A,
we construct A - B by first determining the cousin in B of each
a~ G A (which can be done in O(log log n) time by Lemma 2.1).
Then, by assigning a processor to each element in A, we compress
A by moving each element in A and not in B over by the rank
of its cousin. Since this compressing operation can be done in
constant time, the set A - B can be constructed in O(log log n)
total time. •

From Lemma 3.2 we know tha t the sets L, R, and H for
any level l of T can be defined in terms of sets on the level be-
low I. We have yet to see how these sets can be constructed
efficiently in parallel. From Lemma 3.3 we know tha t the con-
structions implicit in Equations (1) and (2) of Lemma 3.2 can
be performed in O(log log n) time. Equation (3), however, also
uses set intersection, so we cannot perform the construction im-
plicit in Equation (3) by using Lemma 3.3. To get around this
problem we exploit a regularity property of the segments in the
intersection (R(w) ~ L(v)) of Equation (3) in order to compute
all these intersections as a preproceesing step, storing them away
for future use. The details of this and other preproce~ing steps
follow.

P r e p r o c e s s i n g s teps :
Input: A set B = {st, s~ , sn) of non-intersecting segments.
Output: The skeleton of T, the plane-sweep tree for S, with a
set I(v) constructed for each node v E T, where I(v) is the set
of all segments with one endpoint in Hlch~l~(~) and the other in
Hrchild(~). (We do not yet compute L(v), R(v), or H(v).)
Step 1. Sort the set of endpoints of S l , . . . , s n by their z-

coordinates, and build the skeleton of the tree T on top
the the 2n + 1 intervals determined by these endpoints.

Comment: Since we only perform this step once, we can use
parallel merging [5,20] to sort in O(log n log log n)
t ime using O(n) processors, instead of using the
AKS sorting network [4] which would introduce
a large multiplicative constant. (Our algorithms
take O(log n log log n) anyway, so there is no point
in using the AKS network to perform this step in
O(log n) time.)

Step 2. Let J be the set of all (v, s~) pairs such that t~ is the
lowest node in T such tha t s~ C H,. Clearly, J can be
constructed in O(log n) time using O(n) processors.

Step 3. Sort J lexicographically and use a straight-forward par-
allel prefix [14] type of computation, to compute the set
l (v) = {s l [(v, s~) E J } for each t~ E T.

Comment: Observe tha t]~vET" II(v)l = n.
Step 4. Sort each I(t~) by the y-coordinates of the intersections

of the si 's in l (v) with the vertical boundary separating
the vertical strips IIichil~(~) and Hrchild(v).

E n d of P r e p r o c e s s i n g S teps .

O b s e r v a t i o n 3.4: The preprocessing steps take O(log n log log n)
time and O(n) space using O(n) processors on a C R E W PRAM.
For each v E T the set I(v) consists o /a l l segments with one
endpoint in Hl~hlZd(u) and the other in Hrehdd(v).

P r o o f : Immediate. •
Note tha t the set R(w)nL(v) , as well as L(w)nR(v) , of Equa-

tion (3) in Lemma 3.2 is exactly the set of all segments with one
endpoint in Hw and the other in H,. Thus, by Observation 3.4,
we can rewrite Equation (3) of Lemma 3.2 as H(v) = R(w) - l(z)
if v is a right child, and H(v) = L(w) - I(z) otherwise. Having
observed this, we are now ready to describe how to construct the
plane-sweep tree T.

T h e B u i l d - U p A l g o r i t h m (B U I L D U P) :
Input: The skeleton of the plane-sweep tree T built in the pre-
processing steps (including the sets l(v) for each t~ E T).
Output: The plane-sweep tree T with the set H(v) constructed
for every node v E T. The contents of each H(v) are sorted by
the "above" relationship defined in Section 2.
Step 0. F o r / = lowest level u n t i l I : 0 r e p e a t Steps 1-3 below,

in parallel for each v E T at level I.
Step 1. Use equations (1) and (2) of Lemma 3.2 and Lamina 3.3

to build the sets L(v) and R(v) from the sets for t f s
children.

Step 2. Use the modified equation (3) of Lemma 3.2 (that is,
H(v) = R(w) - I(z) if v is a right child, and H(v) =
L(w) - I(z), otherwise) and Lemma 3.3 to build H(t~)
from l (z) (which was precomputed) and the appropriate
R(w) or L(w) constructed in Step 1.

Step 3. Discard the sets L and R for the nodes on level I + 1 ,.
(the level below 1), as they are no longer needed.

E n d of A l g o r i t h m B U I L D U P .

T h e o r e m 3.5: The BUILDUP algorithm correctly builds the
set H(v) f o r eeery node v in T in O(lognloglogn) time and
O(n log n) space t~ing O(n) processors on a C R E W PRAM.

218

Proof : The correctness of BUILDUP follows from Lemma 3.2,
the fact that the segments in L(v) (reap., R(v) or H(v)) are lin-
early ordered, and the fact that the segments in L(v) U H(v)
(reap., R(v) U H(u)) are totally ordered. Steps 1 and 2 are per-
formed by using Lemma 3.3 and therefore take O(log log n) time.
Also, Step 3 clearly takes O(1) time. For any node v the number
of processors necessary to perform Steps 1-3 for v is proportional
to the number of descendants ofv. Since Steps 1-3 are performed
for nodes which are all on the same level of T in parallel, we use
O(n) processors. The fact that we use at most O(n log n) space
follows from Lernma 3,1. Thus, the BUILDUP algorithm runs in
O(log n log log n) time and O(n log n) space using O(n) proces-
sors. •

We are now ready to show how to traverse the plane-sweep
tree. In all the problems we solve using this technique, an es-
sential computation done while traversing the plane-sweep tree
is that we want to locate for each input point p the segment in
H(v) which is directly above (or below) p, for all v E T such
that p E Hr. We call this set of locations the multiloeation of p
in T. The specific multilocations we will perform will vary from
problem to problem, and will become apparent in the subsections
on applications. We augment T with sets and pointers in a man-
ner similar to the sequential "fractional cascading" technique of
Chazelle and Guibas [8] so that the multilocation of any query
point p can be performed in O(log n) serial time. To perform the
multilocation of a point p we first find the leaf v E T such that
z(p) E lay, by]. Then, for every node z on the path from v to the
root, we search in H(z) to find the segments in H(z) which are
directly above or below p (note that this leaf-to-root path con-
sists of all nodes z E T such that p E Hv). The main idea of the
augmenting technique is that we want the search done at a node
v to allow us to perform the search at parent(v} in constant time
(rather than in O(log n) time). As in [8] we make the following
definition: given a sorted sequence A the k-sample of A, denoted
SAMPk(A), is a sequence consisting of every k-th element of A.

The A l g o r i t h m A U G M E N T :
Input: A set S of non-intersecting line segments in the plane, and
the plane-sweep tree T built for S, with the sets H(v) constructed
for every node v E T (as produced by the BUILDUP algorithm).
Output: An augmented plane-sweep tree T t, which allows a mul-
tilocate of any query point p to be done in O(logn) serial time.
Method: The idea is to construct an augmented list A(v) for every
node v E T such that H(v) C_ A(v), and associate pointers with
the elements of A(v) so that, given the position of an element in
A(v), we can locate that element in both H(v) and A(parent(v))
in O(1) additional time.
Step i. Let A(r) = H(r), where r is the root of the plane-sweep

tree T.
Step 2. Fo r I = 1 (the level just below the root) un t i l i = lowest

level r e p e a t Steps 3-5 below in parallel for each vertex
v E T on level i.

Step 3. Merge H(v) and SAMP4(A(z)) into one sorted list and
store this list as A(v), where z =parent(v).

Step 4. Use Lemma 2.1 to determine for each 0, E A(v) its
cousin in A(z). For each sl E A(v) let up(o,) be a
pointer to the cousin of 0, in A(z).

Step 5. Use Lemma 2.1 to determine for each oi E A(v) its
cousin in H(v). For each o, E A(v) let over(s,) be a
pointer to the cousin of oi in H(v).

En d of A U G M E N T .

T h e o r e m 3.6: AUGMENT runs in O(log n log log n) time and
O(n log n) space using O(n) processors on a CREW PRAM. The
augmented tree T I it produces allows us to multiloeate any query
point p in O(log n) serial time.

Proof : We first prove that the space complexity of T ~ is the
same as T, namely, O(n log n). We prove this by examining the
extent that any set H(v) contributes to the space of T I. For any
v E T, on level l, AUGMENT copies IH(v)l/2 elements to nodes
on level i + 1, IH(v)l/4 to level l + 2, and so on. Thus, any set
H(v) contributes at most IH(v)l extra space to T'. Therefore,
the space required by T' is at most 2 times the space used by
T. Hence, the space complexity of AUGMENT is O(n log n).
That the number of processors used is O(n) follows by a similar
argument. In order to do the parallel merges we need to know
ahead of time how many elements will be involved, for all v E T.
This is not a problem, however, because we can calculate the
number of processors needed to compute A(v) for each v E T
as a preprocessing step. The time complexity of AUGMENT
is clearly O(lognlog log n), since Steps 3-5 are all done using
parallel merging or Lemma 2.1.

A multilocate of a point p proceeds as follows (WLOG, we
describe the versiofi which finds the segments directly below
p in the appropriate H(v)'s, the version for finding segments
above p being similar). Locate the leaf v in T corresponding to
the interval [av, bv] such that z(p) E [av, bv]. We begin the se-
quence of searches by using binary search to locate the segment
in A(v) which is directly below p; this is the cousin o fp in A(v).
Let cv(p) denote this segment. We can then follow the pointer
over(or(p)) to find the segment in H(v) which is directly below p.
Now, by following the pointer up(cv(p)) to the list A(z), where
z = parent(v), we can use a sequential search from up(c~(p)) to
locate the segment cz(p) in A(z) which is directly below p in O(1)
time. This is because cz(p) can be no more than 4 storage lo-
cations away from up(cv(p)) in the array A(z). From this point
on every search will take O(1) time to complete. Since there are
O(log n) nodes which must be searched, the sequence of searches

can be performed in O(log n) total time. •
We show in the following subsections how to apply BUILDUP

and AUGMENT to solve specific geometric problems. Before
doing so, however, we describe how to perform a collection of
rn multilocations using only O(n) space, at the expense of more
time. Let V = {pl ,P2, . . . ,pm} be a set of points we wish to
multilocate in T, where m = O(n). The method is similar to the
BUILDUP procedure, but differs from it in two respects. First,
after constructing the set H(v) for all v on a level l (in Step 2),
we perform a binary search in H(v) for all points pl such that
pl E Hv to find the segments in H(v) directly above and below
p, (this is one of the searches needed for the multilocation of p,).
Next, after we have completed the searches of nodes on level l
for all points Pi E V, we can discard the sets L, R, and H for all
nodes on level i + 1 (this of course means that we do not output
any H(v)'s as BUILDUP does). Since we never construct sets for
more than 2 levels in the tree at a time, we never use more than
O(n) space. Also, recall that the space used by all the l(v) 's is
O(n). The time taken for this is clearly O(log n) for each level of
T, or O(log 2 n) overall. We summarize the above discussion in
the following theorem.

T h e o r e m 3.7: Given a set S o f n non-intersecting segments and
a set V of O(n) query points, we can perform the multilocation of
all the points in V in O(log n log log n) time and O(n log n) space
(or, alternatively, in O(log ~ n) time and O(n) space) using O(n)
processors on a CREW PRAM. •

We are now ready to show how the plane-sweep tree tech-
nique is used to solve a number of geometric problems. The first
application we present is for trapezoidal decomposition.

219

3.3 T r a p e z o i d a l D e c o m p o s i t i o n

Let P = {vl, v~,. . . ,vn} be a simple polygon, where the vi's
denote the vertices of P and are listed so tha t the interior of P
is to the left of the walk VlV~...vn. For any vertex ~i of P a
trapezoidal edge for v~ is an edge of P which is directly above
or below ol and such tha t the vertical line segment from vi to
this edge is interior to P. Note tha t a vertex can have 0, 1 or 2
trapezoidal edges. The trapezoidal decomposition problem [6] is
to find the trapezoidal edge(s) for each vertex of P (see Figure 2).

Figure 2: A trapezoidal decomposition of a simple polygon.

T h e o r e m 3.8: A trapezoidal decomposition of P can be con-
structed in O(log nloglog n) time and O(nlog n) space {or, al-
ternatively, in O(log 2 n) time and O(n) space) using O(n) pro.
cessors on a CREW PRAM.

Proof : We first prove the O(lognloglogn) time result. Let
S = {sl, s2 , . . . ,an} be the set of edges of P, Le., si = (vi, vi+l),

for i = 1 , 2 , . . . , n - 1, and sn = (vn, vl). We find the trape-
zoidal edge below each vertex as follows. First, use algorithms
BUILDUP and AUGMENT to construct an augmented plane-
sweep tree T I for S. As in [1], we solve the problem by performing
a muttilocation of each v~ ~ P. In our case we use Theorem 3.6
to perform all O(n) multilocates in O(logn) time using O(n)
processors. During the multilocation, for each vertex vi, we keep
track of the segment below vl and with minimum vertical distance
from vl (call this segment trap(vl)). When we complete all the
multilocations, for each vi, trap(v~) will store the segment which
is directly below v~ in the totally ordered set of segments tha t
are cut by the vertical line through v~ (i.e., the union of all H(v)
such that vi ~ IIv). By a similar procedure we can find for each
vi the segment in S which is directly above v~. We can then test
in constant time if these segments are trapezoidal edges or not
by checking if the line segment from o~ to the segment trap(v~)
is interior to P or not.

Since the necessary multilocations can alternatively be per-
formed in O(log ~ n) time and O(n) space using O(n) processors
(by Theorem 3.7), we can construct a trapezoidal decomposition
of P in these same bounds. •

In the next subsection we show how to use trapezoidal de-
composition in solving the triangulation problem.

3 .4 T r i a n g u l a t i o n

Let P = {vl, v2 , . . . , vn} be a simple polygon, where the v~'s
denote the vertices of P and are listed so tha t the interior of P
is to the left of the walk vxv2.. , vn. We wish to augment P with
diagonal edges so tha t each interior face of the resulting planar
subdivision is a triangle. Our method consists of two phases.
The first is to use trapezoidal decomposition to decompose P
into one-sided monotone polygons PI,P2, . . . ,Pk. We say tha t

a polygon P is one-tided if there is a distinguished edge on P
such that the vertices of P are all above (or all below) tha t edge
(except for the endpointe of the edge). In the second phase we
triangulate each Pi in O(log n) time and O(n) space using O(n)
processors. The algorithm DECOMP which follows is the first
phase in our triangulation procedure.

A l g o r i t h m DECOlVIP:
Input: A simple polygon P = {vl, ~ , . . . , v,~}.
Output: A decomposition of P into one-sided monotone polygons.
Step 1. Construct a trapezoidal decomposition for P.
Step 2. For every sl construct Vi, the set of vertices of P for

which sl is a trapezoidal edge. This can be done by
sorting lexicographically the set of (s~,vj) pairs such
tha t s~ is a trapezoidal edge for vj, and then using a
parallel prefix [14] computation to construct the set V~
for each si.

Step 3. Sort the vertices in every Vi by z-coordinate, in parallel.
S tep4. For each edge s i = (vlo,Vm+l), suppose V~ =

{vll ,vi2, . . . ,vl .~}. Augment P by adding edges
(vii , vii+l) for j = 0,1, 2 , . . . , n~, if they are not already
in P. Let Pi be the polygon consisting of s~ and of the
edges (r~i,vii+l), for j = 0 , 1 , . . . , ni (see Figure 3).

E n d of a l g o r i t h m D~.COIVIP.

Uis

t~i 7

Figure 3: The polygon P~ for s~ = (V~o,V~,) and Vi =
{vh,v~2,. . . ,vi6}. The edges in P/ but not in P are
shown in boldface. Note tha t the sequence of vertices
v i i , . . . ,v~6 is monotone in the z-direction.

T h e o r e m 3.9: The algorithm DECOMP correctly decomposes
a simple polygon P into one-sided monotone polygons in
O(log n log log n) time and O(n log n) space (or, alternatively,
in O(log 2 n) time and O(n) space) using OCn) processors on a
CREW PRAM.

Proof : First note tha t the Pi 's form a decomposition, because an
edge added to construct some Pi may coincide with an edge added
to construct some Pj, but it cannot cut across any other edge. It
is easy to show that the vertices of V~ are all on the same side of
si; tha t is, t ha t each polygon Pi is one-sided (we omit the proof).
Finally, each Pi is monotone because we sorted the points in Vi
by x-coordinate in Step 3. The complexity bounds for DECOMP
follow from observations already made in this paper. B

After decomposing P into polygons PI,P2, . . . ,Pk, we now
triangulate each P / i n parallel. The algorithm which follows will
triangulate a one-sided monotone polygon in O(log n) time and
O(n) space using O(n) processors.

220

A l g o r i t h m O S M - T R I A N G U L A T E .

Input: A one-sided monotone polygon P. Let s denote the dis-
tinguished edge. WLOG, P is monotone in the z-direction.
Output: A triangulation of P.
Method: Let V = {v1,~2,.. . ,vn} denote the set of vertices of P
which are not endpoints of s, and s -- (v0,v~+l). WLOG, all
the vertices of V are above s. One of the ideas in our algorithm
is the use of the V~ parallel divide-and-conquer technique [1,2].
We divide the vertices of V into V'~ subsets of size vfK each, find
the lower convex hull of each subset, and triangulate all the parts
of P above the lower hull edges recursively in parallel (Steps 1
and 2). We then repeatedly merge adjacent pairs of lower hulls
into single lower hulls, triangulating the portion of P between
each pair. Unfortunately, doing this in a straightforward man-
ner would result in an O(log 2 n) running time, because it takes
O(log n) time to compute the common tangent line between two
lower hulls. So we compute all the tangent lines which will merge
pairs of hulls as a preproceesing step (Step 3) to the conquer step
(Steps 4--0). This allows us to do the pair-wise hull-mergings in
constant time. After we complete all the lower-hull mergings, the
untriangulated portions of P are structured so as to be triangu-
latable in O(log n) time. The details follow:

Step 1. Divide V into ~ subsets VI, V2,. . . , Vv~ of size v ~ each
using vertical dividing lines, and compute the lower con-
vex hull LH(Vi) of the vertices of each subset ~ in par-
allel (see Figure 4). Add all hull edges to P (if they are
not already edges of P) .

Comment: The vertices of each LH(V~) are listed by increas-
ing z-coordinate. The lower hull of m points in the
plane sorted by z-coordinate can be constructed in
O(log m) time and O(m) space using O(m) proces-
sors [1,2].

Figure 4: The v ~ lower hulls associated with V.

Step 2.

Step 3.

For each edge s I added to form LH(V~) there is a subset
of vertices in V~ which are monotone in the z-direction
and directly above s t. Thus, each such s I determines a
one-sided monotone polygon, with at most O(Vfn ") ver-
tices. Recursively triangulate the polygons determined
by each s I in parallel for all such edges s ~.
Build a complete binary tree B ~on top ~ of the subse t s
V/ such that each leaf corresponds to a single V~. For
each to E B find the tangent tw between LH(lchild(to))
and LH(rchild(w)), where LH(to) denotes the lower
hull of the descendants of to, by doing the following
(note: in Step 3 we don' t actually compute LH(to),
just the common tangent tw):

Step 3.1.

Comment:

Step 3.2.

Comment:

For each pair (i,j), i,j - 1,2,... ,V ~, compute
the common tangent line t£~- between LH(V~) and
LH(Vj) in parallel.
The common tangent line between two lower hulls
can be computed in O(log n) time by a single pro-
ceseor using a binary search technique developed
by Overmars and Van Leeuwen [18). Thus, this
step can be done in O(log n) time by assigning one
processor to each of the O(n) pairs of lower hulls.
For each to E B let Tw be the set of tangent lines tl,j
such that V~ is a descendant of lehild(to) and Vj is
a descendant of rchild(to). Find the minimum tan-
gent line tw for each Tw in parallel, where compar-
isons are based on the intersection of the tangent
lines with the vertical line separating the descen-
dants of iehild(w) and rchild(to), respectively (see
Figure 5).

tw is the tangent line between LH(lchild(to)) and
LH(rchild(w)).

Figure 5: The tangent lines in Tw: between descen-
dants of lchild(w) and descendants of rchild(to). The
tangent tw is shown in boldface.

Step 4. For each w E B, construct P~, the polygon which con-
sists of tw together with the portions of LH(Ichild(w))
and L~(,chad(~)) that are above t,. (and hence do not
appear in LH(w); see Figure 6), by doing the following:

Step 4.1. Fo r l - lowest level u n t i l l = 0 r e p e a t Steps 4.2-
4.3 below for each to E B on level I in parallel:

Comment: Let Wl = lchild(w) and to~ = rehild(w). Assume
tha t LH(wl) and LH(w2) were constructed in the
previous iteration, and that the vertices in LH(wl)
and LH(w2) are sorted by z-coordinates.

Step 4.2. WLOG, the descendants of wl have smaller z-
coordinates than the descendants of w2. Let t~ =
(Vl,V2), where •1 6 LH(wl) and v2 6 LH(w2).
Construct LH(w) by concatenating the portion of
LH(wl) left of vl (inclusive) with the portion of
LH(w2) right of v2 (inclusive).

Step 4.3. Concatenate the portion of LH(wl) right of vl tin -
clusive) with the portion of LH(w2) left of v2 (in-
clusive). Let P~ denote the polygon consisting of
this list and the edge t~.

Comment: Steps 4.2 and 4.3 can both be done in constant time
using O(n~) processors, where n~ = ILH(tol]l +
ILH(w2)I.

221

Figure 6: The triangulated polygon Pw. The left con-
vex chain is from LH(ichild(w)) and the right convex
chain is from LH(rchild(w)).

Step 5. Triangulate each P~ by doing the following for each Pw
in parallel.

Step 5.1. For each vl E Pw find the edge el = (vi,vi+x) in Pw
which is intersected by the line containing vl and
parallel to tw.

Comment: This can be done in O(log log n) time using parallel
merging. Note that this implies tha t the vertex vi
is visible from the lower of the two endpoints ofei.

Step 5.2. Augment Pw by adding an edge from vl to the lower
of the two endpoints ofei, for each vl in parallel (see
Figure 6).

Comment: After completing Step 5 we have triangulated ev-
erything but the portion of P between LH(V) and
s = (v0,V,+l). Note tha t each point on the lower
hull of V is visible from either v0 or Vn+l (possibly
from both).

Step 6. Let LH(V) = {vi~,vi2,. . . ,vlt}, ix < i2 < . . . < is. Let
vovi i be tangent to LH(V). Complete the triangula-
tion of P by adding the edges (v0, v i i) , . . . , (co, vii) and
(Vii, Vn+l) (Vit,Vn+l) (see Figure 7).

E n d of a l g o r i t h m O S M - T R I A N G U L A T E .

.

Vh.i

Figure 7: Triangulating the remaining portion of P.

T h e o r e m 3.10: The algorithm OSM- TRIANGULATE correctly
triangulates a one-sided monotone polygon P in O(log n) time
and o(.) space using o(,0 processors.

Proof: The correctness of OSM-TRIANGULATE follows by in-
duction and the comments made in Step 5. We have already
observed that Steps 1, 3, 4, 5, and 6 can all be done in O(log n)
time and O(n) space using O(n) processors. Thus~ the time com-
plexity of OSM-TRIANGULATE, T(n), is determined by the re-
currence relation T(n) = T(vrff) + O(log n), which has solution

T(n) = O(log n). Also, the number of processors used, P(n) ,
is determined by the recurrence P(n) = max{v/'ffP(d'~), en} for
some constant c, which has solution P(n) = O(n). •

Theorems 3.9 and 3.10 imply tha t we can triangulate a sim-
ple polygon in O(log n log log n) time and O(n log n) space (or,
alternatively, in O(IOg 2 n) time and O(n) space) using O(n) pro-
cursors on a CREW PRAM. We next show that the plane-sweep
tree technique can be used to efficiently solve the planar point
location problem.

3 .5 P l a n a r P o i n t L o c a t i o n

Given a planar subdivision S consisting of n edges, construct a
data structure which, once constructed, enables one processor to
determine for a query point p the face in S containing p.

T h e o r e m 3.11: Given a planar subdivision S consisting of n
edges, we can construct in parallel a data structure which, once
constructed, enables one processor to determine for any query
point p the face in S containing p in O(logn) time. The con-
struction takes O(log n log log n) time and O(n, log n) space using
O(n) processors on a C R E W PRAM.

P r o o f : The solution to this problem is to build the augmented
plane-sweep tree for S and associate with each edge sl the name
of the face above and below sl. A planar point location query can
then be solved in O(log n) serial time by performing a multilocate
like tha t used in the proof to Theorem 3.8. •

In the previous algorithms we assumed that segments did not
intersect. In the next subsection we show tha t we can use the
plane-sweep tree technique to detect if any two of n fine segments
intersect.

3 . 6 I n t e r s e c t i o n D e t e c t i o n

Given a set S of n line segments in the plane, determine if any
two segments in S intersect. We begin by stating the conditions
which we use to test for an intersection.

L e m r n a 3.12 [1]: The segments in S are non-intersecting iff we
have the following for the plane-sweep tree T of S:

(1) For every v E T all the segments in H(v) intersect the
left vertical boundary of l'Iv in the same order as they
intersect l ie 's right vertical boundary.

(2) For every v e T no segment in W(v) intersects any
segment in H(v). •

We use this lemma by testing for each condition at the ap-
propriate point during the construction or traversal of the plane-
sweep tree for S. We use these observations in the proof of the
following theorem. We note tha t one result in the theorem is
stated for the CRCW PRAM parallel model in which we allow
for concurrent writes so long as all processors at tempting to si-
multaneously write in the same memory cell are writing the same
value. This is the only point in this paper in which we use the
CRCW model; all other algorithms are for the (weaker) CREW
PRAM model.

T h e o r e m 3.13: Given n line segments in the plane we can de-
tect i f any two intersect in O(log n log log n) time and O(n log n)
space using O(n) processors on a C R C W P R A M (alternatively,
in O(log 2 n) time and O(n) space using O(n) processors on a
C R E W PRAM).

P r o o f : We begin with the proof of the O(log n log log n) time
result. We can test for Condition (1) during the BUILDUP pro-
cedure. After building a set H(v) in Step 2 of the BUILDUP

222

procedure we can test Condition (1) by constructing two other
sets LB(v) and RB(v), where LB(v) (RB(v)) is the list of the
intersection points of the segments in H(v) with the left (right)
vertical boundary of Hu, listed in the same order as they ap-
pear in H(v). If either of these lists is out of order, then there
is an intersection. We can test whether either is out of order
by comparing each element in LB(v) (and RB(v)) with its two
neighbors. If a processor detects an inconsistency then it writes
a 1 to a global " interact ion detected" flag. Only if this flag is 0
do we proceed to the next level in T and repeat the above test.
This will multiply the amount of work done by the BUILDUP
algorithm by a factor of O(I), so by Theorem 3.6 we can check
Condition (1) in O(log n log log n) time and O(n log n) space us-
ing O(n) processors.

If we complete the BUILDUP procedure and do not detect
an intersection, then we can test for Condition (2) as follows.
First, we execute the AUGMENT algorithm on T. Let V =
{Pl, P2, . - . , P~,} be the set of endpointe of segments in S, and let
s(p~) denote the segment in S with endpoint p~. If Pi E II~ for
some v ~ T, then clearly s(p~) ~ W(v). I fa segment s(p~) ~ W(v)
intersects a segment in H(v), then it must intersect the segment
in H(v) directly below p~ or the segment in H(v) directly above pl
(this is because we already know that no two segments of H(v)
intersect each other). We can then perform a multilocation of
each pi, and each time we find a segment in H(v) directly above
or below Pi we check if s(p~) intersects it. Thus, we can test
Condition (2) in O(log n) additional time.

To prove the O(n) space result, we use the alternative method
of Theorem 3.7 to perform the necessary multilocations. We test
Condition (1) each time a set H(v) is constructed, v ~ T. We
also test Condition (2) at this point, after performing the binary
search in H(v) for each point pi such that p~ E II~. •

We now move on to the critical-point merging technique and
how to use it in conjunction with parallel divide-and-conquer to
efllciently solve problems whose efficient sequential algorithms
use the plane-sweeping technique.

4 Div ide-and-Conquer w i th Crlt ical-Point
Merging

Often times when using the plane-sweeping paradigm to solve ge-
ometric problem sequentially, we scan a set of objects by sliding
a vertical line along the x-axis, storing the objects in some kind
of binary search tree as we go. At various points (critical points)
during the plane-sweeping we perform updates and queries on
this tree. Intuitively, the method described in this section is to
turn plane-sweeping on its side and use divide-and-conquer to
compute all the critical-point queries. We begin by dividing the
problem into two equally sized subproblems by splitting the set of
objects as they would be split into eubtrees in the binary search
tree. After solving each subproblem in parallel we take the set of
critical points for each subprohlem and merge them into one list.
The key to solving a problem in this manner is in defining labels
to be associated with each critical point such that the labels of
the merged list can be computed quickly in parallel, and, more
importantly, such tha t when we have completed the construction
we can use these labels to solve the problem at hand. Instead
of describing the technique in a generic fashion, as we did with
the plane-sweep tree, we describe it by presenting the solutions
to four specific problems: visibility from a point, 3-dimensional
maxima, multiple range-counting, and rectilinear segment inter-
section counting.

4 .1 V i s i b i l i t y f r o m a P o i n t

Given a set of line segments S -- {Sl,S2,... , s ,} which do not
intersect, except possibly at endpointe, and a point p, determine
the part of the plane which is visible from p. We can use divide-
and-conquer with critical-point merging to solve this problem
in O(log n log log n) time and O(n) space using O(n) processors.
WLOG, the point p is at negative infinity below all the segments.
For simplicity, we assume that the z-coordinates of the endpoints
are distinct.

A l g o r i t h m V I S I B I L I T Y :
Input: A set of non-intersecting line segments S = {sl, s2, • . . , an}.
Output: A set X = {P l ,P2 , . . . , p2 ,) consisting of the end-
points of the segments in S sorted by z-coordinates (z(pl) <
z(p~+l)). We also have a label VIS associated with each pl E X,
such that VIS(pl) is the segment in S visible on the interval
(z(p,),z(p~+l)), for i = 1,2 ,2n - I, and VIS(p2.) = +co;

by convention, VI"S(p~) = +co if no segment is visible on the
interval (z(p,), z(p,+l)).
Step I. Parti t ion S into subsets SI = { s x , . . . , a n / 2) and $2 =

{sn/2+l, . - . ,an), and recursively solve the problem for
SI and 52 in parallel.

Comment: After the parallel recursive call returns we will have
a list XI of the endpointe of segments in S1 sorted
by z-coordinates, and a similarly defined list 3(2
for S2. We also have labels VIS1 (VIS2) labels
correctly defined for each point in X1 (X2) when
visibility is restricted to segments in SI ($2).

Step 2. Use parallel merging [5,20] to merge the two sorted
lists X1 and Xl into a single list X, where compar-
isons are based on the x-coordinates of points. Let
X-~-- {Pl,P2 P2n).

Step 3. For each p~ E X if p~ "came from" X1, then define

VIS(pI) = min{VISl(pi),VIS2(c(p~))}, where c(pl) de-
notes the cousin ofp~ in X~. Ifp~ came from X2, then de-
fine VIS(p~) -- rrfin{VISl(C(p~)), VIS2(pi)), where c(p~)
is the cousin of p~ in X1. If c(p~) = ~b (i.e., pl has no
cousin), then we take VISI(~) = VIS2(~) = +co.

Comment: Taking the minimum of VISI(p~) and VIS2(c(p~))
(or VISl(c(pl)) and VIS2(p~)) is well defined, since
the segments being compared span the interval
(z(pl),z(p~+l)) and do not intersect. Having ob-
served this, note tha t Step 3 completes the con-
struction, since the list of labels VIS(pi) is a de-
scription of the visible part of the plane.

E n d of A l g o r i t h m V I S I B I L I T Y .

T h e o r e m 4.1: The algorithm VISIBILITY solves the visibility
from a point problem in O(log n log log n) time and O(n) space
using O(n) processors on a CREW PRAM.

Proof : The correctness proof of VISIBILITY is by induction
and is omitted. The main observation is tha t in the conquer
step (3) when computing VIS(pi) we need only compare the two
segments which span the strip (z(pi), z(pi+l)) x (-co , c0). This
is precisely what is happening in Step 3 when we compare the
old VIS label of a critical point with the VIS label of its cousin
in the other set.

Lemma 2.1 implies tha t the algorithm's time complexity,
T(n), is determined by the recurrence T(n) : T(n/2) +
O(log log n), whose solution is T(n) = O(log n log log n). The
space and number of processors used are clearly O(n). •

The next application we look at is 3-dimensional maxima.

223

4.2 3 - D i m e n s i o n a l M a x i m a

Let V = {Pl,P2,... ,P,} be a set of points in ~s. We say that
a point Pi 1-dominates another point pj if x(pl) > x(pj), S-
dominates pj if x(pi) > x(pj) and y(Pi) > Y(PJ), and 3-dominates
pj if x(pi) > x(pj), Y(Pl) > Y(Pj), and z(pi) > z(pj). A point
p~ E V is said to be a maximum if it is not 3-dominated by any
other point in V. The 3-dimensional maxima problem, then, is
to compute the set, M, of maxima in V. We show how to solve
the 3-dimensional maxima problem efficiently in parallel in the
following algorithm. The labels we use are motivated by the la-
bels used in the binary search tree used in the optimal sequential
algorithm for this problem [15]. For simplicity, we assume that
no two input points have the same x (resp., y, z) coordinate.

A l g o r i t h m 3-D M A X I M A :
Input: A list of points V = {Pl,Pz, . .- ,P ,} in R s.
Output: A list X = {ql, q2,. • • ,q ,} of the points in V sorted by x-
coordinate. We also have two labels ZO and Z T associated with
each ql 6 X, such that ZO(q~) is the maximum z-coordinate in
the set of points which 1-dominate q~, and ZT(qi) is the maximum
z-coordinate in the set of points which 2-dominate q~.

Step 0. (Preprocessing) Sort the points of V by y-coordinate.
(This preprocessing step is performed only once.)

Step 1. Divide V into two equally sized subsets V 1 and V2 such
that all the points in V1 have smaller y-coordinate than
points in Vz. Recursively solve the problem for V1 and
V2 in parallel.

Comment: After the parallel recursive call returns we will have
lists XI and X2 of the points in VI and V~, respec-
tively, sorted by x-coordinate. We also have labels
Z01 (ZO2) and ZT1 (ZT~) defined correctly for the
points in X1 (X2) (when dominance is restricted to
xl (x~)).

Step 2. Merge XI and X~ into a single list X, basing all compar-
isons on the x-coordinates of the points involved. Let
X = {q, ,q2, . . . ,q,} (X is the set of points in V listed
by increasing z-coordinate).

Step 3. For each qi 6 X if ql came from X1 then let
ZO(q~) = max{ZO,(q,),ZO2(c(q~))} and ZT(ql) =
max{ZT~(q,),ZO2(c(q,))}, where c(q,) is the cousin
of q~ in X~. If qi came from X2, then ZO(ql) =
max{ZOl(c(q~)),ZO2(q,)} and ZT(q~) = ZT~(q~),
where c(q~) is the cousin of ql in X1. (By convention,
Z0i(/?) --- ZTi(dp) = zl, where z~. is the maximum z-
coordinate in Xi, j = 1,2. Note tha t we can easily
compute zi, since it is the maximum of ZOi(q) and
z(q), where q is the first element in Xb)

Step 4. (Postprocessing) After we have computed the labels ZO
and Z T for all points q~, we know that ql is a maximum
iff z(q,) > ZT(q~).

E n d of A l g o r i t h m 3-D M A X I M A .

T h e o r e m 4.2: The algorithm 8-D MAXIMA solves the 8-
dimensional maxima problem in O(log n log log n) time and O(n)
space using O(n) processors on a CREW PRAM.

Proof : The proof of correctness is by induction, and is given in
detail in the technical report [3]. By the same argument as in
the proof for Theorem 4.1 the algorithm 3-D MAXIMA runs in
O(log n log log n) time and O(n) space using O(n) processors. •

It is worth noting tha t we can use the algorithm 3-D MAX-
IMA as the bot tom of a recursive procedure for solving the gen-
eral k-dimensional maxima problem. The resulting time and
space complexities are given in the following theorem. We state
the theorem for k > 3 (the 2-dimensional maxima problem can

easily be solved in O(log n) time and O(n) space using the AKS
sorting network [4] and parallel prefix [14]).

T h e o r e m 4.3: For k > 3 the k-dimenMonal maxima problem
can be solved in O((log n) k-2 log log n) time and O(n) space using
O(n) processors on a CREW PRAM.

Proof : The method is a straightforward parallization of the algo-
r i thm by Kung, Luccio, and Preparata [15], using 3-D MAXIMA
as the basis for the recursion. We omit the details. []

Next, we address the multiple range-counting problem.

4 .3 M u l t i p l e R a n g e - C o u n t i n g

Given a set V of i points in the plane and a set R of rn iso-
thetic rectangles (ranges) the multiple range-counting problem
is to compute the number of points interior to each rectan-
gle. We know from [101 that counting the number of points
interior to a rectangle can be reduced to dominance counting.
Tha t is, if d(p) is the number of points in V 2-dominated by
a point p, given a rectangle r -- (pl,P2,ps, p4) (where vertices
are listed in counter-clockwise order starting with the upper-
righthand corner), then the number of points in V interior to
r is d(p,) - d(p2) + d(ps) - d(p4). Therefore, it suffices to solve
the dominance counting problem. The next algorithm does this.

A l g o r i t h m D O M - C O U N T :
Input: A set V = {Pl ,P2, . . . ,pl} and a set U = {ql,q2,. . . ,q,n}
of points in the plane. For simplicity, we assume that the points
in V and U are all distinct.
Output: A list X -- {Vl,V2,... ,v,+,n} of the points defining this
problem (vl is either a pj or a qj) sorted by increasing lexico-
graphical order. We also have labels CO and CT defined for
each v~ 6 X, where CO(vi) is the number of points in V 1-
dominated by the point v~, and CT(v~) is the number of points
in V 2-dominated by vl.
Step 0. (Preprocessing) Combine the points in V and U one list

W, and sort the points in W by y-coordinate. Also, we
mark each point in W which came from V. Initially, the
CO and CT label for each point is 0.

Comment: For each v~ 6 W define the function X v as follows:
Xv(v~) = 1 if v~ 6 V; Xv(v~) = 0 otherwise.

Step 1. Divide W into two equally sized subsets W1 and W2 such
tha t all the points in W1 have smaller y-coordinate than
points in W2. Recursively solve the problem for W1 and
W= in parallel.

Comment: After the parallel recursive call returns we will have
lists X, and X2 of the points in WI and W2, respec-
tively, sorted by increasing lexicographical order.
We also have labels COt (C02) and CT1 (CTz)
defined correctly for the points in X 1 (X2) (w h e n
dominance is restricted to X, (X2)).

Step 2. Merge X1 and)(2 into a single list X, where all
comparisons are done lexicographically. Let X =
{vl, v2, . . . , ~.+,~}.

Step 3. For each vl 6 X if v~ came from X1, then de-
fine CO(v~) = COl(tJi) @ C02(c(vi)) -~ Xv(c(vi)) and -
CT(vi) ='CT,(vi) , where c(v,) is the cousin of v~ in X,.
If vl came from X2, then define CO(vi) = CO,(e(v,)) +
C02(v~) + Xv(c(v,)) and CT(vi) = CTl(c(v,)) +
CT~(v~) + Xv(e(vi)), where c(v~) is the cousin of v~ in
X,. (COj(~b) = CTj(~) = Xv(~b) = 0, j = 1,2.)

Comment: The dominance count of each vi is stored in the
label CT(v~).

End of A l g o r i t h m D O M - C O U N T .

224

Theorem 4.4: Given a set V of l points in the plane and a set Q
of m points in the plane, the algorithm DOM-COUNT computes
for each ql E Q the number of points in V 2.dominated by q~ in
O(log n log log n) time and O(n) space using O(n) processors on
a C R E W PRAM, where n = l-{- m.

Proof: The proof of correctness is by induction, and is given
in detail in the technical report [3]. By an argument similar to
the one used in the proof of Theorem 4.1 the algorithm DaM-
COUNT runs in O(log n log log n) time and O(n) space using
O(n) processors, where n = ! + m. •

Corol lary 4.5: Given a set V of 1 points in the plane and a
set R of m isathetie rectangles, we can solve the multiple range-
counting problem for V and R in O(log n log log n) time and O(n)
space using O(n) processors, where n = i + m. •

4.4 R e c t i l i n e a r S e g m e n t I n t e r s e c t i o n C o u n t i n g

Given a set S of n rectilinear line segments in the plane, deter-
mine for each segment the number of other segments in S which
intersect it.

Theo re m 4.6: Given a set S of n rectilinear line segments in
the plane, we can determine for each segment the number of other
segments in S which intersect it in O(lognloglogn) time and
O(n) space using O(n) processors on a C R E W PRAM.

Proof: The method is similar to that used for multiple range
counting. The details are given in the technical report [3]. •

5 Conc lus ion

In this paper we have given general techniques for solving a
number of geometric problems whose efficient sequential algo-
rithms use the plane-sweep paradigm. These techniques can
be viewed as efficient parallel analogues to the plane-sweeping
paradigm. We applied the plane-sweep tree technique to intersec-
tion detection, trapezoidal decomposition, polygon triangulation,
and planar point location. We applied divide-and-conquer with
critical-point merging to visibility from a point, 3-dimensional
maxima, multiple range-counting, and rectilinear segment inter-
section counting. We were able to achieve an O(log n log log n)
time bound for each problem, using O(n) processors.

A c k n o w l e d g m e n t

We would like to thank Greg Frederickson for his valuable com-
ments that considerably improved the presentation of Section 4.

R e f e r e n c e s

[1] A. Aggarwal, B. Chazelle, L. Guibas, C. 6'Ddnlaing, and
C. Yap, "Parallel Computational Geometry," Proc. ~Sth
IEEE Syrup. Found. of Camp. Sci., 1985, 468-477.

[2] M.J. Atallah and M.T. Goodrich, "Efficient Parallel Solu-
tions to Geometric Problems," to appear in ./our. of Paral-
lel and Dist. Camp. A preliminary version appeared in Proc.
1985 Int. Conf. on Parallel/>roe., 411-417.

[3] M.J. Atafiah and M.T. Goodrich, ~Efficient Plane Sweep-
ing in Parallel, ~ Purdue University Computer Science Tech.
Report CSD-TR-563, March 1986.

[4] M. Ajtai, J. Koml6s, and E. Szemer~di, "Sorting in clog n
parallel steps," Combinatorica, Vol. 3, 1983, 1-19.

[5] A. Borodin and J.E. Hopcroft, "Routing, Merging, and Sort-
ing on Parallel Models of Computation," Jour. of Camp. and
Sgs. Sci., Vol. 30, No. 1, Feb. 1985, 130-145.

[6] B. Chazelle and J. Incerpi, "Triangulating a Polygon
by Divide-and-Conquer," Proe. of ~lst Allerton Conf. on
Comm. Control, and Camp., 1983, 447-458.

[7] B. Chazelle, "Intersecting is Easier Than Sorting," Proc.
16th A C M Syrup. Theory of Camp., 1984, 125-134.

[8] B. Chazelle and L.J. Guibas, "Fractional Cascading: I. A
Data Structuring Technique," manuscript.

[9] A. Chow, "Parallel Algorithms for Geometric Problems,"
Ph.D. dissertation, Camp. Sci. Dept., Univ. of Illinois at
Urbana-Champaign, 1980.

[10] H. Edelsbrunner and M.H. Overmars, "On the Equivalence
of Some Rectangle Problems," Info. Proe. Letters, Vol. 14,
No. 3, May 1982, 124-127.

[11] H. El Gindy and D. Avis, "A Linear Algorithm for Comput-
ing the Visibility Polygon from a Point," J. of Algorithms,
Vol. 2, 1981, 186-197.

[121 M.T. Goodrich, "An Optimal Parallel Algorithm For the
All Nearest-Neighbor Problem for a Convex Polygon," Pur-
due University Computer Science Tech. Report CSD-TR-
533, August 1985.

[13] D. Kirkpatrick, ~Optimal Search in Planar Subdivision,"
SIAM Jour. on Camp., Vol. 12, No. 1, Feb. 1983, 28-35.

[14] C. Kruskal, L. Rudolph, and M. Snir, "The Power of Parallel
Prefix," Proc. 1985 Int. Conf. on Parallel Proe., 180-185.

[15] H.T. Kung, F. Luccio, F.P. Preparata, "On Finding the
M~xima of a Set of Vectors," Jaur. of A CM, Vol. 22, No. 4,
October 1975, 469-476.

I16] D.T. Lee and F.P. Preparata, ~Computational Geometry--
A Survey," IEEE Trans. on Computers, Vol. C-33, No. 12,
December 1984, 872-1101.

[17] G. Lueker and D. Willard, "A Data Structure for Dynamic
Range Queries," Info. Proc. Letters, Vol. 15, No. 5, Decem-
ber 1982, 209--213.

[18] M.H. Overmars and J. Van Leeuwen, "Maintenance of Con-
figurations in the Plane, n Jour. of Camp. and Sys. gel.,
Vol. 23, 1981, 166-204.

[19] M. Shamos and D. Hoey, "Geometric Intersection Prob-
lems," Proc. 17th IEEE Syrup. Found. of Camp. Sei., 1976,
208-215.

[20] L. Valiant, "Parallehsm in Comparison Problems, ~ SIAM
Jaur. on Camp., Vol. 4, No. 3, Sept. 1975, 348-355.

225

