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A b s t r a c t  
We present techniques which result in improved 

parallel algorithms for a number of problems whose 
efficient sequential algorithms use the plane-sweeping 
paradigm. The problems for which we give improved 
algorithms include intersection detection, trapezoidal 
decomposition, triangulation, and planar point loca- 
tion. Our technique can be used to improve on the 
previous time bound while keeping the space and pro- 
cessor bounds the same, or improve on the previous 
space bound while keeping the time and processor 
bounds the same. We also give efficient parallel algo- 
rithms for visibility from a point, 3-dimensional max- 
ima, multiple range-counting, and rectilinear segment 
intersection counting. We never use the AKS sorting 
network in any of our algorithms. 

Introduction 

The plane-sweeping technique has proven effective for developing 
efficient sequential algorithms for a variety of geometric problems. 
This technique, in 2-dimensions, involves sweeping a line through 
a set of geometric objects (such as line segments), updating global 
data structures at each critical point (such as an endpoint). It 
has been used to find efficient sequential algorithms for a host of 
computational geometry problems (see [16]). It also seems to be 
a very sequential technique. 

Most of the sequential algorithms which use plane-sweeping 
are already optimal to within a multiplicative constant. There 
is already a small but growing body of work on finding effi- 
cient parallel algorithms for computational geometry problems 
[1,2,3,9,12], addressing the question of what kinds of speed-ups 
can be achieved through parallelism. In this paper we present 
efficient parallel algorithms for a number of problems whose effi- 
cient sequential algorithms use the plane-sweeping paradigm. We 
list the problems addressed in this paper below, and summarize 
our results in Table 1. 

1. T r a p e z o i d a l  D e c o m p o s i t i o n  [6]t~ Given a simple n- 
vertex polygon P,  determine the trapezoidal edge(s) for 
each each vertex. A trapezoidal edge for a vertex v~ is an 
edge s of P which is directly above or below v~ and such 
that  the vertical line segment from vi to s is interior to P .  
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Problem Previous Bounds Our Bounds 

Trapezoidal (log 2 n, n log n) [1] (log n log log n, n log n) 
Decomposition or (log 2 n, n) 

(log n log log n, n log n) 
Triangulation (log 2 n, n log n) [1] or (log 2 n, n) 

Planar Point  (log 2 n, n log n) [1] (log n log log n, n log n) 
Location Q(n) = O(log 2 n) Q(n) = O(log n) 

intersection (logan, n l o g n )  [1] (log2n, n) ' 
Detection 

Int. Detection 
not considered (log n log log n, n log n) 

(CRCW model) 

Visibility not considered (log n log log n, n) 

3-D Maxima " (log n log log n, n) 

Multiple Range- , (log n log log n, n) 
Counting 

Rect. Segment . (log n log log n, n / 
Int. Counting 

Table 1: S u m m a r y  of  Resu l t s .  The pair (t(n), s(n)) 
denotes that the parallel algorithm runs in O(t(n)) time 
and O(s(n)) space, using O(n) processors. 

2. Triangulation [6It: Given a simple n-vertex polygon P, 
augment P with diagonal edges so that each interior face 
is a triangle. 

3. P l a n a r  P o i n t  L o c a t i o n  [13]t: Given a planar subdivision 
consisting of n edges, construct in parallel a data structure 
which, once built, enables one processor to quickly deter- 
mine for any query point p the face containing p. We let 
Q(n) denote the time for performing such a query. 

4. I n t e r s e c t i o n  D e t e c t i o n  [19]t: Given n line segments in 
the plane, determine if any two intersect. 

5. V i s i b i l i t y  f r o m  a P o i n t  [11]t: Given n line segments such 
that  no two intersect (except possibly at endpoints) and a 
point p, determine that  part of the plane visible from p. 

6. 3 - D i m e n s i o n a l  M a x i m a  [15]t: Given a set S of n points 
in 3-dimensional space, determine which points are max- 
ima. A mazimum in S is any point p such that  no other 
point of S has x, y, and z coordinates that  simultaneously 
exceed the corresponding coordinates of p. 

7. M u l t i p l e  R a n g e - C o u n t i n g  [17]t: Given i points in the  
plane and m isothetic rectangles (ranges) determine the  
number of points interior to each rectangle. The probiem 
size is n -- l -b m .  

8. R e c t i l i n e a r  S e g m e n t  I n t e r s e c t i o n  C o u n t i n g  [16]: 
Given n horizontal and vertical line segments in the plane, 
determine for each segment the number of other segments 
which intersect it. 
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As in [1,2] our framework is one in which we have O(n) pro- 
cessors with which we wish to achieve the best time and space 
performance possible. Unless otherwise stated, our algorithms 
will be for the CREW PRAM parallel model (as in [1,2]). Recall 
that  this is the synchronous parallel model in which processors 
share a common memory where concurrent reads are allowed, 
but not concurrent writes. 

In [1] Aggarwal et al. show that  several problems whose effi- 
cient sequential algorithms use the plane-sweeping paradigm can 
be solved in parallel in O(log 2 n) time and O(n log n) space using 
O(n) processors in the CREW PRAM model. The problems ad- 
dressed in [1] include intersection detection, trapezoidal decom- 
position, triangulation, and planar point location, among others. 
We reduce the time bound from O(log ~ n) to O(log n log log n) for 
each of these problems (keeping the space bound at  O(n log n)) 
by using a special data  structure, which we call the plane-sweep 
tree, which is similar to a data structure used in [1], but  differs 
from it in some important  ways. We build this data structure 
by using parallel merging and a technique similar to the sequen- 
tial "fractional cascading" technique of Chazeile and Guibas [8]. 
If space is important,  then our technique can be modified to 
achieve O(n) space and O(log 2 n) time. We manage to achieve 
O(n) space performance, even though this data structure takes 
O(n log n) space, by never completely building it. Instead, we use 
it as we are constructing parts of it and destroying other parts 
of it. Also, the previous algorithms use the AKS sorting network 
[4], which introduces a large constant into the time complexity. 
We never use the AKS network. 

We also present a technique which we use to efficiently solve 
other problems as well: namely, visibility from a point, 3- 
dimensional maxima, multiple range-counting, and rectilinear 
segment intersection counting. This technique is based on the 

divide-and-conquer paradigm and for each of these problems it 
achieves O(log n log log n) time and O(n) space bounds using 
O(n) processors. Instead of dividing and merging in the usual 
way, however, we divide based on how sequential plane-sweeping 
stores objects during the sweep, and we "marry" subproblem so- 
lutions by merging lists of critical points and computing labels 
associated with each critical point. The key to this technique is 
in selecting critical-point labels which can be computed quickly 
in parallel and which can be used to solve the problem at hand 
once we have completed the divide-and-conquer procedure. 

In the next section we give some preliminary definitions and 
observations. In Section 3 we present the plane-sweep tree tech- 
nique, and in Section 4 we present our second technique. 

2 Pre l iminar ie s  

In this section we introduce some notation and review some 
known results which we will use later in the paper. For any 
point p in the plane we use z(p) and y(p) to denote, respectively, 
the z and y coordinates of p. If p E ~s, then we use z(p) to de- 
note the z-coordinate of p. Given a set S of non-intersecting line 
segments in the plane, we define a partial order on the elements 
of S such that  two segments in S are comparable iff there is a 
vertical line which intersects both segments. The segment with 
the lower intersection is said to be the smaller of the two. Note 
tha t  if there is a vertical line which intersects all the segments in 
S, then this partial order is actually total. 

Given a sorted (nondecreasing) list B = (bl ,b~,. . .  ,bin) and 
an element a taken from the same total order as the by's, we 
define the cousin of a in B to be the greatest element in B which 
is less than or equal to a. If there is no such bj in B, then we say 
that  the cousin of a is ~b (~ is a special symbol such tha t  ~b < b for 

every element b in the total order). Clearly, we can use binary 
search to locate the cousin in B of any such a. In the next lemma 
we show that  if we have two sorted lists A and B whose elements 
are taken from the same total order, we can find the cousin in B 
of every element in A efficiently in parallel. 

L e m m a  2.1: Given two sorted arrays A and B whose elements 
are taken from the same total order, the cousin in B of each 
element in A can be determined in O(log log n) time using O(n) 
processors on a CREW PRAM, where n = IAI + IBI. 

Proof :  The parallel merging algorithm of [20] (which is imple- 
mentable in the CREW PRAM model [5]) first finds cousins and 
then does the merge. Thus, the lemma follows directly from the 
work of [5] and [20]. • 

Parallel merging is a powerful tool in designing efficient par- 
allel algorithms, and we make repeated use of it in this paper. 
Another powerful parallel technique is the parallel prefiz tech- 
nique [14]. Stated in its simplest form, given an array of integers 
A = (al, a2, . . . ,  an}, it allows us to compute all the partial sums 
c~ = ~ = 1  aj  in O(logn) time using O(n/log n) processors (see 
[14] for details). Parallel prefix is used as a building block in 
many of our algorithms. 

3 The Plane-Sweep Tree Technique 

In this section we present the plane-sweep tree technique. We 
present it for the case when the objects under consideration are 
line segments, but  essentially the same technique applies for other 
objects as well. We describe the technique in a very general 
setting, and in the subsequent subsections we show how it can 
be applied to solve specific problems. 

3 .1  D e f i n i t i o n s  a n d  O b s e r v a t i o n s  

Let S --- {sl, s2 , . . .  ,sn} be a set of non-intersecting line segments 
in the plane. To simplify the exposition we assume that  no two 
endpoihts have the same z-coordinate. 

The idea of using a tree to parallelize plane-sweeping is due 
to [1] and is based on a data structure of [7I. We review some 
of the definitions and observations from [1] and [7] as it relates 
to our work. Let T be the complete binary tree with its leaves 
corresponding to the 2n + 1 intervals formed by projecting the 
segments' endpoints onto the z-axis. Associated with each node 
v E T is an interval [av, bu] on the x-axis which is the union of 
the intervals associated with the descendants of v. Let II~ denote 
the vertical strip [au, bu] x ( -co ,  co). A segment s, covers a node 
v E T if it spans II U but  not IIz, where z is the parent of v. 

L e m m a  3.1 [1]: No segment covers more than g nodes of any 
level of T; hence, every segment covers at most O(log n) nodes 
o f T . |  

As in [1] and [7], we define H(v) and W(v) for each node 
v E T as follows: 

H(v )  = {sd I si covers v} ,  

W(v) = {st [ si has at  least one endpoint in l-Iv}. 

However, here we also define two other sets. Let left(ii~) 
(right(ii,)) denote the left (right) vertical boundary of II~. 

L(v) = {st [ s t e W ( v )  a n d s t N l e f t ( I I v ) ¢ O } ,  

RCv) = {st I st e W(v) and stnright(Hv) • O}. 

We study the relationships between H, L, and R in the fol- 
lowing lemma. The observations made in this iemma are needed 
in the construction presented in the next subsection. 
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Figure 1: A configuration of nodes in T. 

L e n n n a  3.2: Let v be a node in T with children vt and e2, s ib l ing  
w, and parent z (Figure 1 illustrates the case when to is to the 
left of v). Let A + B denote the union o/ two disjoint sets A and 
B, and let A - B denote set difference where B C A. Then we 
have the following: 

(1) L(v) = n ( v l )  + L(Vl); 

(2) n(v) = H(v2) + R(v2); 
(3) n(v)  = R(w) - (R(w) N L(v)) if ,~ is the right child o f ,  

(as is the case in Figure 1); H(v) = L(w)- (L(w)NR(v) ) ,  
if v is the left child of z. 

P roof :  The proof is given in the technical report [3]. • 
Lemma 3.2 essentially states tha t  the sets L, R, and H as- 

sociated with a node in the tree T can be defined in terms of 
sets associated with nodes one level below it in T. An important  
property of the sets L(~), R(v), and H(~) is tha t  for any v E T 
the segments in L(v) U H(v)  (resp., R(v) U H(v)) can be linearly 
ordered. We use this fact, and Lemma 3.2, in the next subsection 
to show how to efficiently construct H(v) for every node v in T. 

3 .2  C o n s t r u c t i n g  t h e  P l a n e - S w e e p  T r e e  

In this subsection we show how to efficiently construct and tra- 
verse the plane-sweep tree T. The next lamina states tha t  the 
set operations + and - of Lamina 3.2 can both be performed in 
O(log log n) time. 

Lemxna 3.3: Let A and B be two sets represented as sorted ar- 
rags. I / A  N B = 0, then A + B can be competed in O(log log n) 
time using O(n) processors. I f  B C_ A, then A - B can be com- 
puted in O(log log n) time using O(n) processors. 

Proof :  If A n B = ~, then the set A + B can be constructed by 
simply merging A and B into one sorted list [5,20]. If B C A, 
we construct A - B by first determining the cousin in B of each 
a~ G A (which can be done in O(log log n) time by Lemma 2.1). 
Then, by assigning a processor to each element in A, we compress 
A by moving each element in A and not in B over by the rank 
of its cousin. Since this compressing operation can be done in 
constant time, the set A - B can be constructed in O(log log n) 
total time. • 

From Lemma 3.2 we know tha t  the sets L, R, and H for 
any level l of T can be defined in terms of sets on the level be- 
low I. We have yet to see how these sets can be constructed 
efficiently in parallel. From Lemma 3.3 we know tha t  the con- 
structions implicit in Equations (1) and (2) of Lemma 3.2 can 
be performed in O(log log n) time. Equation (3), however, also 
uses set intersection, so we cannot perform the construction im- 
plicit in Equation (3) by using Lemma 3.3. To get around this 
problem we exploit a regularity property of the segments in the 
intersection (R(w) ~ L(v)) of Equation (3) in order to compute 
all these intersections as a preproceesing step, storing them away 
for future use. The details of this and other preproce~ing steps 
follow. 

P r e p r o c e s s i n g  s teps :  
Input: A set B = {st,  s~ . . . .  , sn)  of non-intersecting segments. 
Output: The skeleton of T, the plane-sweep tree for S, with a 
set I(v) constructed for each node v E T, where I(v) is the set 
of all segments with one endpoint in Hlch~l~(~ ) and the other in 
Hrchild(~). (We do not yet compute L(v), R(v), or H(v).) 
Step 1. Sort the set of endpoints of S l , . . . , s n  by their z- 

coordinates, and build the skeleton of the tree T on top 
the the 2n + 1 intervals determined by these endpoints. 

Comment: Since we only perform this step once, we can use 
parallel merging [5,20] to sort in O(log n log log n) 
t ime using O(n)  processors, instead of using the 
AKS sorting network [4] which would introduce 
a large multiplicative constant. (Our algorithms 
take O(log n log log n) anyway, so there is no point 
in using the AKS network to perform this step in 
O(log n) time.) 

Step 2. Let J be the set of all (v, s~) pairs such that  t~ is the 
lowest node in T such tha t  s~ C H,. Clearly, J can be 
constructed in O(log n) time using O(n) processors. 

Step 3. Sort J lexicographically and use a straight-forward par- 
allel prefix [14] type of computation, to compute the set 
l (v)  = {s l [  (v, s~) E J }  for each t~ E T. 

Comment: Observe tha t  ]~vET" II(v)l = n. 
Step 4. Sort each I(t~) by the y-coordinates of the intersections 

of the si 's  in l (v)  with the vertical boundary separating 
the vertical strips IIichil~(~ ) and Hrchild(v). 

E n d  of  P r e p r o c e s s i n g  S teps .  

O b s e r v a t i o n  3.4: The preprocessing steps take O(log n log log n) 
time and O(n) space using O(n) processors on a C R E W  PRAM. 
For each v E T the set I(v) consists o /a l l  segments with one 
endpoint in Hl~hlZd(u ) and the other in Hrehdd(v). 

P r o o f :  Immediate. • 
Note tha t  the set R(w)nL(v) ,  as well as L(w)nR(v) ,  of Equa- 

tion (3) in Lemma 3.2 is exactly the set of all segments with one 
endpoint in Hw and the other in H,. Thus, by Observation 3.4, 
we can rewrite Equation (3) of Lemma 3.2 as H(v) = R(w) - l(z) 
if v is a right child, and H(v) = L(w) - I(z) otherwise. Having 
observed this, we are now ready to describe how to construct the 
plane-sweep tree T. 

T h e  B u i l d - U p  A l g o r i t h m  ( B U I L D U P ) :  
Input: The skeleton of the plane-sweep tree T built  in the pre- 
processing steps (including the sets l(v) for each t~ E T). 
Output: The plane-sweep tree T with the set H(v) constructed 
for every node v E T. The contents of each H(v) are sorted by 
the "above" relationship defined in Section 2. 
Step 0. F o r / =  lowest level u n t i l  I : 0 r e p e a t  Steps 1-3 below, 

in parallel for each v E T at level I. 
Step 1. Use equations (1) and (2) of Lemma 3.2 and Lamina 3.3 

to build the sets L(v) and R(v) from the sets for t f s  
children. 

Step 2. Use the modified equation (3) of Lemma 3.2 ( that  is, 
H(v) = R(w) - I(z) if v is a right child, and H(v) = 
L(w) - I(z), otherwise) and Lemma 3.3 to build H(t~) 
from l (z)  (which was precomputed) and the appropriate 
R(w) or L(w) constructed in Step 1. 

Step 3. Discard the sets L and R for the nodes on level I + 1 ,. 
(the level below 1), as they are no longer needed. 

E n d  of  A l g o r i t h m  B U I L D U P .  

T h e o r e m  3.5: The BUILDUP algorithm correctly builds the 
set H(v) f o r  eeery node v in T in O(lognloglogn) time and 
O(n log n) space t~ing O(n) processors on a C R E W  PRAM. 
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Proof :  The correctness of BUILDUP follows from Lemma 3.2, 
the fact that the segments in L(v) (reap., R(v) or H(v)) are lin- 
early ordered, and the fact that the segments in L(v) U H(v) 
(reap., R(v) U H(u)) are totally ordered. Steps 1 and 2 are per- 
formed by using Lemma 3.3 and therefore take O(log log n) time. 
Also, Step 3 clearly takes O(1) time. For any node v the number 
of processors necessary to perform Steps 1-3 for v is proportional 
to the number of descendants ofv. Since Steps 1-3 are performed 
for nodes which are all on the same level of T in parallel, we use 
O(n) processors. The fact that we use at most O(n log n) space 
follows from Lernma 3,1. Thus, the BUILDUP algorithm runs in 
O(log n log log n) time and O(n log n) space using O(n) proces- 
sors. • 

We are now ready to show how to traverse the plane-sweep 
tree. In all the problems we solve using this technique, an es- 
sential computation done while traversing the plane-sweep tree 
is that we want to locate for each input point p the segment in 
H(v) which is directly above (or below) p, for all v E T such 
that p E Hr. We call this set of locations the multiloeation of p 
in T. The specific multilocations we will perform will vary from 
problem to problem, and will become apparent in the subsections 
on applications. We augment T with sets and pointers in a man- 
ner similar to the sequential "fractional cascading" technique of 
Chazelle and Guibas [8] so that the multilocation of any query 
point p can be performed in O(log n) serial time. To perform the 
multilocation of a point p we first find the leaf v E T such that  
z(p) E lay, by]. Then, for every node z on the path from v to the 
root, we search in H(z) to find the segments in H(z) which are 
directly above or below p (note that this leaf-to-root path con- 
sists of all nodes z E T such that p E Hv). The main idea of the 
augmenting technique is that we want the search done at a node 
v to allow us to perform the search at parent(v} in constant time 
(rather than in O(log n) time). As in [8] we make the following 
definition: given a sorted sequence A the k-sample of A, denoted 
SAMPk(A), is a sequence consisting of every k-th element of A. 

The  A l g o r i t h m  A U G M E N T :  
Input: A set S of non-intersecting line segments in the plane, and 
the plane-sweep tree T built for S, with the sets H(v) constructed 
for every node v E T (as produced by the BUILDUP algorithm). 
Output: An augmented plane-sweep tree T t, which allows a mul- 
tilocate of any query point p to be done in O(logn) serial time. 
Method: The idea is to construct an augmented list A(v) for every 
node v E T such that H(v) C_ A(v), and associate pointers with 
the elements of A(v) so that, given the position of an element in 
A(v), we can locate that element in both H(v) and A(parent(v)) 
in O(1) additional time. 
Step i. Let A(r) = H(r), where r is the root of the plane-sweep 

tree T. 
Step 2. Fo r  I = 1 (the level just below the root) un t i l  i = lowest 

level r e p e a t  Steps 3-5 below in parallel for each vertex 
v E T on level i. 

Step 3. Merge H(v) and SAMP4(A(z)) into one sorted list and 
store this list as A(v), where z =parent(v). 

Step 4. Use Lemma 2.1 to determine for each 0, E A(v) its 
cousin in A(z). For each sl E A(v) let up(o,) be a 
pointer to the cousin of 0, in A(z). 

Step 5. Use Lemma 2.1 to determine for each oi E A(v) its 
cousin in H(v). For each o, E A(v) let over(s,) be a 
pointer to the cousin of oi in H(v). 

En d of  A U G M E N T .  

T h e o r e m  3.6: AUGMENT runs in O(log n log log n) time and 
O(n log n) space using O(n) processors on a CREW PRAM. The 
augmented tree T I it  produces allows us to multiloeate any query 
point p in O(log n) serial time. 

Proof :  We first prove that the space complexity of T ~ is the 
same as T, namely, O(n log n). We prove this by examining the 
extent that  any set H(v) contributes to the space of T I. For any 
v E T, on level l, AUGMENT copies IH(v)l/2 elements to nodes 
on level i + 1, IH(v)l/4 to level l + 2, and so on. Thus, any set 
H(v) contributes at most IH(v)l extra space to T'. Therefore, 
the space required by T' is at most 2 times the space used by 
T. Hence, the space complexity of AUGMENT is O(n log n). 
That the number of processors used is O(n) follows by a similar 
argument. In order to do the parallel merges we need to know 
ahead of time how many elements will be involved, for all v E T. 
This is not a problem, however, because we can calculate the 
number of processors needed to compute A(v) for each v E T 
as a preprocessing step. The time complexity of AUGMENT 
is clearly O(lognlog log n), since Steps 3-5 are all done using 
parallel merging or Lemma 2.1. 

A multilocate of a point p proceeds as follows (WLOG, we 
describe the versiofi which finds the segments directly below 
p in the appropriate H(v)'s, the version for finding segments 
above p being similar). Locate the leaf v in T corresponding to 
the interval [av, bv] such that  z(p) E [av, bv]. We begin the se- 
quence of searches by using binary search to locate the segment 
in A(v) which is directly below p; this is the cousin o fp  in A(v). 
Let cv(p) denote this segment. We can then follow the pointer 
over(or(p)) to find the segment in H(v) which is directly below p. 
Now, by following the pointer up(cv(p)) to the list A(z), where 
z = parent(v), we can use a sequential search from up(c~(p)) to 
locate the segment cz(p) in A(z) which is directly below p in O(1) 
time. This is because cz(p) can be no more than 4 storage lo- 
cations away from up(cv(p)) in the array A(z). From this point 
on every search will take O(1) time to complete. Since there are 
O(log n) nodes which must be searched, the sequence of searches 

can be performed in O(log n) total time. • 
We show in the following subsections how to apply BUILDUP 

and AUGMENT to solve specific geometric problems. Before 
doing so, however, we describe how to perform a collection of 
rn multilocations using only O(n) space, at the expense of more 
time. Let V = {pl ,P2, . . . ,pm} be a set of points we wish to 
multilocate in T, where m = O(n). The method is similar to the 
BUILDUP procedure, but differs from it in two respects. First, 
after constructing the set H(v) for all v on a level l (in Step 2), 
we perform a binary search in H(v) for all points pl such that 
pl E Hv to find the segments in H(v) directly above and below 
p, (this is one of the searches needed for the multilocation of p,). 
Next, after we have completed the searches of nodes on level l 
for all points Pi E V, we can discard the sets L, R, and H for all 
nodes on level i + 1 (this of course means that we do not output 
any H(v)'s as BUILDUP does). Since we never construct sets for 
more than 2 levels in the tree at a time, we never use more than 
O(n) space. Also, recall that the space used by all the l(v) 's  is 
O(n). The time taken for this is clearly O(log n) for each level of 
T, or O(log 2 n) overall. We summarize the above discussion in 
the following theorem. 

T h e o r e m  3.7: Given a set S o f n  non-intersecting segments and 
a set V of O(n) query points, we can perform the multilocation of 
all the points in V in O(log n log log n) time and O(n log n) space 
(or, alternatively, in O(log ~ n) time and O(n) space) using O(n) 
processors on a CREW PRAM. • 

We are now ready to show how the plane-sweep tree tech- 
nique is used to solve a number of geometric problems. The first 
application we present is for trapezoidal decomposition. 
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3.3  T r a p e z o i d a l  D e c o m p o s i t i o n  

Let P = {vl, v~,. . .  ,vn} be a simple polygon, where the vi's 
denote the vertices of P and are listed so tha t  the interior of P 
is to the left of the walk VlV~...vn. For any vertex ~i of P a 
trapezoidal edge for v~ is an edge of P which is directly above 
or below ol and such tha t  the vertical line segment from vi to 
this edge is interior to P. Note tha t  a vertex can have 0, 1 or 2 
trapezoidal edges. The trapezoidal decomposition problem [6] is 
to find the trapezoidal edge(s) for each vertex of P (see Figure 2). 

Figure 2: A trapezoidal decomposition of a simple polygon. 

T h e o r e m  3.8: A trapezoidal decomposition of P can be con- 
structed in O(log nloglog n) time and O(nlog n) space {or, al- 
ternatively, in O(log 2 n) time and O(n) space) using O(n) pro. 
cessors on a CREW PRAM. 

Proof :  We first prove the O(lognloglogn) time result. Let 
S = {sl, s2 , . . .  ,an} be the set of edges of P,  Le., si = (vi, vi+l), 

for i = 1 , 2 , . . . , n  - 1, and sn = (vn, vl). We find the trape- 
zoidal edge below each vertex as follows. First, use algorithms 
BUILDUP and AUGMENT to construct an augmented plane- 
sweep tree T I for S. As in [1], we solve the problem by performing 
a muttilocation of each v~ ~ P. In our case we use Theorem 3.6 
to perform all O(n) multilocates in O(logn) time using O(n) 
processors. During the multilocation, for each vertex vi, we keep 
track of the segment below vl and with minimum vertical distance 
from vl (call this segment trap(vl)). When we complete all the 
multilocations, for each vi, trap(v~) will store the segment which 
is directly below v~ in the totally ordered set of segments tha t  
are cut by the vertical line through v~ (i.e., the union of all H(v) 
such that  vi ~ IIv). By a similar procedure we can find for each 
vi the segment in S which is directly above v~. We can then test 
in constant time if these segments are trapezoidal edges or not 
by checking if the line segment from o~ to the segment trap(v~) 
is interior to P or not. 

Since the necessary multilocations can alternatively be per- 
formed in O(log ~ n) time and O(n) space using O(n) processors 
(by Theorem 3.7), we can construct a trapezoidal decomposition 
of P in these same bounds. • 

In the next subsection we show how to use trapezoidal de- 
composition in solving the triangulation problem. 

3 .4  T r i a n g u l a t i o n  

Let P = {vl, v2 , . . . , vn}  be a simple polygon, where the v~'s 
denote the vertices of P and are listed so tha t  the interior of P 
is to the left of the walk vxv2.. ,  vn. We wish to augment P with 
diagonal edges so tha t  each interior face of the resulting planar 
subdivision is a triangle. Our method consists of two phases. 
The first is to use trapezoidal decomposition to decompose P 
into one-sided monotone polygons PI,P2, . . .  ,Pk. We say tha t  

a polygon P is one-tided if there is a distinguished edge on P 
such that  the vertices of P are all above (or all below) tha t  edge 
(except for the endpointe of the edge). In the second phase we 
triangulate each Pi in O(log n) time and O(n) space using O(n) 
processors. The algorithm DECOMP which follows is the first 
phase in our triangulation procedure. 

A l g o r i t h m  DECOlVIP:  
Input: A simple polygon P = {vl, ~ , . . . ,  v,~}. 
Output: A decomposition of P into one-sided monotone polygons. 
Step 1. Construct  a trapezoidal decomposition for P. 
Step 2. For every sl construct Vi, the set of vertices of P for 

which sl is a trapezoidal edge. This can be done by 
sorting lexicographically the set of (s~,vj) pairs such 
tha t  s~ is a trapezoidal edge for vj, and then using a 
parallel prefix [14] computation to construct the set V~ 
for each si. 

Step 3. Sort the vertices in every Vi by z-coordinate, in parallel. 
S tep4.  For each edge s i  = (vlo,Vm+l), suppose V~ = 

{vll ,vi2, . . . ,vl .~}.  Augment P by adding edges 
(vii , vii+l ) for j = 0,1, 2 , . . . ,  n~, if they are not already 
in P. Let Pi be the polygon consisting of s~ and of the 
edges (r~i,vii+l), for j = 0 , 1 , . . . ,  ni (see Figure 3). 

E n d  of  a l g o r i t h m  D~.COIVIP. 

Uis 

t~i 7 

Figure 3: The polygon P~ for s~ = (V~o,V~,) and Vi = 
{vh,v~2,. . . ,vi6}. The edges in P/ but  not in P are 
shown in boldface. Note tha t  the sequence of vertices 
v i i , . . .  ,v~6 is monotone in the z-direction. 

T h e o r e m  3.9: The algorithm DECOMP correctly decomposes 
a simple polygon P into one-sided monotone polygons in 
O(log n log log n) time and O(n log n) space (or, alternatively, 
in O(log 2 n) time and O(n) space) using OCn) processors on a 
CREW PRAM. 

Proof :  First  note tha t  the Pi 's  form a decomposition, because an 
edge added to construct some Pi may coincide with an edge added 
to construct some Pj, but  it cannot cut across any other edge. It  
is easy to show that  the vertices of V~ are all on the same side of 
si; tha t  is, t ha t  each polygon Pi is one-sided (we omit the proof). 
Finally, each Pi is monotone because we sorted the points in Vi 
by x-coordinate in Step 3. The complexity bounds for DECOMP 
follow from observations already made in this paper. B 

After decomposing P into polygons PI,P2, . . .  ,Pk, we now 
triangulate each P / i n  parallel. The algorithm which follows will 
triangulate a one-sided monotone polygon in O(log n) time and 
O(n) space using O(n) processors. 
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A l g o r i t h m  O S M - T R I A N G U L A T E .  

Input: A one-sided monotone polygon P. Let s denote the dis- 
tinguished edge. WLOG, P is monotone in the z-direction. 
Output: A triangulation of P. 
Method: Let V = {v1,~2,.. .  ,vn} denote the set of vertices of P 
which are not endpoints of s, and s -- (v0,v~+l). WLOG, all 
the vertices of V are above s. One of the ideas in our algorithm 
is the use of the V~ parallel divide-and-conquer technique [1,2]. 
We divide the vertices of V into V'~ subsets of size vfK each, find 
the lower convex hull of each subset, and triangulate all the parts 
of P above the lower hull edges recursively in parallel (Steps 1 
and 2). We then repeatedly merge adjacent pairs of lower hulls 
into single lower hulls, triangulating the portion of P between 
each pair. Unfortunately, doing this in a straightforward man- 
ner would result in an O(log 2 n) running time, because it takes 
O(log n) time to compute the common tangent line between two 
lower hulls. So we compute all the tangent lines which will merge 
pairs of hulls as a preproceesing step (Step 3) to the conquer step 
(Steps 4--0). This allows us to do the pair-wise hull-mergings in 
constant time. After we complete all the lower-hull mergings, the 
untriangulated portions of P are structured so as to be triangu- 
latable in O(log n) time. The details follow: 

Step 1. Divide V into ~ subsets VI, V2,. . . ,  Vv~ of size v ~  each 
using vertical dividing lines, and compute the lower con- 
vex hull LH(Vi) of the vertices of each subset ~ in par- 
allel (see Figure 4). Add all hull edges to P (if they are 
not already edges of P) .  

Comment: The vertices of each LH(V~) are listed by increas- 
ing z-coordinate. The lower hull of m points in the 
plane sorted by z-coordinate can be constructed in 
O(log m) time and O(m) space using O(m) proces- 
sors [1,2]. 

Figure 4: The v ~ lower hulls associated with V. 

Step 2. 

Step 3. 

For each edge s I added to form LH(V~) there is a subset 
of vertices in V~ which are monotone in the z-direction 
and directly above s t. Thus, each such s I determines a 
one-sided monotone polygon, with at most O(Vfn ") ver- 
tices. Recursively triangulate the polygons determined 
by each s I in parallel for all such edges s ~. 
Build a complete binary tree B ~on top ~ of the subse t s  
V/ such that  each leaf corresponds to a single V~. For 
each to E B find the tangent tw between LH(lchild(to)) 
and LH(rchild(w)), where LH(to) denotes the lower 
hull of the descendants of to, by doing the following 
(note: in Step 3 we don' t  actually compute LH(to), 
just  the common tangent tw): 

Step 3.1. 

Comment: 

Step 3.2. 

Comment: 

For each pair (i,j), i,j - 1,2,... ,V ~, compute 
the common tangent line t£~- between LH(V~) and 
LH(Vj) in parallel. 
The common tangent line between two lower hulls 
can be computed in O(log n) time by a single pro- 
ceseor using a binary search technique developed 
by Overmars and Van Leeuwen [18). Thus, this 
step can be done in O(log n) time by assigning one 
processor to each of the O(n) pairs of lower hulls. 
For each to E B let Tw be the set of tangent lines tl,j 
such that  V~ is a descendant of lehild(to) and Vj is 
a descendant of rchild(to). Find the minimum tan- 
gent line tw for each Tw in parallel, where compar- 
isons are based on the intersection of the tangent 
lines with the vertical line separating the descen- 
dants of iehild(w) and rchild(to), respectively (see 
Figure 5). 

tw is the tangent line between LH(lchild(to)) and 
LH(rchild(w)). 

Figure 5: The tangent lines in Tw: between descen- 
dants of lchild(w) and descendants of rchild(to). The 
tangent  tw is shown in boldface. 

Step 4. For each w E B, construct P~, the polygon which con- 
sists of tw together with the portions of LH(Ichild(w)) 
and L~(,chad(~)) that are above t,. (and hence do not 
appear in LH(w); see Figure 6), by doing the following: 

Step 4.1. Fo r  l - lowest level u n t i l  l = 0 r e p e a t  Steps 4.2- 
4.3 below for each to E B on level I in parallel: 

Comment: Let Wl = lchild(w) and to~ = rehild(w). Assume 
tha t  LH(wl) and LH(w2) were constructed in the 
previous iteration, and that  the vertices in LH(wl) 
and LH(w2) are sorted by z-coordinates. 

Step 4.2. WLOG, the descendants of wl have smaller z- 
coordinates than the descendants of w2. Let t~ = 
(Vl,V2), where •1 6 LH(wl) and v2 6 LH(w2). 
Construct LH(w) by concatenating the portion of 
LH(wl) left of vl (inclusive) with the portion of 
LH(w2) right of v2 (inclusive). 

Step 4.3. Concatenate the portion of LH(wl) right of vl tin - 
clusive) with the portion of LH(w2) left of v2 (in- 
clusive). Let P~ denote the polygon consisting of 
this list and the edge t~. 

Comment: Steps 4.2 and 4.3 can both be done in constant time 
using O(n~) processors, where n~ = ILH(tol]l + 
ILH(w2)I. 
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Figure 6: The triangulated polygon Pw. The left con- 
vex chain is from LH(ichild(w)) and the right convex 
chain is from LH(rchild(w)). 

Step 5. Triangulate each P~ by doing the following for each Pw 
in parallel. 

Step 5.1. For each vl E Pw find the edge el = (vi,vi+x) in Pw 
which is intersected by the line containing vl and 
parallel to tw. 

Comment: This can be done in O(log log n) time using parallel 
merging. Note that  this implies tha t  the vertex vi 
is visible from the lower of the two endpoints ofei.  

Step 5.2. Augment Pw by adding an edge from vl to the lower 
of the two endpoints ofei, for each vl in parallel (see 
Figure 6). 

Comment: After completing Step 5 we have triangulated ev- 
erything but the portion of P between LH(V)  and 
s = (v0,V,+l). Note tha t  each point on the lower 
hull of V is visible from either v0 or Vn+l (possibly 
from both). 

Step 6. Let LH(V)  = {vi~,vi2,. . . ,vlt}, ix < i2 < . . .  < is. Let 
vovi i be tangent to LH(V).  Complete the triangula- 
tion of P by adding the edges (v0, v i i ) , . . . ,  (co, vii) and 
(Vii, Vn+l) . . . . .  (Vit,Vn+l) (see Figure 7). 

E n d  of  a l g o r i t h m  O S M - T R I A N G U L A T E .  

. 

Vh.i 

Figure 7: Triangulating the remaining portion of P. 

T h e o r e m  3.10: The algorithm OSM- TRIANGULATE correctly 
triangulates a one-sided monotone polygon P in O(log n) time 
and o(.) space using o(,0 processors. 

Proof: The correctness of OSM-TRIANGULATE follows by in- 
duction and the comments made in Step 5. We have already 
observed that Steps 1, 3, 4, 5, and 6 can all be done in O(log n) 
time and O(n) space using O(n) processors. Thus~ the time com- 
plexity of OSM-TRIANGULATE, T(n), is determined by the re- 
currence relation T(n) = T(vrff) + O(log n), which has solution 

T(n) = O(log n). Also, the number of processors used, P(n) ,  
is determined by the recurrence P(n) = max{v/'ffP(d'~), en} for 
some constant c, which has solution P(n) = O(n). • 

Theorems 3.9 and 3.10 imply tha t  we can triangulate a sim- 
ple polygon in O(log n log log n) time and O(n log n) space (or, 
alternatively, in O(IOg 2 n) time and O(n) space) using O(n) pro- 
cursors on a CREW PRAM. We next show that  the plane-sweep 
tree technique can be used to efficiently solve the planar point 
location problem. 

3 .5  P l a n a r  P o i n t  L o c a t i o n  

Given a planar subdivision S consisting of n edges, construct a 
data  structure which, once constructed, enables one processor to 
determine for a query point p the face in S containing p. 

T h e o r e m  3.11: Given a planar subdivision S consisting of n 
edges, we can construct in parallel a data structure which, once 
constructed, enables one processor to determine for any query 
point p the face in S containing p in O(logn)  time. The con- 
struction takes O(log n log log n) time and O(n, log n) space using 
O(n) processors on a C R E W  PRAM. 

P r o o f :  The solution to this problem is to build the augmented 
plane-sweep tree for S and associate with each edge sl the name 
of the face above and below sl. A planar point location query can 
then be solved in O(log n) serial time by performing a multilocate 
like tha t  used in the proof to Theorem 3.8. • 

In the previous algorithms we assumed that  segments did not 
intersect. In the next subsection we show tha t  we can use the 
plane-sweep tree technique to detect if any two of n fine segments 
intersect. 

3 . 6  I n t e r s e c t i o n  D e t e c t i o n  

Given a set S of n line segments in the plane, determine if any 
two segments in S intersect. We begin by stating the conditions 
which we use to test  for an intersection. 

L e m r n a  3.12 [1]: The segments in S are non-intersecting iff we 
have the following for the plane-sweep tree T of S: 

(1) For every v E T all the segments in H(v) intersect the 
left vertical boundary of l'Iv in the same order as they 
intersect l ie 's  right vertical boundary. 

(2) For every v e T no segment in W(v) intersects any 
segment in H(v). • 

We use this lemma by testing for each condition at  the ap- 
propriate point during the construction or traversal of the plane- 
sweep tree for S. We use these observations in the proof of the 
following theorem. We note tha t  one result in the theorem is 
stated for the CRCW PRAM parallel model in which we allow 
for concurrent writes so long as all processors at tempting to si- 
multaneously write in the same memory cell are writing the same 
value. This is the only point in this paper in which we use the 
CRCW model; all other algorithms are for the (weaker) CREW 
PRAM model. 

T h e o r e m  3.13: Given n line segments in the plane we can de- 
tect i f  any two intersect in O(log n log log n) time and O(n log n) 
space using O(n) processors on a C R C W  P R A M  (alternatively, 
in O(log 2 n) time and O(n) space using O(n) processors on a 
C R E W  PRAM).  

P r o o f :  We begin with the proof of the O(log n log log n) time 
result. We can test for Condition (1) during the BUILDUP pro- 
cedure. After building a set H(v) in Step 2 of the BUILDUP 
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procedure we can test Condition (1) by constructing two other 
sets LB(v) and RB(v), where LB(v) (RB(v)) is the list of the 
intersection points of the segments in H(v) with the left (right) 
vertical boundary of Hu, listed in the same order as they ap- 
pear in H(v). If either of these lists is out of order, then there 
is an intersection. We can test whether either is out of order 
by comparing each element in LB(v) (and RB(v)) with its two 
neighbors. If a processor detects an inconsistency then it writes 
a 1 to a global " interact ion detected" flag. Only if this flag is 0 
do we proceed to the next level in T and repeat the above test. 
This will multiply the amount of work done by the BUILDUP 
algorithm by a factor of O(I),  so by Theorem 3.6 we can check 
Condition (1) in O(log n log log n) time and O(n log n) space us- 
ing O(n) processors. 

If we complete the BUILDUP procedure and do not detect 
an intersection, then we can test for Condition (2) as follows. 
First, we execute the AUGMENT algorithm on T. Let V = 
{Pl, P2, . - . ,  P~,} be the set of endpointe of segments in S, and let 
s(p~) denote the segment in S with endpoint p~. If Pi E II~ for 
some v ~ T, then clearly s(p~) ~ W(v). I fa  segment s(p~) ~ W(v) 
intersects a segment in H(v), then it must intersect the segment 
in H(v) directly below p~ or the segment in H(v) directly above pl 
(this is because we already know that  no two segments of H(v) 
intersect each other). We can then perform a multilocation of 
each pi, and each time we find a segment in H(v) directly above 
or below Pi we check if s(p~) intersects it. Thus, we can test 
Condition (2) in O(log n) additional time. 

To prove the O(n) space result, we use the alternative method 
of Theorem 3.7 to perform the necessary multilocations. We test 
Condition (1) each time a set H(v) is constructed, v ~ T. We 
also test Condition (2) at  this point, after performing the binary 
search in H(v) for each point pi such that  p~ E II~. • 

We now move on to the critical-point merging technique and 
how to use it in conjunction with parallel divide-and-conquer to 
efllciently solve problems whose efficient sequential algorithms 
use the plane-sweeping technique. 

4 Div ide-and-Conquer  w i th  Crlt ical-Point  
Merging 

Often times when using the plane-sweeping paradigm to solve ge- 
ometric problem sequentially, we scan a set of objects by sliding 
a vertical line along the x-axis, storing the objects in some kind 
of binary search tree as we go. At  various points (critical points) 
during the plane-sweeping we perform updates and queries on 
this tree. Intuitively, the method described in this section is to 
turn plane-sweeping on its side and use divide-and-conquer to 
compute all the critical-point queries. We begin by dividing the 
problem into two equally sized subproblems by splitting the set of 
objects as they would be split into eubtrees in the binary search 
tree. After solving each subproblem in parallel we take the set of 
critical points for each subprohlem and merge them into one list. 
The key to solving a problem in this manner is in defining labels 
to be associated with each critical point such that  the labels of 
the merged list can be computed quickly in parallel, and, more 
importantly, such tha t  when we have completed the construction 
we can use these labels to solve the problem at hand. Instead 
of describing the technique in a generic fashion, as we did with 
the plane-sweep tree, we describe it by presenting the solutions 
to four specific problems: visibility from a point, 3-dimensional 
maxima, multiple range-counting, and rectilinear segment inter- 
section counting. 

4 .1  V i s i b i l i t y  f r o m  a P o i n t  

Given a set of line segments S -- {Sl,S2,... , s ,}  which do not 
intersect, except possibly at  endpointe, and a point p, determine 
the part  of the plane which is visible from p. We can use divide- 
and-conquer with critical-point merging to solve this problem 
in O(log n log log n) time and O(n) space using O(n) processors. 
WLOG, the point p is at  negative infinity below all the segments. 
For simplicity, we assume that  the z-coordinates of the endpoints 
are distinct. 

A l g o r i t h m  V I S I B I L I T Y :  
Input: A set of non-intersecting line segments S = {sl,  s2, • . . ,  an}. 
Output: A set X = {P l ,P2 , . . . , p2 , )  consisting of the end- 
points of the segments in S sorted by z-coordinates (z(pl) < 
z(p~+l)). We also have a label VIS associated with each pl E X, 
such that  VIS(pl) is the segment in S visible on the interval 
(z(p,),z(p~+l)), for i = 1,2 .... ,2n - I, and VIS(p2.) = +co; 

by convention, VI"S(p~) = +co if no segment is visible on the 
interval (z(p,), z(p,+l) ). 
Step I. Parti t ion S into subsets SI = { s x , . . . , a n / 2  ) and $2 = 

{sn/2+l, . - .  ,an),  and recursively solve the problem for 
SI and 52 in parallel. 

Comment: After the parallel recursive call returns we will have 
a list XI of the endpointe of segments in S1 sorted 
by z-coordinates, and a similarly defined list 3(2 
for S2. We also have labels VIS1 (VIS2) labels 
correctly defined for each point in X1 (X2) when 
visibility is restricted to segments in SI ($2). 

Step 2. Use parallel merging [5,20] to merge the two sorted 
lists X1 and Xl  into a single list X, where compar- 
isons are based on the x-coordinates of points. Let 
X-~-- {Pl,P2 . . . . .  P2n). 

Step 3. For each p~ E X if p~ "came from" X1, then define 

VIS(pI) = min{VISl(pi),VIS2(c(p~))}, where c(pl) de- 
notes the cousin ofp~ in X~. Ifp~ came from X2, then de- 
fine VIS(p~) -- rrfin{VISl(C(p~)), VIS2(pi)), where c(p~) 
is the cousin of p~ in X1. If c(p~) = ~b (i.e., pl has no 
cousin), then we take VISI(~) = VIS2(~) = +co. 

Comment: Taking the minimum of VISI(p~) and VIS2(c(p~)) 
(or VISl(c(pl)) and VIS2(p~)) is well defined, since 
the segments being compared span the interval 
(z(pl),z(p~+l)) and do not intersect. Having ob- 
served this, note tha t  Step 3 completes the con- 
struction, since the list of labels VIS(pi) is a de- 
scription of the visible part  of the plane. 

E n d  of  A l g o r i t h m  V I S I B I L I T Y .  

T h e o r e m  4.1: The algorithm VISIBILITY solves the visibility 
from a point problem in O(log n log log n) time and O(n) space 
using O(n) processors on a CREW PRAM. 

Proof :  The correctness proof of VISIBILITY is by induction 
and is omitted. The main observation is tha t  in the conquer 
step (3) when computing VIS(pi) we need only compare the two 
segments which span the strip (z(pi), z(pi+l)) x ( -co ,  c0). This 
is precisely what is happening in Step 3 when we compare the 
old VIS label of a critical point with the VIS label of its cousin 
in the other set. 

Lemma 2.1 implies tha t  the algorithm's time complexity, 
T(n), is determined by the recurrence T(n) : T(n/2) + 
O(log log n), whose solution is T(n) = O(log n log log n). The 
space and number of processors used are clearly O(n). • 

The next application we look at  is 3-dimensional maxima. 
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4.2  3 - D i m e n s i o n a l  M a x i m a  

Let V = {Pl,P2,... ,P,} be a set of points in ~s. We say that 
a point Pi 1-dominates another point pj if x(pl) > x(pj), S- 
dominates pj if x(pi) > x(pj) and y(Pi) > Y(PJ), and 3-dominates 
pj if x(pi) > x(pj), Y(Pl) > Y(Pj), and z(pi) > z(pj). A point 
p~ E V is said to be a maximum if it is not 3-dominated by any 
other point in V. The 3-dimensional maxima problem, then, is 
to compute the set, M,  of maxima in V. We show how to solve 
the 3-dimensional maxima problem efficiently in parallel in the 
following algorithm. The labels we use are motivated by the la- 
bels used in the binary search tree used in the optimal sequential 
algorithm for this problem [15]. For simplicity, we assume that  
no two input points have the same x (resp., y, z) coordinate. 

A l g o r i t h m  3-D M A X I M A :  
Input: A list of points V = {Pl,Pz, . .-  ,P ,}  in R s. 
Output: A list X = {ql, q2,. • • ,q ,}  of the points in V sorted by x- 
coordinate. We also have two labels ZO and Z T  associated with 
each ql 6 X, such that  ZO(q~) is the maximum z-coordinate in 
the set of points which 1-dominate q~, and ZT(qi) is the maximum 
z-coordinate in the set of points which 2-dominate q~. 

Step 0. (Preprocessing) Sort the points of V by y-coordinate. 
(This preprocessing step is performed only once.) 

Step 1. Divide V into two equally sized subsets V 1 and V2 such 
that  all the points in V1 have smaller y-coordinate than 
points in Vz. Recursively solve the problem for V1 and 
V2 in parallel. 

Comment: After the parallel recursive call returns we will have 
lists XI and X2 of the points in VI and V~, respec- 
tively, sorted by x-coordinate. We also have labels 
Z01 (ZO2) and ZT1 (ZT~) defined correctly for the 
points in X1 (X2) (when dominance is restricted to 
xl  (x~)). 

Step 2. Merge XI and X~ into a single list X,  basing all compar- 
isons on the x-coordinates of the points involved. Let 
X = {q, ,q2, . . .  ,q,} (X is the set of points in V listed 
by increasing z-coordinate). 

Step 3. For each qi 6 X if ql came from X1 then let 
ZO(q~) = max{ZO,(q,),ZO2(c(q~))} and ZT(ql) = 
max{ZT~(q,),ZO2(c(q,))}, where c(q,) is the cousin 
of q~ in X~. If qi came from X2, then ZO(ql) = 
max{ZOl(c(q~)),ZO2(q,)} and ZT(q~) = ZT~(q~), 
where c(q~) is the cousin of ql in X1. (By convention, 
Z0i(/?) --- ZTi(dp) = zl, where z~. is the maximum z- 
coordinate in Xi,  j = 1,2. Note tha t  we can easily 
compute zi, since it is the maximum of ZOi(q) and 
z(q), where q is the first element in Xb)  

Step 4. (Postprocessing) After we have computed the labels ZO 
and Z T  for all points q~, we know that  ql is a maximum 
iff z(q,) > ZT(q~). 

E n d  of A l g o r i t h m  3-D M A X I M A .  

T h e o r e m  4.2: The algorithm 8-D MAXIMA solves the 8- 
dimensional maxima problem in O(log n log log n) time and O(n) 
space using O(n) processors on a CREW PRAM. 

Proof :  The proof of correctness is by induction, and is given in 
detail in the technical report [3]. By the same argument as in 
the proof for Theorem 4.1 the algorithm 3-D MAXIMA runs in 
O(log n log log n) time and O(n) space using O(n) processors. • 

It is worth noting tha t  we can use the algorithm 3-D MAX- 
IMA as the bot tom of a recursive procedure for solving the gen- 
eral k-dimensional maxima problem. The resulting time and 
space complexities are given in the following theorem. We state 
the theorem for k > 3 (the 2-dimensional maxima problem can 

easily be solved in O(log n) time and O(n) space using the AKS 
sorting network [4] and parallel prefix [14]). 

T h e o r e m  4.3: For k > 3 the k-dimenMonal maxima problem 
can be solved in O((log n) k-2 log log n) time and O(n) space using 
O(n) processors on a CREW PRAM. 

Proof :  The method is a straightforward parallization of the algo- 
r i thm by Kung, Luccio, and Preparata [15], using 3-D MAXIMA 
as the basis for the recursion. We omit the details. [] 

Next, we address the multiple range-counting problem. 

4 .3  M u l t i p l e  R a n g e - C o u n t i n g  

Given a set V of i points in the plane and a set R of rn iso- 
thetic rectangles (ranges) the multiple range-counting problem 
is to compute the number of points interior to each rectan- 
gle. We know from [101 that  counting the number of points 
interior to a rectangle can be reduced to dominance counting. 
Tha t  is, if d(p) is the number of points in V 2-dominated by 
a point p, given a rectangle r -- (pl,P2,ps, p4) (where vertices 
are listed in counter-clockwise order starting with the upper- 
righthand corner), then the number of points in V interior to 
r is d(p,) - d(p2) + d(ps) - d(p4). Therefore, it suffices to solve 
the dominance counting problem. The next algorithm does this. 

A l g o r i t h m  D O M - C O U N T :  
Input: A set V = {Pl ,P2, . . . ,pl}  and a set U = {ql,q2,. . . ,q,n} 
of points in the plane. For simplicity, we assume that  the points 
in V and U are all distinct. 
Output: A list X -- {Vl,V2,... ,v,+,n} of the points defining this 
problem (vl is either a pj or a qj) sorted by increasing lexico- 
graphical order. We also have labels CO and CT defined for 
each v~ 6 X,  where CO(vi) is the number of points in V 1- 
dominated by the point v~, and CT(v~) is the number of points 
in V 2-dominated by vl. 
Step 0. (Preprocessing) Combine the points in V and U one list 

W, and sort the points in W by y-coordinate. Also, we 
mark each point in W which came from V. Initially, the 
CO and CT label for each point is 0. 

Comment: For each v~ 6 W define the function X v as follows: 
Xv(v~ ) = 1 if v~ 6 V; Xv(v~) = 0 otherwise. 

Step 1. Divide W into two equally sized subsets W1 and W2 such 
tha t  all the points in W1 have smaller y-coordinate than 
points in W2. Recursively solve the problem for W1 and 
W= in parallel. 

Comment: After the parallel recursive call returns we will have 
lists X,  and X2 of the points in WI and W2, respec- 
tively, sorted by increasing lexicographical order. 
We also have labels COt (C02) and CT1 (CTz) 
defined correctly for the points in X 1 (X2) ( w h e n  
dominance is restricted to X,  (X2)). 

Step 2. Merge X1 and )(2 into a single list X, where all 
comparisons are done lexicographically. Let X = 
{vl, v2, . . . ,  ~.+,~}. 

Step 3. For each vl 6 X if v~ came from X1, then de- 
fine CO(v~) = COl(tJi) @ C02(c(vi) ) -~ Xv(c(vi) ) and - 
CT(vi) ='CT,(vi) ,  where c(v,) is the cousin of v~ in X,. 
If vl came from X2, then define CO(vi) = CO,(e(v,)) + 
C02(v~) + Xv(c(v,)) and CT(vi) = CTl(c(v,)) + 
CT~(v~) + Xv(e(vi)), where c(v~) is the cousin of v~ in 
X,. (COj(~b) = CTj(~) = Xv(~b ) = 0, j = 1,2.) 

Comment: The dominance count of each vi is stored in the 
label CT(v~). 

End of A l g o r i t h m  D O M - C O U N T .  
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Theorem 4.4: Given a set V of l points in the plane and a set Q 
of m points in the plane, the algorithm DOM-COUNT computes 
for each ql E Q the number of points in V 2.dominated by q~ in 
O(log n log log n) time and O(n) space using O(n) processors on 
a C R E W  PRAM, where n = l-{- m. 

Proof:  The proof of correctness is by induction, and is given 
in detail in the technical report [3]. By an argument similar to 
the one used in the proof of Theorem 4.1 the algorithm DaM- 
COUNT runs in O(log n log log n) time and O(n) space using 
O(n) processors, where n = ! + m. • 

Corol lary 4.5: Given a set V of 1 points in the plane and a 
set R of m isathetie rectangles, we can solve the multiple range- 
counting problem for V and R in O(log n log log n) time and O(n) 
space using O(n) processors, where n = i + m. • 

4.4 R e c t i l i n e a r  S e g m e n t  I n t e r s e c t i o n  C o u n t i n g  

Given a set S of n rectilinear line segments in the plane, deter- 
mine for each segment the number of other segments in S which 
intersect it. 

Theo re m 4.6: Given a set S of n rectilinear line segments in 
the plane, we can determine for each segment the number of other 
segments in S which intersect it in O(lognloglogn)  time and 
O(n) space using O(n) processors on a C R E W  PRAM. 

Proof:  The method is similar to that used for multiple range 
counting. The details are given in the technical report [3]. • 

5 Conc lus ion  

In this paper we have given general techniques for solving a 
number of geometric problems whose efficient sequential algo- 
rithms use the plane-sweep paradigm. These techniques can 
be viewed as efficient parallel analogues to the plane-sweeping 
paradigm. We applied the plane-sweep tree technique to intersec- 
tion detection, trapezoidal decomposition, polygon triangulation, 
and planar point location. We applied divide-and-conquer with 
critical-point merging to visibility from a point, 3-dimensional 
maxima, multiple range-counting, and rectilinear segment inter- 
section counting. We were able to achieve an O(log n log log n) 
time bound for each problem, using O(n) processors. 
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