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Others include the observation that the bipartite graphs are those containing noodd cycles and Fishburn's characterization of interval orders [15] as those con-taining no 2+2. Some of the many classes of containment orders that have beenstudied are the sphere orders (balls in IRd as studied, for instance, by Brightwelland Winkler [4]) and the angle orders (see for instance Fishburn and Trotter[16]).Recognition algorithms have also been developed for many classes of graphsand posets. Hopcroft and Tarjan [22] presented the �rst O(n+m)-time algorithmto recognize planar graphs (see also [9], [13], [3], [8], and [5]). Besides a planaritytest, Booth and Lueker [3] also give a linear-time algorithm to recognize inter-val graphs, which are also treated in [23,24,25,28]. Other important recognitionproblems include visibility graphs [6,7,14,19], comparability graphs [20,29,24],and series-parallel graphs [1,12,32]. A �nal recognition algorithm|one we willuse in this paper|is that of Spinrad and Valdes [30], an O(n2)-time algorithmfor the posets of dimension less than or equal to 2. For more information ontesting graph properties, please see the survey by Di Battista et al. [10].On the other hand, the recognition problem is di�cult for several importantclasses. For example, determining whether a graph has a Hamilton cycle is NP-complete (see Garey and Johnson [17]) and Garg and Tamassia [18] have recentlyshown that while graph planarity can be answered in linear time, the problemof determining whether a poset has a planar Hasse diagram is NP-complete.1.2 Our ResultsIn this paper we address membership and containment orders in IRd for pointsand halfspaces and for points and convex sets. In describing algorithms thatmanipulate posets (X;�) we refer to the size of the input in terms of the pa-rameters n and m, where n = jXj is the size of the ground set and m = j � j isthe number of pairs x � y in the partial order. We adopt the same conventionfor graphs, letting n be the number of vertices and m the number of edges.After some preliminary de�nitions and conventions in section 2, we ascertainin sections 3{6 the forbidden restrictions for each of the four classes for d = 1and describe their structures. For the two point-ray classes we provide O(n+m)-time recognition algorithms. In the case of point-interval membership orders wegive a reduction to interval-graph recognition to obtain an O(n2)-time algorithmbased on the results in Booth and Lueker [3] and Simon [28] and for point-intervalcontainment orders we prove the su�ciency of the O(n2)-time algorithm in [30]Given the characterizations of these four classes of orders, it is natural toask how the classes are related. In section 7 we present the containment rela-tions among them. In section 8 we consider higher dimensions, proving that therecognition of point-halfspace orders is NP-hard in IRd for d > 1.2 Preliminary De�nitions and ConventionsLet P = (X;�) be a poset|a set X together with a relation � on X that isreexive, antisymmetric, and transitive. Alternatively, P may be viewed as the



transitive closure of an acyclic digraph with vertex set X and arc set �. Anyx 2 X is minimal (resp. maximal) in P provided there is no y 2 X such thaty < x (resp. x < y). The set of all minimals (resp. maximals) of P is denotedmin(P ) (resp. max(P )). A chain in P is a set of elements x1 < � � � < xt of X.The height of P is the size of a maximum chain.For any relation R on a set X and any x 2 X we denote by XR(x) the setof all y 2 X such that yRx. The downset of an element x in P (the set of ally 2 X such that y � x) is thus denoted by X�(x). The strict downset is theset X<(x) = X�(x) n fxg. The upset X�(x) and strict upset X>(x) are de�nedanalogously. If neither x � y nor y � x for x; y 2 X, then we call x and yincomparable in P and write x k y. The width of P is the size of a largest set ofpairwise incomparable elements.A linear order is a partial order in which no pair is incomparable. Dushnikand Miller [11] de�ned the dimension of a poset P = (X;�) as the size of asmallest set of linear orders on X whose intersection is �. Equivalently, thedimension is the smallest d such that there is an order-preserving embedding ofP in IRd with(x1; . . . ; xd) � (y1; . . . ; yd) if and only if (x1 � y1) ^ � � � ^ (xd � yd):Trotter [31] provides an excellent introduction to the theory of poset dimension.A poset P 0 = (X 0;�0) is a restriction of the poset P = (X;�) providedX0 � X and for all x; y 2 X 0, x �0 y whenever x � y. P 0 may be obtainedfrom P by deleting elements from X and exactly those comparabilities in �that involve the deleted elements. P 0 is also called an induced subposet of P . Abipartite poset is an ordered triple (B; T;�) where (B[T;�) is a poset in whichthe only comparabilities are of the form b < t and x = x, for b 2 B, t 2 T andx 2 B [ T .A poset P = (X;�) is a �-containment order for some class � of sets if thereis a function f : X ! � mapping elements of the ground set to sets in the classso that for x; y 2 X we have x � y precisely when f(x) � f(y). Similarly, Pis a B-T -membership order for a set B and a collection T of subsets of B ifthere is a function g : X ! B [ T for which x < y precisely when g(x) 2 B,g(y) 2 T , and g(x) 2 g(y). Although we choose to use the language of ordertheory, a B-T -membership order may also be thought of as a hypergraph withvertex set B and edge set T . The functions f and g are called �-containmentand B-T -membership representations, respectively. Note that every membershiporder has height 2, but that containment orders can have large heights.Posets are presented in the �gures in terms of their Hasse diagrams: digraphdrawings in which arcs all point upward, so arrowheads are omitted, and anyarc inferable from transitivity is also omitted.In this paper we are concerned with two issues: (1) characterizations of con-tainment and membership orders in terms of structural properties and forbiddenrestrictions and (2) e�cient recognition algorithms that can be derived fromthese characterizations. We announce the characterizations here: their proofswill appear in a forthcoming publication.



3 Point-Ray Membership OrdersWe consider �rst the class of posets isomorphic to some (X;2), where X is aset of points and rays in IR1 and 2 is the reexive closure of the is-a-member-ofrelation 2 on X. Such a poset is called a point-ray membership order.3.1 Forbidden-Restriction CharacterizationWe have the following characterization of the point-ray membership orders interms of forbidden restrictions.Theorem1. A bipartite poset is a point-ray membership order if and only if itcontains none of the posets in �gure 1 as a restriction.t t tt t t(a) 2+ 2+ 2 t t tt t t����SSSS SSSS���� (b) S3 t t tt t t����SSSS (c) MIt tt t t t����TTTT (d) M� t t tt t tTTTT���� (e) W�Fig. 1. Forbidden restrictions for point-ray membership orders3.2 Structural CharacterizationA poset (X;�) is a proper arch provided it has a decompositionX = C1[C2 intodistinct nonempty chains such that C1 \ C2 = fx̂g = max(C1) = max(C2) forsome x̂ 2 X and x k y for all x 2 C1nfx̂g and y 2 C2nfx̂g. A poset P is an arch|and is said to be arched|provided it is a restriction of a proper arch. Figure 2(a)illustrates a proper arch and �gures 2(b)-(d) illustrate improper arches.Theorem2. A poset is an arch if and only if it has width at most 2 and itcontains neither of the posets in �gure 3 as a restriction.The top containment poset of a height-2 poset P is the set max(P ) orderedby containment of strict downsets.



tttt t ttt��@@ ttttt tt tttt ttt t(a) (b) (c) (d)Fig. 2. Some example archest tt����TTTTt1 t3t2(a) V ttt t\\\��� t4t3t1 t2(b) ClawFig. 3. Forbidden restrictions for archesTheorem3. A bipartite poset P with top containment poset P 0 is a point-raymembership order if and only if P does not contain M� as a restriction; P 0 is anarch; and, if P 0 is proper, then P has no isolated minimals.Theorems 1 and 3 provide two elegant characterizations of the point-raymembership orders, as well as some insights into their structure. We next showhow to exploit these insights.3.3 Recognition AlgorithmOur algorithm is based on theorem 3. We determine whether a bipartite posetP = (B; T;�) is a point-ray membership order and, if so, we construct a rep-resentation that also yields an optimal Hasse diagram. The bipartite poset Pis input as lists (b1; . . . ; br) and (t1; . . . ; ts) representing B = min(P ) and T =max(P ), respectively, and the adjacency lists T>(bi) and B<(tj) for 1 � i � rand 1 � j � s.The requirement that P be a bipartite poset is only necessary in applicationswhere the distinction between points and rays is critical for any element compa-rable to no other element|an isolate. In an application that allows isolates to bepartitioned arbitrarily between points and rays, any poset may be preprocessedin O(n+m) time to test for height 2 and produce a bipartition. In this case, allisolates should be assumed to be maximals.In its initialization step our algorithm bucket-sorts the maximals tj intobuckets �k for 0 � k � r containing all the maximals with strict downsetsof size k. It then checks each of the three conditions of theorem 3.To ensure that the top containment poset P 0 of P is an arch we check thebuckets by decreasing k, trying to build two chains C1 and C2 of downsets



ordered by inclusion. Let c�1 and c�2 be the minimals of C1 and C2, respectively.Let c+1 and c+2 be the maximals of C1 and C2, respectively, unless max(C1) =max(C2), in which case, call the maximal of both chains c+ and let c+1 and c+2 bethe maximals of C1�c+ and C2�c+, respectively. It then follows from theorem 2that P 0 is an arch if and only if c�1 6� c+2 and c�2 6� c+1 . Next, if P 0 is a properarch, which is to say if max(C1) = max(C2), we check for an isolated minimal.The last step in the algorithm is to test whether P contains M�, which wecan do in linear time thanks to one more structural result. De�ne a function �1on B such that �1(b) = k whenever b appears in C1 \ �k but not in C1 \ �j forany j < k. De�ne �2 analogously for C2. Then we haveProposition4. Let P be a poset of which the top containment poset P 0 is anarch with chain decomposition C1[C2. Then P contains M� if and only if thereexist minimals x and y of P such that �1(x) < �1(y) and �2(x) < �2(y).The remaining task of building a point-ray membership representation f ofP is straightforward. An ascent of C1 and a descent of C2 maps the bottoms ontof1; . . . ; rg. Then the tops in C1 may be mapped to leftward rays and those in C2to rightward rays. This also provides a blueprint for a Hasse diagram:B may besorted onto the line y = 0 by increasing f and T onto y = 1 by increasing heightin C1 and then decreasing height in C2. Furthermore, it is not di�cult to showthat of the Hasse diagrams of P drawn with B on one line, T on another, andstraight-line edges, those that follow this blueprint have the smallest possiblenumber of edge crossings.4 Point-Ray Containment OrdersFor the next class of posets we augment the \point 2 ray" relations of theprevious section with \ray � ray" relations. More precisely, we consider thepoint-ray containment orders, those posets isomorphic to (X;�) for some X �ffxg j x 2 IRg [ frays along IRg.4.1 Forbidden-Restriction CharacterizationWe enumerate the forbidden restrictions in �gure 4 using a modi�ed Hasse-diagram convention: the solid circles represent minimals and the open circlesnonminimals. Thus each open circle must be understood to have at least oneelement below it.Theorem5. A poset is a point-ray containment order if and only if it containsnone of the posets in �gure 4 as a restriction.4.2 Recognition AlgorithmThis algorithm is similar to the one for point-ray membership orders in sec-tion 3.3. We determine whether a poset P = (X;�) is a point-ray containmentorder and, if so, we construct a representation.



e e e�� @@(a) e e e@@ ��(b) e e e(c) e eu uAA��(d)[Note: Minimals are shown solid and nonminimals open.]Fig. 4. Forbidden restrictions for point-ray containment ordersP is input as a list (x1; . . . ; xn) representing X and the adjacency listsX<(xi)and X>(xi) for 1 � i � n. We initialize the input by labeling each xi as minimalor nonminimal. We bucket-sort the nonminimals into buckets �k for 0 � k < ncontaining all the nonminimals xj for which jX<(xj)j = k. We then determinewhether P is a point-ray containment order in two phases. In the �rst phase wecheck for the obstructions in �gure 4(a)-(c) and in the second we check for theone in �gure 4d. This can all be done in O(n+m) time.5 Point-Interval Membership OrdersThe next class of posets we consider is again constrained to height 2. We replacethe rays of the point-ray membership orders with intervals to obtain the point-interval membership orders.5.1 Structural CharacterizationLet P = (X;�) be a height-2 poset with min(P ) = fb1; . . . ; bng. The top-intersection graph of P is the graph with vertex set max(P ) in which any twoelements of max(P ) are adjacent if and only if they are above a commonminimal.If P is bipartite, we de�ne the augmentation of P as the poset obtained by addingfor each bi a new top above bi and nothing else. The augmented top-intersectiongraph of P is the top-intersection graph of the augmentation of P . As we showin the following theorem, this graph provides a nice structural characterizationof point-interval membership orders.Theorem6. A bipartite poset is a point-interval membership order if and onlyif its augmented top-intersection graph is an interval graph.5.2 Forbidden-Restriction CharacterizationThe forbidden restrictions for point-interval membership orders consist of twoexplicit posets and three in�nite families. In the Hasse diagrams in �gure 5 wehave highlighted certain vertices and edges to clarify patterns in the obstruc-tions. This highlighting is only to clarify similarities among the posets. All threein�nite families are elaborations on the same fence of size n|the zigzaggingposet indicated by the solid circles and edges.



Theorem7. A height-2 poset is a point-interval membership order if and onlyif it contains none of the posets in �gure 5 as a restriction.
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1 2 ��� n3Fig. 5. Forbidden restrictions for point-interval membership orders5.3 Recognition AlgorithmIt is not clear how one might exploit the forbidden-restriction characterizationin theorem 7 to obtain a recognition algorithm for point-interval membershiporders. But a straightforward algorithm follows from theorem 6. One simplybuilds the augmented top-intersection graph, which requires �(n2) time, andthen checks whether it is an interval graph. The second step can be done quicklyusing algorithms published in [3] or [28].6 Point-Interval Containment OrdersThe �nal class of real-line orders we consider is the point-interval containmentorders.Theorem8. The point-interval containment orders are exactly the interval con-tainment orders, which is to say the posets of dimension at most 2. Moreover,every poset of dimension at most 2 has a point-interval containment representa-tion that maps all its minimals to points.6.1 Recognition AlgorithmAs an immediate result of theorem 8, the point-interval containment orders canbe recognized in O(n2) time using the algorithm in [30].



7 Containments Among the ClassesIn theorems 9 through 11 we detail the containment relationships among the fourclasses of posets that we have considered so far. These containments are sum-marized in �gure 6. The posets included in the �gure are certi�cates that eachof the illustrated regions is nonempty. The dashed circle in the �gure indicatesthat, as stated in theorem 10, the containment is true only of those point-intervalcontainment orders that have height 2 or less.
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dim–3Fig. 6. Containments among the classesTheorem9. Point-ray membership orders and point-ray containment orders areall point-interval containment orders.Theorem10. The height-2 dimension-2 posets form a proper subset of the point-interval membership orders.Theorem11. Every point-interval membership order has dimension 3 or less.8 Point-Halfspace Orders in 2 and More DimensionsIn this section we show that the recognition of point-halfspace orders in IRd isNP-hard for all d � 2. Thus it is unlikely that any simple characterization existsfor these orders. We begin with the 2-dimensional case and then extend thatresult to d > 2.



The point-halfplane result is obtained by a reduction from a variant of aproblem called Pseudoline Stretchability (see Shor [27]). A pseudoline is(the Cartesian graph of) a continuous function  : IR! IR . A set of pseudolinesis a collection provided any pair of elements that intersect do so at exactlyone point, where they cross. A collection of pseudolines is simple provided nothree of them are concurrent and every pair intersect. It is stretchable if itsarrangement|the partition of IR2 induced by the pseudolines, together with allthe incidences|is isomorphic to an arrangement of (straight) lines.We now formally state the recognition problem for the 2-dimensional case:Point-Halfplane OrderINSTANCE: A bipartite poset P = (B; T;�).QUESTION: Is there an injection f fromB[T to IR2[fhalfplanesg with f(B) �IR2 and f(T ) � fhalfplanesg such that for all b 2 B and t 2 T , f(b) 2 f(t) ifand only if b < t?Theorem12. Point-Halfplane Order is NP-hard.Proof. Both Pseudoline Stretchability and the variant in which the inputcollection of pseudolines is required to be simple are NP-hard [27]. We demon-strate a polynomial reduction from this variant. The arrangement is input asan allowable sequence, as de�ned by Goodman and Pollack [21]. We assign toevery cell a unique bit string that encodes its position relative to each pseudolineand build a bipartite poset P such that min(P ) is the cell labels and max(P )the pseudolines, and c <  precisely when cell c is above  . This construc-tion, which is illustrated in �gure 7, can be done in polynomial time and P is apoint-halfplane order if and only if the collection is stretchable.
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