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Abstract

For a set S of n line segments in the plane, we give the
first work-optimal deterministic parallel algorithm for con-
structing their arrangement. It runsin O(log? n) time using
O(nlogn + k) work in the EREW PRAM model, where k
is the number of intersecting line segment pairs, and pro-
vides a fairly simple divide-and-conquer alternative to the
optimal sequential “ plane-sweep” algorithmof Chazelleand
Edelsbrunner. Moreover, our method can be used to out-
put all % intersecting pairs while using only O(n) working
space, which solves an open problem posed by Chazelle and
Edelsbrunner. We also describe a sequential algorithm for
computing a single face in an arrangement of » line seg-
mentsthat runsin O(na?(n) logn) time, which improves on
a previous O(n log? n) time algorithm.

For collections of simplices in IR, we give methods for
congtructingaset of m = O(n?~1log’ n+k) cellsof constant
descriptive complexity that covers their arrangement, where
¢ > 1 isa constant and & is the number of faces in the
arrangement. The construction is performed sequentially in
O(m) time, or in O(logn) time using O(m) work in the
EREW PRAM modedl. The covering can be augmented to
answer point location queriesin O(logn) time. In addition
to supplyingthefirst parallel methodsfor these problems, we
improve on the previous best sequential methods by reducing
the query times (from O(log?n) in IR® and O(log® n) in IR,
d > 3), andalso thesize and construction cost of the covering
(fromO(n=1*¢ + k).

1 Introduction

Geometric sampling and its geometric counterparts have
proven to be very powerful tools in computational geom-
etry for designing efficient sequential algorithms and data
structures. In this paper we use geometric sampling tech-
niques to obtain improved solutions (sequential and parallel)
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to some important problemsin computational geometry* An
attractive feature of our algorithms, and in fact, of many ge-
ometric sampling algorithms, is that they are very simple.
This is even true of our deterministic agorithms (with the
exception of the derandomization step itsdlf), in spite of the
fact that they must deal with a problem often encountered in
geometric sampling algorithms: namely, that the total size
of the subproblems may grow by a constant factor with each
recursive application of the sampling. In our line segment
algorithms we use “pruning” computations to keep the sizes
of the subproblems within certain bounds.

Segment arrangements. Let S be a set of n line seg-
ments in the plane, and let £ be their number of pairwise
intersections. The segment intersection problem is to re-
port al % intersecting segment pairs in .S, with a dlightly
more difficult variant being that of constructing a triangula
tion of the arrangement of the segmentsin S. This problem
has been studied extensively in the computational geome-
try literature [6, 8]. Chazelle and Edelsbrunner [11] gave
an optimal method for computing segment intersections and
congtructing their arrangement that runsin O(nlogn + k)
time and uses a number of beautiful techniques, including
plane sweeping and topological sweeping. A number of re-
searchers [12, 17, 33, 34], have given elegant randomized
methods that runin O(nlogn + k) expected time. In fact, if
k > nlogtt® n for some constant § > 0, then these methods
run in this bound with high probability? [31]. In the parallel
domain, Clarkson, Cole, and Tarjan [16, 15] show that one
can construct a segment arrangement in parallel in O(logn)
timeand O(n logn + &) expected work in the CRCW PRAM
mode! .2

There is no previous deterministic optimal-work paral-
lel algorithm for the general segment intersection problem,
however. The best previous methods for the genera problem
are amethod of Goodrich [20], which runsin O(logn) time
and O(nlog? n + klogn) work in the CREW PRAM model
and a method of Rub, which runsin O(logn loglogn) time
using O((n + k) lognloglogn) work in the same paralle
model. One can achieve an optimal O(nlogn + k) work
bound, however, for some specia cases [20, 22, 23, 39].

We show how to solve the problem of computing a seg-
ment arrangement in O (log? n) timeand O(n logn+ k) work

1For background material on geometric sampling, see [3, 14, 28, 34].

2We say that an event parameterized by » holds “with high probability”
if its probability is at least 1 — 1/n¢ for some constant § > 0.

3The cRcw PRAM is the synchronous shared-memory mode! that allows
for concurrent reads and concurrent writes—which in this instance can be
resolvedarbitrarily. The CREw PRAM allowsfor concurrent readsbut requires
writes to be exclusive, and the EREW PRAM requires both reads and writes to
be exclusive.



in the EREW PRAM model (augmented with processor al-
location calls [20]). Our method also provides an optimal
sequentia divide-and-conquer alternativeto the plane-sweep
method of Chazelle and Edelsbrunner [11], and uses O(n)
spaceif only required to output theintersections, which solves
an open problem of Chazelle and Edelsbrunner®.

A singlefacein a segment arrangement. Again, let S bea
set of n line segmentsin the plane and | et p be apoint. Inthe
single face problem, we are interested in computing the face
of the arrangement of S containing p, that is, the connected
component of IR* — | J, ¢ s that contains p. It is known
that the boundary complexity of a single face is O(na(n))
wherea(n) isthevery slowly-growinginverseof Ackerman’s
function. The best previously known deterministic algorithm
isan O(nlog? n) method due to Mitchell [32], yet there are
randomized ones that run in expected time O(na(n)logn)
[12, 18]. The known lower bound is Q(n logn).

We describe an almost-optimal deterministic agorithm,
in that it runsin time O(na?(n) logn). The agorithm uses
a divide-and-conquer approach based on deterministic geo-
metric sampling, together with a pruning mechanism to avoid
ablow-up in the total size of the subproblems as the compu-
tation progresses.

Simplicesin higher dimensions. Let S beaset of n (d —1)-
simplicesin IR?, for any fixed d > 3, eg., trianglesin IR®,
or tetrahedrain IR*. When the simplicesin .S may intersect,
the complexity & of .A(S) can vary between n and n?. For
d = 3, de Berg, Guibas, and Halperin [19] build a vertical
decomposition D of A(S) of sizeO(n?t* + k) inO(n?t* +
|D|logn) time, for any constant « > O; it supports point
location queriesin O(log? n) time. For d > 3, Pellegrini [35]
constructs a covering® for A(S) of size O(n4=1+ 4 k) in
O(n4=12 4 k) time, for any congtant o > 0. Usingthe same
space, but with O(n?=1t2 + klogn) work, the covering can
be augmented to support point location queriesin O(Iog3 n)
time. We know of no parallel methods for processing .A(.S)
whend > 3.

Wedescribemethodsfor constructing acoveringfor A(.S)
of sizem = O(n%110g°¥ n+ k), which can be augmented
to support point location queriesin O(logn) time using the
same storage. In the EREW PRAM model, the covering is
congtructed in O(logn) timeusing O (m) work, and the point
location structure in O(log?n) time using O(m + k logn)
work. Thus, in addition to supplying the first parallel meth-
ods, weimprove onthebest known sequential results[19, 35]
by reducing the query time, and also the size and construc-
tion cost of the covering. Whenthesimplicesin S areinterior
digoint, e.g., non-simple polyhedra, a triangulation of .A(.S)
of size O(n4~1) can bebuiltin O(logn) timeusing O(n4~1)
work in the EREW PRAM model, matching the sequentia
result of Pellegrini [35].

4Recently, this has also been solved by |. Balaban [5] with an entirely
different approach. Hisalgorithm, however, doesnot seem to parallelize nor
to be adaptableto computing the arrangement.

5A covering is a set of cells of constant descriptive complexity whose
union contains A(S). Unlike decompositionscomposed of interior disjoint
cells, such astriangulations, the cellsin a covering may overlap.

Contents of the paper. Section 2 contains the geometric
sampling results needed in our algorithmsfor segments. Sec-
tions 3 and 4 contain the algorithms for al faces and single
face in an arrangement of segments respectively. Section 5
contains the results for smplicesin higher dimensions.

2 Geometric sampling

Let X' be a class of geometric objects in IR? (for example
al line segments in the plane), and let X C X’ be of size
n. The arrangement of X is the collection of connected
componentsof IR? — U..ex = together withthearrangements
onexchz € X of X — {«} restrictedto z. Ingeneral, weare
interestedinaparticular subset A(X') of thearrangement, and
itsdecomposition 7 (X') into a collection of cells of constant
complexity. Let R C X C X. Foracdl o € T(R), let the
triggersof o, denoted as A(¢), be the set of objectsin X that
determine o, and let the killers of ¢, denoted as X, be the
set of objectsin X that intersect o, which we aso call the
conflict list of o. We restrict our attention to classes where
|A(e)| < D for some constant D > 1.

In some agpplications (X', 7) satisfies a property called
locality: for R C X C X, ¢ € T(R) iff Ale) C R and
X, N R = . Thisisthe case, for example, for the complete
arrangement. In some applications where one is interested
only inasubset of thearrangement, for example asingleface
in an arrangement, locality fails. However, it has been noted
[1, 18] that in this case a property that we cal monotonicity
holds: for R, R’ C X, if ¢ € T(R) then A(R) C R and
XoNR=0;andif ¢ € T(R)and R’ C RwithA(s) C R/,
then o € 7(R'). Notethat locality implies monotonicity.

Polynomial construction

Thebasisfor our divide-and-conquer approach isthe geomet-
ric sampling theorem below. We state it in some generality,
and then specializeit to our particular problem. For complete-
ness, we give a detailed proof. It uses standard techniquesin
geometric sampling (seeeg. [1, 4, 17, 21, 29]).

For sequential computation, the »° factor in property (ii)
of the theorem can be improved to log» using derandomiza-
tion by the method of conditional probabilities. However, we
prefer our form for threereasons: the method of limited inde-
pendenceisbetter suited for parallelization; even sequentially
thereis no apparent way to derandomize using the method of
conditional probability when locality does not apply; and fi-
nally the method of limited independence is computationally
simpler.

We need the following tail estimate for random variables
with limited independence (see [38, 34]).

Lemma2.l Let I = Y " I, be the sum of m 2K-wise
independent (K fixed), identical 0-1 random variables (i.e
each variable is 1 with probability p > 0 and O other-
wise). Let ¢ = E[I] = mp. Then, for some constant
C > 0, Prob{|] — pu| > p/t} < C@t?5/pf). In partic-
ular Prob{I = 0} < C(1/p).



A p-sample of X isasample R obtained by » identical
independent 0-1 (characteristic) random variables, each of
whichis1with probability p. Let f(X,r) = E[|T(R)|] fora
p-samplewithp = r/n. A K-wiseindependent p-sampleand
fx (X, r) are defined similarly for A -wise independent 0-1
random variables. In the cases we consider, K issufficiently
large so that fx (X, r) = O(f(X,r)). Our way of deding
with monotonicity followsthe analysisin [1].

Theorem 2.2 Let (X', 7) be such that it satisfies the mono-
tonicity property, and that, for X C X, f(X,r/t) =
O(f(X,r))fort > 1 For0< ¢ < 1,andc > 1, there
are constants ¢, rg such that for X C & with |X| = n
and rg < r < n, asample R C X with the follow-
ing properties can be computed in polynomial time sequen-
tially, more precisdy in time O(n?5+0P+1) where K =
[max(c+2+3D/2, (D+1)/6+D/2)] ) ]|R|-3r/2| < < 7,
(i) maxoer(r) [Xo| < (n/r)r, (i) 3 er g [ Xl

d(n/r)f(X, r) In the EREW model thecomputatlon can
be performed in time O(logrn) and work proportional to the
sequential time.

Proof: Let R C X bea2K-wiseindependent p-sample
with »/n < p < 2r/n. In the argument for (iii) when
monotonicity but not locality holds, we need to make use
of a particular construction of the sample space for the 0-1
random variables Iy, . . ., I, that determine R. We use the
construction of Joffe [26]: Let n be a prime number with
n < n < 2n; the sample space is Q(n, 2K) = Z2%. For
1<i<nand (ao,.. , A2F — 1) € Q(U,Z[{) let X; =
522K ajil mod n andlet I; = 1if 0 < X; < 2r. The0-1
random variables I, . . ., I,, defined by giving each vector of
Q(n, 2K) probability 1/ 772K , are 2K -wise independent and
p = Prob{l; = 1} satisfiesr/n < p < 2r/n.

We claim that R satisfies (i)-(iii) with probability at least
1/2. To show this, we verify that each of (i)-(iii) fails with
probability at most 1/6. For (i), thisfollowsfor o sufficiently
large by Lemma 2.1 (the expected valueis between » and 2r
depending on the number 7 in sample space construction).
The argument for (ii) and (iii) isas follows.

Let T(X) = {0 € T(R): RC X}. Let A, bethe
event that A(e) C Rand X, N R = 0. For o € T(X),
lett, = | X5|(r/n). po := Prob{A4,} isequa top,1 - pos2
where p, 1 = Prob{X, N R = 0|A(c) C R} and poo =
Prob{A(c) C R}. By independence p,, = pl®)l, since
2K > D. BylLemma2.1,p,1 < C’(l/tK D/z) (after fixing
at most D variables, the remaining ones are (2K — D)-wise
independent). Thus, since Prob{cs € 7(R)} < p, (equality
holdsif thereislocality),

1— Prob{ max |X.| < -
{UGT(R)I | < (n/r)r’}

- Z Prob{o € T(R)} - [|Xo| > (n/r)r’]

ceT(x
D/2 Z Do

O'GT
O (1fr* PP 1/67

IA

N

if K > (D+1)/§+ D/2andr > roissufficiently large

(we have used 3, .7 (x) Po2 = O(rP)). This verifies the
claim for (ii).
Fort =1,...,r, lea Ty(X) = {o¢ € T(X) : (t —

Li(n/r) < |Xo| < t(n/r)}. Let R, be a2K-wise in-
dependent p;-sample with »/4nt < p, < r/2nt. Using
the sample space described above, the corresponding 0-1

random variables I\"), ..., I{") are defined by 1"} = 1 if
0< Xi < [r/4t]. Foro e T(X), let AL, i), p)
and p(gf)z be defined for R; analogously to the same terms
for R above. We want to show that for ¢ € T:(X),

Prob{c € T(R)}/Prob{c € T(R:)} < C'/(t — 1)K —3D/2
for ¢+ > 1. For this we first argue that Prob{c €

T(R)}/Prob{o € T(R:)} < pg/p(gt): thisfollowsby mono-
tonicity since our specific construction of 0-1 variables im-

plies that Prob{c € T(R)|A,} < Prob{c € T(R:)|A%
and hence Prob{c € T(R)}/p, < Prob{c € T(R:)}/p¥".
Then, we verify that p,/pY) < C'/(t — 1)K-3D/2; this
follows because p,1 < C"/(t — 1)5X=P/2 fort > 1 by
Lemma 2.1, p'} > 1/2 because E[|R, N X,||A(0) C
R < 1/2, and py/pl, < (81)2)1 < (8)P. Thus,
E[} o er(r) | XoI] equals

Z Prob{c € T(R)} - | X,|°

c€T(X)

(;) Y Probis € T(R)} +

c€T1(X)

Z (tTn) (t_l)CTD/z Z Prob{o € T(R:)}

t=2 c€T¢(X)

IA

IA

(2) s

w{n\° a 1
¢ (?) Z(t_l)K—_c_mf(Xw/Zt)
t=2
< C///(n/r)cf()(7 27“),

if K > ¢+ 3D/2 + 2, where we have used
Y oeT(x) Prob{o € T(R)} = f(X,r/t) = O(F(X,7)).
By Markov sinequality, it follows that thereis a ¢’ so that
(iii) holdswith probability at most 1/6.

The polynomia time claim foll ows because the probabil -
ity space has size O(n?K), and each pointin it can be tested
intime O(n?*1) with anot so efficient algorithm (it is guar-
anteed that a sample satisfying (i)-(iii) will be found). The
paralelization is straightforward, in particular, each of the
candidate samples can betested in paralel. B

For definiteness, we will use Theorem 2.2 withd = 1/2.

Efficient construction

For our purposes, we need a faster construction of a sample
R. This can be achieved using ¢-approximations which can
be constructed efficiently using atechnique of Matousek [30].



Approximations. A pair (X, F), where X C X isasbefore
and F is a family of subsets of IR? defines a range space
(X, R(X,F))whereR(X,F) ={TCX :T={zxeX:
yNx # 0} fory e F}. A C X isa(1/r)-approximation
for (X, R(X,F))ifforeachT € R(X,F),||ANT|/|A| —
IT|/1X]] < 1/r. Matousek’s construction is originally for
the range spaces defined by the pairs (P, #(IR%)), where P
is a finite point set in IR* and #(IR?) is the collection of
closed half-spaces in IR?, and is easily extended to the pairs
(P, L(IR%)) where £(IR%) is the collection of linear cellsin
IR?. A linear cell istheunion of O(1) intersectionsof each of
O(1) half-spaces. A pardldizationisdueto Goodrich [21].

Lemma2.3 Thereisan 0 < ¢ < 1, such that for a given
P C R*with |P| = nandr < nf, a(1/r)-approximation of
size O(r?logr) for (P, R(P, L(R))) can be constructed in
timeO(nlogr). Inthe EREW PRAM model the construction
takestime O(logn logr) using work O(rn logr).

Here, we are interested in the pairs (X, T(X)) and
(X, T(X)),where T(Y) ={c € T(X): X C X, |X|<
D}. A standard trick to obtain a good r-sample for X ef-
ficiently consists in first computing a (1/+)-approximation
A for (X, R(X, T(X))) intime O(nlogr) and then com-
puteagood (r/|A|)-samplefor A intime polynomia in | A|.
With » < n€ and ¢ sufficiently small, the total time is till
O(nlogr).

Linearization. Toapply Matousek’sconstructionfor approx-
imations, and in order to compute the conflict lists of 7 (R)
efficiently, wemake use of linearizationfor (X, T (X)) (first
described by Yao and Yao [41], and introduced in geometric
sampling by Matousek [27, 29]). The pair (X', F) islineariz-
able if there are maps ¢ from X' into RY, and ) from F
into £(IR?) such that for € X ando € F, z N o # 0 iff
p(z) € ¢(o). The mapping ¢ is given by bounded degree
polynomiasin the parameters defining an object € X; the
functions describing the coefficients in the equations of the
hyperplanes defining (o) are bounded degree polynomials
in the parameters defining o

After linearization, an approximation can be constructed
using directly the technique of Matousek in time O(n logr)
for r < n-.

Computing conflict lists. Linearization aso simplifies the
problem of computing the conflict lists X,, for ¢ € T(R):
thisis trandated into a problem of point location queriesin
an arrangement of hyperplanesin IR (seefor example [29]).

Let A be the collection of al the hyperplanes bounding
the linear cells ¢ (o) for ¢ € T(R). |H|isO(r”). Wecan
construct a point location data structure D for H to achieve
an O(logn) query time with size O(|H|P) [9], but we can
also use the following less-efficient construction: For each
leaf [ of D (itsnumber is O(|H|?)), determine thelist L({)
of each cell o € T (R) for which (o) containsthecell inthe
arrangement of I corresponding to!. (The time (and space)
used in this construction can be made O(n) by choosing e
appropriately.) To compute the conflict lists, first, for each
object x, perform a search for ¢ (x) inD and let () be the

leaf where this search “lands’. Then, we collect , for each
cdl o € T(R), the objects x for which L(I(x)) contains .
Thiscan bedoneintimelinear inthetota size of the conflict
lists. Parale versions of these point location data structures
are also known [4].

To summarize, then, we have the following:

Theorem 2.4 Let (X', 7) be such that it satisfies the mono-
tonicitypropertyand (X', T(')) islinearizable. For 0 < § <
1, thereareconstantsc’, ro, e suchthat for X C X with|X| =
nand ro < r < n¢, asample R C X can be constructed in
time O(nlogr) by first obtaining a (1/r)-approximation A
for (X, T(X)) (or (X, T(X))) and then an (r/|A|)-sample
for A according to Theorem 2.2, so that it satisfies the
properties: (i) [|R| — 3r/2 < 7, (il) MaXoer () |Xo| <
(n/r)r®, (i) [T(R)| < ¢ F(A), (V) perm 1Xo| <
d(n/r)f(A,r). Thetriangulation 7 (R) and conflict lists
can be computed in time O(nlogr + (n/r)f(A,r)). The
constructiontakestimeO(logn logr) and optimal O(n logr)
work in the EREW PRAM model.

Segmentsand trapezoids

In our applications ¥ = S is the class of segments in the
plane. Thearrangement .A(S) for .S C S consistsof thefaces,
edges and vertices determined by 5. The visibility diagram
of .S is obtained by extending each endpoint and intersection
point vertically until it hits another segment, each connected
component of the complement of the visibility diagram is
called a trapezoid, and the trapezoidal decomposition 7(.S)
of S isthe collection of al such trapezoids. Thesize of A(SS)
isO(n + k) where k isthe number of intersections between
the segments; the same bound appliesto 7 (.5).

We elaborate on linearization for the pair (S, T(S)). For
asegment s, let ({1, 12) and (r1, r2) bethe endpointsof s, the
map ¢ isinto IR® and is defined so ¢ (s) equalsthetuple

(11,12, 71, r2, lalo, lirp, ralo, 7172).

The map (o) is determined by writing a complete case
analysis of the conditionsunder which a segment s intersects
o. s intersects o iff either (i) o contains one endpoint of
s, or (ii) s intersects one of the vertical edges of o, or (iii)
s intersect both the top and bottom edges of #. The result
is of the form ¢y VvV - -+ V ¢,, Where each ¢; is of the form
¢ 1A Acin, Whereeach ¢; 5 isaninequality. When these
inequalities are written so asto avoid division, one finds that
thevariablesappearinginthem arethose above defining ¢ (s).
Thus, these inequalities determine half-spacesin IR®. Since
m and n; are O(1), theinequalitiesdetermine alinear cell.

Estimation of the number of intersections. For the com-
plete arrangement of segments f(X,7) = O(r + k(r/n)?),
soto havetheright parametersin (i) and (iv) of Theorem 2.4,
we need to verify that f(A,r) = O(r + k(r/n)?).

A (1/r)-approximation A for (S, R(S, T(S))) isasoa
(1/r)-approximation for (S, R(S,S)). Then, by aresult of
Bronnimann et a [7] on product range spaces, A can aso be



used to estimate the number of intersectionsin .A(S) inside
any convex region. More precisdy, for a set of segments
X, let v(X, o) denote the number of intersections between
segmentsin X that liein o, then

Lemma2.5 Let A bea (1/r)-approximation for S. For any
smplex o, [v(S, 0)/|S]? — v(A, o) /|A]P| < 1/r.

Thus, wehavethat f( A, r) < C((r/|A])%v(A, o) +7) <
C((r/n)?v(S, o) + r), as desired. To summarize, we obtain
the following construction:

Theorem 2.6 For 0 < § < 1, there are constants C, rg, €
such that for 7o < r < n¢, intime O(nlogr + (r/n)k) one
can compute a sample R C S, itstriangulation 7 (R) and
conflict lists, withthefollowingproperties: (i) ||R| —3r/2| <
r, (i) [T(R)] < C(r + (r/n)%k), (i) MXoeT(r) |So] <
(n/r)r, (iv) ZaeT(R) |Se| < C'(n 4+ (r/n)k). In the
EREW model the computation can be performed in time
O(logn logr) and work proportional to the sequential time.

In our second application, we are interested in computing
the face f,(S) of A(S) that contains a given point p. The
complexity of a face f is the number of vertices and edges
onitsboundary. Let 7, (R) bethetrapezoidal diagram 7 (R)
restricted to f,(R). The complexity of f,(S) is O(na(n))
where « is the very sowly-growing inverse of Ackerman’s
function [24, 36]; thisbound can be achieved [40]. The same
bound applies to 7,(S). For 7,(R) monotonicity but not
locality holds. Theorem 2.4 directly impliesthe following.

Theorem 2.7 For 0 < & < 1, there are constants C, rg, ¢
suchthatfor o < r < n¢,intimeO(n logr) onecan compute
asample R C S, itstriangulation 7, (R) and conflict lists
with the following properties: (i) ||R| — 3r/2| < », (ii)
IT(R)| < Cra(r), (iil) MaX,er(r) |S,] < (n/r)r%, (V)
YoeT(r) 190 < Cna(r).

Randomized algorithms

Efficient randomized a gorithmsare known for both problems
on segments we are considering. Here, we point out that
for both, algorithmswith equal asymptotic performance can
be obtained using the approach used by Chazelle [10] and
Bronnimman et a [7] for half-space intersection.

The sampling is global, that is, at a given stage a single
globa sample determines the sample in each subproblem,
rather than an independent sample for each subproblem. As
aresult, one maintains 7 (R;) for a single sample R; of S
at each stage. This has the advantage of bounding globally
the sum of the sizes of al subproblems at each step. This
approach isrelated to the lazy randomized incrementa con-
struction of [1, 18].

The agorithm inserts the segments in rounds. For each
segment sandi = 0,1,2,3,..., k, where k = ©(logn), let
I, ; bea0-1randomvariablewithProb{I, ; = 1} = p; where
po=c/nandp; = 2= 1pg/(1 — 2~ 1py), for some constant
e. Ri={s:1,;=211I,; =0forj<i}istheset of

segments inserted in the i-th round. The set R; = U;_, R},
those segments inserted up to the i-th round, is a ¢;-sample
where ¢; = 2'pg (thus, the expected size of R; doubles in
every round); and R} isap;-sampleof S — R, _,.

For computing the segment arrangement, inthe:-th round,
for each o € T(R;_1), compute 7 ((R}),) restricted to o
and the corresponding conflict lists. A not very efficient
algorithm can be used for these loca computations as the
expected size of (R!), isO(1). Then agloba clean-up puts
together pieces of the same trapezoid = € 7 (R;) which are
indifferent trapezoidso € 7 (R;_1), and their corresponding
conflict lists. Thefina resultis 7 (R;).

For computing the face containing a point p, the clean-up
includes determining through a graph search thosetrapezoids
reachable from p, thus obtaining 7, (R;) at stage :.

An anaysis similar to that in [7] shows that these al-
gorithms have expected running times O(nlogn + k) and
O(na(n) logn) respectively.

Unfortunately, it is not clear how to apply the techniques
in [7] to derandomize these algorithms. Because of the lack
of locality, this seems especialy hard for the single face
problem. Thus, for derandomization, in the next two sections
we turn to local sampling.

3 Arrangement of segments

An inefficient algorithm

We first describe a simple, inefficient algorithm that will be
useful in the optimal agorithm to deal with subproblems of
small size: the agorithm computes a sample R according
to Theorem 2.4 for » = n® and some constant 0 < ¢ < 1,
computes the conflict lists of the trapezoids in 7 (R), and
then it recurses on each of the trapezoids whose conflict list
islarger than a certain constant and finishes the smaller ones
with some “brute” force method.

The sample and the corresponding conflict listsare com-
puted in time O(nlogn + (r/n)k) and results in O(r +
k(r/n)?) trapezoids. Thus, thetotal runningtime for theroot
problemisO(n logn+kr/n). Aninductive proof showsthat
the total running time is O(nlog® n + k) for some constant
¢ > 1. The agorithm is readily parallelized with a running
time O(log? n) and work O(n log® n + k).

Lemma3.1l Let S be a set of n line segments that have &
pairwise intersections. Then one can compute the arrange-
ment of the ssgmentsin S (deterministicallyand sequentially)
intime O(nlog’ n + k). In the EREW PRAM model it takes
time O(log?n) usingwork O(n log” n + k).

An efficient algorithm

To avoid the total size blow-up that results in the undesired
polylog term, we use an extra cutting step in each stage. Let
T; denotethe collection of activetrapezoids at the beginning
of stage: (thoseonwhich theagorithmrecurses); T consists
of asingleinfinitetrapezoid.



For atrapezoid r, let S, denote those segmentsin .S that
intersect 7, and let S¢ and S7¢ denote those segmentsin S
that cross and those that do not cross (that is, with an endpoint
inside) ~ respectively. Also, let SSite (respectively, S¢"%)
denote those segments in S¢ with less than (resp., at least)
A intersectionsin 7. Let n, = |S;| and let k, denote the
number of segment intersectionsinside r.

During each level of recursion thealgorithmwill maintain
the following invariant:

Invariant: The totd size of all active subproblems
> 0eT, Mo 1SO(n + k/A), where A = logn.

The following steps are performed at stage i:

Foreacho € T;:
1. Computeasample R(c) C So, T(o) := T(R(s)) and
conflict lists according to Theorem 2.6 with r, = n§,
2. Foreachr € T(o):
21, Compute Sg and S7°
22.  Compute =1 and g heavy
2.3.  Compute cutting 7 () and conflict lists
24. Foreachu € T*(7)
241, if ]S, > Mthenput pin Tig1
else compute the arrangement of .S, restricted to
u using the inefficient algorithm

Cutting 7*(7). Thecutting 7 *(7) has the following prop-
aties (i) [7X(r)| = O(|S1|/); (i) each ji € TA(7)
intersects O(A) lite segments; and (iii) a segment s inter-
sects O(ky /A + 1) trapezoidsin 7*(r), where k, , isthe
number of intersectionson s in . From thisit follows that
YoueTr(r) M 18O (nr + k- /A).

Now, we describe how to obtai n acutting with those prop-
eties. Let @ C S(o)¢ such that @ is not non-intersecting
inside . () partitions = into a set of polygons. Let i be
one of them; it has edges on the boundary of = which we call
B-edges, and edges on segmentsin Q whichwecal @-edges.
For ¢ let b(y) (resp. ¢(p)) bethe number of intersectionsbe-
tween lite segments and its B-edges (resp. ()-edges). Except
for O(1) of them, these polygons are quadrilateralswith two
B-edges and two )-edges, which we call good polygons (the
others are bad). See Figure 3.

Let @) be so that for each polygon u, DA < b(p) < EA,
for some constants A and 5. Clearly, the number of polygons
isO(]S¢€|/)). Since apolygon has at most four -edges,
then it intersects O(A) lite ssgments. Let s be a segment.
If s intersects the two ()-edges of a good polygon g, then
s isintersected by at least D/2 — 2) (lite) segments in p,
whichisat least A if D > 6; thus, since s intersects O(1) bad
polygons, and the B-edges of O(1) good polygons, it follows
that s intersects O(k; /A + 1) polygons. Properties (i)-(iii)
above apply to the collection of trapezoids resulting from the
trapezoida decomposition of the polygons, which isthen our
cutting 7> (7).

For E sufficiently large, such set ¢ can be constructed
by adding segments incrementally, and it can bedoneintime
O(n,) assuming that the endpoints of the segments on the

Figure 1: Cutting7*(r): s,t are good, u, v, w are bad.

boundary of = are sorted. The agorithm works by scan-
ning the ordered lists of intersections of lite ssgments with
the boundary of 7. The conflict lists can be computed in
time linear with the output size plus O(n logn) overhead.
Thus, the total time for constructing the specia cutting is
O(n,logn; + k;/A). We elaborate further in the full ver-
sion.

Invariant. A segment inanonterminal trapezoid p € 7*(7):
(i) hasarea endpointin r, (ii) isheavy (in ), or (iii) islite
(in 7). By the properties of 7 (r), cases (i) and (ii) can be
credited to the n and %/ terms respectively. Case (iii) can
be credited to the n term or the £/ term since while there
areonly O(\) lite segmentsin ., thereare at least A2 — O())
other segments in x which can lend credit. Thus the total
subproblemsizeisO(n + k/A) and theinvariant is enforced
in each stage.

Total work. The sample, triangulation and conflict listsin
step 1 are computed in time O(n, l0gn, + kors/ns) by
Theorem 2.4. By construction ZTET(U) ny = O(ne +
ko(rs/ns)). For each 7, step 2.1 is trivially performed in
timeO(n,), step 2.2isperformedintimeO(n, logn, ) using
well-known techniques (see eg. [2, 20]), step 2.3 takestime
as indicated above.

Thus, steps1-2for o taketimeO((ny+ko (70 /1)) 10975+
ko/A). Using the invariant in the previous stage, this is
O(((n + k/A) + k/v)logr;) where r; = max . ro and
v=min__p ng/r,. Assuminge < 1/2,sincen, > A2 for
non-termina subproblems, then v > A, and thetotal time for
the stageisO((n + k/A) logr;), except for the small termi-
nal subproblemsthat are terminated with theinefficient algo-
rithm. Since r; decreases asn(1=<)'¢’ for some0 < ¢/ < 1,
then >, logr; = O(logn). So adding this time over all
stagesresultsintime O(nlogn + k).

Now we consider the terminal subproblems. They are
of size O(A\?), so the arrangement inside 2 can be com-
puted in time O(n,log"logn + k,) using the inefficient
algorithm.  Since ZueT*(T) n, is O(n,; + k;/X), and
Y reT(oy(nr + ks /A)iSO(n, + ko /A) (dthough p ister-
mina, n, > A?), then the total amount of terminal work in
one stage is O((n + k/A)log° logn + k;), where k; is the
number of intersectionsfound in these terminal subproblems.
Thisadded over O(loglogn) stagesisO(nlogn + k). Thus,



thetotal timeis O(nlogn + k).

The previous discussion is summarized in the following.

Theorem 3.2 The arrangement of a set of n line segments
in the plane with % intersections can be computed in time
O(nlogn + k) sequentially and deterministically.

Thisresult wasfirst obtained by Chazelle and Edel sbrun-
ner [11] using a sweep agorithm. Our agorithm provides a
divide-and-conquer sequentia alternative, and has the advan-
tage of being parallelizable and of using O(n) space when
only required to output the k intersections.

Parallel algorithm

An important characteristic of our algorithmisthat it can be
readily parallelized using simple techniques.

Theorem 3.3 The arrangement of a set of n line seg-
ments in the plane with & intersections can be computed
in the EREW model deterministically in time O(log?n) and
work O(nlogn + k). Using randomization, the time is
O(logn loglogn) with n-polynomial probability.

All stepsinstagei can be parallelizedin astraight forward
manner using known parallel techniques(see, eg., [4,37]). In
particular, stage ¢ runsin O(l og? 7;) time using optimal work.
Also, a each round it suffices to perform one single global
processor alocation call. If a model that alows non-global
processor allocation calls is used then the time required by
the randomized algorithmis reduced to O(logn).

Linear space

Chazelleand Edel sbrunner [ 11] posed the problem of whether
the k intersections of n given segments can be output in time
O(nlogn + k) using space O(n). Our agorithm can be
adapted for thistask.

Theorem 3.4 The k intersections of a set .S of n segments
in the plane can be reported using space O(n) and time
O(nlogn + k).

Proof: At any given time, it is sufficient to keep only one
path of the computation tree from the root down to a leaf
(or just down to subproblems of size O(1/n) which can then
be solved in O(n) space). At each node on this path one
cannot afford to compute all conflict lists a once. Instead,
they are computed in batches of size O(n, ). Thisispossible
for ¢ € T,: first compute the sizes of the conflict lists, then
output them in batches of size ©(n,). Similarly, for each
T € T(r). Thisisdone withinthe same optimal time. B

4 Singleface

For @ C S let A,(Q) denote the arrangement A(Q) re-
stricted to the trapezoid o (it includes the two segments on
the top and the bottom). The set of facesin A, (Q) that can
be reached from p (when the portions of segments outside o
are clipped away) is denoted by f, ,(Q). Clearly, f, -(Q)
contains f,(S) No.

The agorithm keeps at every stage a collection of active
trapezoids, whose unionisguaranteed to contain f, (S) (with
the exception of some pieces that will be explained later).
Let T, bethecollection of active trapezoids at the beginning
of stage i. In generd, T; isnot 7,(R) for some R because
sampling isindependent in each subproblem. For o € T;, we
have a conflict list S(o), which isin genera different from
S, because of pruning. Let n, = |S(o)|. For atrapezoid r
contained in o, following convention, S(s), denotesthelist
of conflicts of 7 in S(s). Let S(o)¢ be those segments in
S(o), that cross (have no endpointinside) =, and let S(o)”°
bethose segments that do not cross (have at | east one endpoint
in) 7. For each trapezoid o, we maintain for its left (resp.
right) vertical edge /(o) (resp. r(o)) the sorted list L; (o)
(resp. L, (o)) of intersections between segments in S(o)
and {(c) (resp. 7(o)). These listsaso contain connectivity
information to be described later. The following steps are
performed at stage i:

1 Foreacho € T;:
1.1 If n, issmaller than a constant then compute £, +(S<)
by some brute force method.
1.2 Computeasample R(a) C S(o), T(5) = T(fp,o(R(5)))
and conflict lists according to Theorem 2.7 with r, = ng,
1.3 Foreacht € T(o):
131 Compute S(o); and S(o)7°
132 Compute fp,-(S(o)7)
2 Useagraph search to determine all facesin f,, - (S(o)7)
for somer € T(o) and o € T; that can be reached from
p, and mark them as reachable
3 Foreacho € T::
3.1 Puteachreachabler € T(s)inT 41
3.2 Foreachr € T;41 prune S(s), toobtain S(7) and
update connectivity accordingly

Running time. Step 1.2 is performed in time O(n, logn,)
by Theorem 2.7. Steps 1.3.1 and 1.3.2 are performed intime
O(n, logn;) for each 7 and hence time O(n, «(r,) logn,)
foral rinagiven o (notethat 1.3.2 isnot arecursive compu-
tation, thisisacomputation of thezone of alinein an arrange-
ment of lines or the intersection of some halfplanes, both of
which are simpler problems). Thus, the total time for step
1isO()_ e, noc(rs)logrs). We will see that for each
pruning enforcestheglobal bound  © . ns = O(na(n)).
Thus, the tota time performed in step 1 at each stage is
O(na(n)a(r)logr) where r = max, . r,. The graph
search performed in step 2 takes time O(na(n)a(r)) be-
cause thisis a bound on the number of trapezoids that can
be reached. It will be clear after the explanation of pruning
below that step 3 can be performed within the time bound



O(na(n)a(r)logr). Since) . logr; = O(logn), the total
running timeis O(na?(n) logn).

Arrangement of clipped segments. The first observation
needed to obtain the global bound on the subproblems is
that the graph search of step 2 determines the single face
of p in an arrangement of n segments Sgip. Indeed, for a
segment s, if its endpoint isin the interior of a trapezoid T,
then its portion inside  is effectively clipped by removing
S(o)7¢ from consideration. Thus, the segments in Sq;, are
the origina segments in S each one possibly with pieces
containing its endpoints clipped awvay. This gives a global
bound O (na(n)) onthenumber of vertices (real vertices, not
intersections of segments with vertical boundary segments)
in the face computed by the graph search of step 2.

Actualy, the previous argument is not quite complete as
there are additiona pieces of segments removed by pruning.
But it will be clear from the explanation of pruning that the
claim above remains true.

Pruning. For atrapezoid =, we want to prune its conflict
list S(o), to obtain S(r). First, we put all the noncrossing
segments S(o)?¢ in S(7). Let freacn(T) be those faces in
I»7(S(c)2) that were marked by the graph search of step
2 as reachable. All those s € S(#)¢ not bounding a face
iN freach(7) are eiminated from consideration for S(r). For
each vertex of a face in freaen(7), We include in S(r) the
two segments intersecting at that vertex. The only segments
bounding freacn(7) that are not yet considered are those cor-
responding to pairs of segmentsin S(¢)¢ bounding aface of
Jfreach(7) that cuts through and has no verticesinside r (these
two edges go from one side of T to the other, do not intersect,
are not intersected by any other sesgment in S(s)¢, and have
no segment in S(o)¢ between them). We cdl them tunne
pieces, and they form tunnel swhen all the pieces bounded by
the same segments and in neighbor trapezoids = are put to-
gether. We cannot put the two segments bounding atunnel 7'
in S(r) for each r that containsatunnel piece of T, because
atunnel may go through many trapezoids ~. Thus, we need
to consider in detail these tunnel pieces.

Tunnel pieces. We distinguish three types of tunnel pieces:
A tunnel piece is unobstructed if it is not intersected by any
noncrossing segment; it is completely obstructed if it isin-
tersected and crossed by some noncrossing segment; or it is
potentially obstructed if it isintersected by noncrossing seg-
ments but not crossed by any of them. See Figure 4. Tunnel
pieces are easily identified: to classify them we perform a
point location of the endpoints of the segments in S(o)7°
among the strips determined by all thetunnel piecesin r, and
then we identify strips that are not crossed. This takes time
O(n, logn;) foreach r, and O(na(n)a(r) logr) globaly.
Foratunnd T, let s1(7T), s2(T) € S bethetwo segments
bounding it. Similarly s1(t), s»(¢) for atunnel piecet. The
troublesometunnel pieces are the unobstructed and the com-
pletely obstructed ones because there can be many of them.
Onthe other hand, a partially obstructed tunnel piecet inris
easy to handle: put s1(t), s2(t) in S(r); these two segments
can be charged to some segment s with an endpointin ¢ (a

Figure2: Tunnel pieces: ¢, «, and v are unobstructed, poten-
tially obstructed and completely obstructed respectively. w
isnot atunnel piece.

given segment s cannot get more than four charges in this
manner). The other two types are handled as follows.

Let ¢ be an unobstructed tunnel piece in a trapezoid .
Then ¢ does not put s1(t) of s»(t) in .S(r) (still the neighbor
facesinT may put s1(t) or s,(¢) in (7)), but weneed to store
the connectivity information that would be lost otherwise as
follows. Consider amaximal chain t of unobstructed tunnel
pieces and let {(t) and »(t) be its vertical edges on the left
andontheright. Let 7; (resp. 7,-) bethetrapezoid whose right
(resp. |eft) vertical edge contains{(t) (resp. »(t)). 7 and 7,
will storeintheirlists L, (7 ) and L; () pointersthat allow to
jump directly between 7; and 7. in both directions; previous
connectivity information may need to be updated (to connect
pieces of tunnel previoudly found).

Finally, let us consider the completely obstructed tunnel
pieces. Only two of them in a particular tunnel 7", contained
in trapezoids m; and 7. respectively, can possibly intersect
f»(S) (for example, if p is outside the tunnel, then they are
the leftmost and the rightmost completely obstructed tunnel
pieces in the tunnel). Pruning is handled as follows: put
s1(T), s2(T) in S(m) and S(r.) (any other completely ob-
structed piecet inT" doesnot put s1(7"), s2(7") initstrapezoid
7, but again the neighbor faces may do it). Those segments
that are kept (at most four) can be charged to a vertex of the
single face of Sgip.

Note that after the pruning is performed, the single face
of p in the resulting arrangement of segments (since some of
them had pieces taken away, the resulting set is different) is
thesameasthesinglefaceof p intheorigina arrangement: no
less can be reached because we are only taking away pieces
of segments (the connectivity information of unobstructed
tunnel piecesisnot lost); and no more can be reached because
a segment piece isremoved only if it does not bound f;, (.5)
(except for the bounding segments of an unobstructed tunnel
piece, but inthat casethetunnel pieceitself isremoved and the
connectivity information prevents unreachable points from
becoming reachable).

This compl etes the argument that gives the globa bound

ZaeT, ne = O(na(n)).



5 Simplicesin higher dimensions

In this section we consider aset S of n possibly intersecting
(d — 1)-simplicesin IR?, for any fixed d > 3, eg., triangles
in IR3, or tetrahedra in IR®. When the simplices in S may
intersect, the complexity & of A(S) can vary between n and
n9. We give methodsfor constructing acovering for .A(.S) of
sizem = O(n?log®V n + k). We aso describe how the
hierarchical description of the covering can be used to answer
point location, vertical ray shooting, and incidence queriesin
O(logn) time using the same storage. The constructionsare
performed sequentialy in O(m) time, except for the point
location structure which requires O(m + klogn) time. In
parallel, the constructions take O(logn) time using O(m)
work in the EREW PRAM mode, and the point location
structure is built in O(log?n) time using O(m + klogn)
work. When the simplices in S are interior digoint, eg.,
non-simple polyhedra, the construction can be optimized to
buildaatriangulationof .A(S) of sizeO(n~1) usingasmuch
work.

Our constructionisinspired by Pellegrini [35], who gives
arecursive construction that has O(logn) stages, each using
constant size cuttings® of the simplicesin S. An augmented
version of the resulting hierarchical structure answers inci-
dence and vertical ray-shooting queries in O(log?n) and
O(log*n) time, respectively. Point location queries take
O(log®n) time as they are reduced to d vertical ray shooting
queriesin A(S). The essentia change we make to reduce
the size of the covering and obtain faster query timesisto
decrease the depth of the recursion by increasing the size of
the cuttings. Of course, to obtain query times of O(logn),
al secondary structures must follow this principle as well.
Finally, increasing the size of the cuttings implies changes
for the queries, e.g., apoint can belocated in O(1) simplices
by brute force, but a more efficient method must be used if
there are O(n¢) simplices. We need the following for the
construction.

Definition 5.1 Let 7 be a (d — 1)-smplex and & be a d-
simplex or vertical d-cylinder. T crosses o if 7 intersects o
and no (d — 2)-face of r intersects o, and = partially crosses
o if some (d — 2)-face of rintersectso. If 7 partialy crosses
o, then the vertical projectionsto IR*~! of 7 and o intersect.

Lemmab5.2 ([4]) Given a simplex o and a set H of n hy-
perplanes intersecting o in R?, a (1/r)—cutting for H (re-
gtricted to ), including conflict lists, with m = O(r4~1 +
(r/n)%v(H, o)) simplices can be constructed in O(logn)
timeusing O(nr® + nm) work in the EREW PRAM mode,
where ¢ > 1is some constant and v(, o) is the number of
verticesof A(H) ino.

Constructing a covering of .A(S). We build a sequence
Co, C4, . .., Cy of setsof d-simplicesand vertical d-cylinders.
For each o € C;, we partitionitsconflict list S, into two sets
SPe and SS, where S2¢ contains the (d — 1)-simplices that

81n a (1/r)—cutting, the conflict list of each simplex in the cutting has
sizeatmost n/r.

partialy cross o, and S containsthe (d — 1)-simplices that
cross o. The basis Cy is a large simplex o containing S
with S2¢ = S and S5 = @ Inductively, we have aset C;_;
that covers oy, such that, for every o € C;_1, |SE°| < n;_1
and |S§| < n;_2, where n;_, = ni_z/m’_l, ri_1 = nf_z,
for someconstant 0 < ¢ < 1, andn_y = ng = n. C; is
obtained from C;_1 by refining o € C;_q if |S2¢| > n; or
|S§| > Nni—1.

If|.SS| > n;—1, we construct a (1/p1)-cutting (restricted
to o) for the hyperplanes spanning the simplicesin S¢, where
p1 = ri—1|S¢|/ni—2 < ri—1. Thus, each new simplex = in
C; has |S¢| < |S¢|/p1 = ni—z/ri—1 = n;—1 (the set S is
empty since every simplex in S% crosses 7). By Lemma 5.2,
thereare O(p1~* + (54) “v(9, o)) simplicesin thecutting.

If [SE¢| > n;, we vertically project o and the smplices
in S£¢ to IR~ obtaining a (d — 1)—simplex and a set 5'2°
of (d — 1)-simplices, respectively. We construct a (1/p2)-
cutting for the hyperplanes spanning the (d — 2)-faces of
simplices in S’2°, where p, = r;|S2¢|/ni—1 < 7. Next,
the (d — 1)-simplices in the resulting cutting are vertically
projected obtaining d—cylinderswhich arerestrictedtos. The
choice of p, guarantees that each new d-cylinder = in C; has
|SE] < [S54]/p2 = mi—1/ri = mi and [SZ] < [SEC] <y
There are O(pp9~1) d-cylindersresulting from the cutting.

There are h = O(loglogn) levelsin the recursion. The
size of C; isgiven by the recurrence
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for some constants A, B > 1. Thisrecurrence's solutionis
|Ci| < C(n/ni—1)4"t + D(1/n;-1)%k for some constants
C, D > 1. Verifying this inductively we need C' > A and
D > ADr; 7+ B, whicharesatisfied for appropriate choices
of Cand D,egq.,C > A, D=A+ B,and D < r;_1. Thus,
the total number of simplices generated is
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We now examine the time and work bounds of the algo-
rithm. By Lemmab5.2, foreach o € C; wespend O(logn;_1)
time and O(n;_1rF) work for some congtant £ > d. Thus,
thetota timeis ), logn;_1 = O(logn), and thetotal work
is
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= O(nd_1 |Ogo(1) n+ k),

for e chosen sufficiently small sothat ¢ £/ < d — 2.



Below we describe how the hierarchical structure built
when constructing the covering of .4(S) can be augmented
to answer incidence and vertical ray shooting queries in
O(logn) time. Then we briefly discuss how point location
queries can be performed in O(logn) time using a sequence
of d vertical ray shooting queries.

Incidence queries. Asin[35], the basic data structure is a
two-level search tree. The primary search tree 77¢ (a PC-
tree) is built from the cylinders generated from the sets S2¢,
and each secondary search tree 7° (a C-tree) is built from
the d-simplices generated from the sets S2. For example, for
o € C; the cylinders of ;41 resulting from the cutting of
SP¢ are stored in the node v, associated with o in 77¢, and
the simplices of C;4; resulting from the cutting of S are
contained in the root of v,’s secondary structure 7.

During an incidence query, the query point p isfirst lo-
cated in the set of d-cylinders contained at the root of 77¢.
Sincethereare O(r{'; ') d-cylinderscontainedineach nodeat
level 7 inT7¢, the search cannot be performed by brute force
(asswasdonein[35]). However, we can build a point location
structure for the (d — 1)-dimensional arrangement of the hy-
perplanes spanning the (d — 2)-faces of thesimplicesin S'2°.
This can be done in O(logr;1) time using O(r{; 1) work,
and the point location query can be answered in O(logr;11)
time [4]. If p is contained on the boundary of a d-cylinder
o € TP, then a simple check determines whether p isinci-
dent to the (d — 1)-simplex in S defining . If not, then p is
located recursively in the secondary search tree 7 (for the
current node of 7%¢) and in theindicated subtree of 77¢. We
also build apoint location structure for each nodein a C-tree,
theonly difference being that we build ad-dimensional struc-
ture using O(r¢) work. Thus, an incidence query takestime
S logr; = O(logn). For each o € C; we spend O(rf)
work so the point location structures can be built within the
same resource bounds as the basic structure, i.e., thework is
folded into the rZ factor.

Vertical ray shooting queries. Consider a d-cylinder
o € TP containing the query point p: the (d — 1)-simplex
immediately below pin S2¢ U SS iseither the (d — 1)-simplex
immediately below p in S2¢ or the (d — 1)-simplex imme-
diately below p in SS. Since TP¢ is composed of vertica
cylinders, queries can be answered recursively on PC-trees.
Next consider simplices o1 € C; and o2 € C;41 where
p € oo C o1 and both o7 and o, are contained in a C-tree.
Let b(o2) bethe subset of the (d — 1)-simplicesin S5\ S5,
that lie below o,. Queriesin C-trees can be answered recur-
sively sincethe (d — 1)-simplex immediately below p in S5,
iseither the (d — 1)-simplex immediately below p inb(o) or
inSg, . Thus, weexplain how to answer aquery inb(o2). As
in [35], we use an auxiliary structure to answer the query in
b(o2). However, we will use a different (and arguably sim-
pler) method. Using the algorithm of Amato et al. [4], we
compute the intersection (in o1) of the halfspaces containing
o2 whose bounding hyperplanes span the (d — 1)-simplices
inb(o2). Next, wevertically project theresultingintersection
b(o2)" to obtain a (d — 1)—dimensional arrangement of size

O(n}f/zzJ), and build a point location structure for it. This
point location structureis used to find the simplex below p in
b(o2) (see Figure 3).

Py Py
L 4 L 4

Figure 3:

Since the intersection is constructed hierarchicaly, a hi-
erarchica (d — 1)-dimensiona point location structure with
query time O(logn;_») can be constructed when the inter-
sectioniscomputed. The point location structuresare builtin
O(logn;_») timeusing O(n! /% 10g°M n;_,) work (adding

O(r}f/lz“d_l)) work to each stage of the intersection con-
struction, which does not affect the complexity bounds of
the intersection algorithm [4]). Given these auxiliary struc-
tures, a vertica ray shooting query for S is answered in
> logn;_, = O(logn) time. Using n}f/;”é, 0<d<1,
as an upper bound on the work for o € C;, the totd work of
building the auxiliary point location structuresis bounded by

h

df2|+6
E el ten
=1

h d—1 1 d
df2|+s i n
<3 i {c (=) "o (L) k}
=1

h h
— nd—lZCin;‘ltg—[d/ﬂ-l-e(d—l)_i_ DkZ n?_—2|'d/2'|+ed
=1

=1

= O(nd_llogo(l) n+k),
for e chosen sufficiently small so that ed < [d/2] — 4.

Point location queries. In[35], apoint location query isre-
duced to aseries of d vertical ray shooting queriesin faces of
A(S) of decreasing dimension. Using our vertical ray shoot-
ing data structures in the point location a gorithm of [35] we
obtainaquery timeof O(logn), and storage and construction
costs of m = O(n?tlog®M n + k) and O(m + klogn),
respectively. To obtain the parallel result we note that Pel-
legrini’s[35] construction of the connectivity graph of .A(S)
(used in the search) can be paraldized in a straightforward
manner yielding the point location structure in O(Iog2 n)



time in the EREW PRAM moded. The construction uses
O(m + klogn) work. The timeis O(log? n) because we
construct planar line segment arrangements (Theorem 3.2).
The construction also uses aparale agorithmfor finding the
connected components of agraph (see, e.g., [13, 25]) (details
will be provided in the full paper).

Triangulatingnon-inter secting (d — 1)-simplicesin IR%. If
the simplicesin S are interior digoint, then Pellegrini [35]
notes that a dight modification of the method for building
the incidence query data structure can be used to construct a
triangulationof A(S) of sizeO(n¢~1) intime O(n4~1). The
hierarchical representation of the triangulation supports point
location queries in O(logn) time. This idea can be used in
parallel to construct atriangulationof A(S) of size O(n?~1)
in O(logn) time using O(n9~1) work in the EREW PRAM
model (detailswill be provided inthe full paper).
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