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Abstract

For a set S of n line segments in the plane, we give the
first work-optimal deterministic parallel algorithm for con-
structing their arrangement. It runs in O(log2 n) time using
O(n logn + k) work in the EREW PRAM model, where k
is the number of intersecting line segment pairs, and pro-
vides a fairly simple divide-and-conquer alternative to the
optimal sequential “plane-sweep” algorithm of Chazelle and
Edelsbrunner. Moreover, our method can be used to out-
put all k intersecting pairs while using only O(n) working
space, which solves an open problem posed by Chazelle and
Edelsbrunner. We also describe a sequential algorithm for
computing a single face in an arrangement of n line seg-
ments that runs inO(n�2(n) logn) time, which improves on
a previous O(n log2 n) time algorithm.

For collections of simplices in IRd, we give methods for
constructing a set ofm = O(nd�1 logc n+k) cells of constant
descriptive complexity that covers their arrangement, where
c > 1 is a constant and k is the number of faces in the
arrangement. The construction is performed sequentially in
O(m) time, or in O(logn) time using O(m) work in the
EREW PRAM model. The covering can be augmented to
answer point location queries in O(logn) time. In addition
to supplying the first parallel methods for these problems, we
improve on the previous best sequential methods by reducing
the query times (from O(log2 n) in IR3 and O(log3 n) in IRd,
d > 3), and also the size and construction cost of the covering
(from O(nd�1+� + k)).

1 Introduction

Geometric sampling and its geometric counterparts have
proven to be very powerful tools in computational geom-
etry for designing efficient sequential algorithms and data
structures. In this paper we use geometric sampling tech-
niques to obtain improved solutions (sequential and parallel)
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to some important problems in computational geometry1 An
attractive feature of our algorithms, and in fact, of many ge-
ometric sampling algorithms, is that they are very simple.
This is even true of our deterministic algorithms (with the
exception of the derandomization step itself), in spite of the
fact that they must deal with a problem often encountered in
geometric sampling algorithms: namely, that the total size
of the subproblems may grow by a constant factor with each
recursive application of the sampling. In our line segment
algorithms we use “pruning” computations to keep the sizes
of the subproblems within certain bounds.

Segment arrangements. Let S be a set of n line seg-
ments in the plane, and let k be their number of pairwise
intersections. The segment intersection problem is to re-
port all k intersecting segment pairs in S, with a slightly
more difficult variant being that of constructing a triangula-
tion of the arrangement of the segments in S. This problem
has been studied extensively in the computational geome-
try literature [6, 8]. Chazelle and Edelsbrunner [11] gave
an optimal method for computing segment intersections and
constructing their arrangement that runs in O(n logn + k)
time and uses a number of beautiful techniques, including
plane sweeping and topological sweeping. A number of re-
searchers [12, 17, 33, 34], have given elegant randomized
methods that run inO(n logn+ k) expected time. In fact, if
k � n log1+� n for some constant � > 0, then these methods
run in this bound with high probability2 [31]. In the parallel
domain, Clarkson, Cole, and Tarjan [16, 15] show that one
can construct a segment arrangement in parallel in O(logn)
time andO(n logn+k) expected work in the CRCW PRAM
model.3

There is no previous deterministic optimal-work paral-
lel algorithm for the general segment intersection problem,
however. The best previous methods for the general problem
are a method of Goodrich [20], which runs in O(logn) time
and O(n log2 n+ k logn) work in the CREW PRAM model
and a method of Rüb, which runs in O(logn log logn) time
using O((n + k) logn log logn) work in the same parallel
model. One can achieve an optimal O(n logn + k) work
bound, however, for some special cases [20, 22, 23, 39].

We show how to solve the problem of computing a seg-
ment arrangement inO(log2 n) time andO(n logn+k) work

1For background material on geometric sampling, see [3, 14, 28, 34].
2We say that an event parameterized by n holds “with high probability”

if its probability is at least 1 � 1=n� for some constant � > 0.
3The CRCW PRAM is the synchronous shared-memory model that allows

for concurrent reads and concurrent writes—which in this instance can be
resolved arbitrarily. The CREW PRAM allows for concurrent reads but requires
writes to be exclusive, and the EREW PRAM requires both reads and writes to
be exclusive.



in the EREW PRAM model (augmented with processor al-
location calls [20]). Our method also provides an optimal
sequential divide-and-conquer alternative to the plane-sweep
method of Chazelle and Edelsbrunner [11], and uses O(n)
space if only required to output the intersections,which solves
an open problem of Chazelle and Edelsbrunner4.

A single face in a segment arrangement. Again, let S be a
set of n line segments in the plane and let p be a point. In the
single face problem, we are interested in computing the face
of the arrangement of S containing p, that is, the connected
component of IR2 � Ss2S s that contains p. It is known
that the boundary complexity of a single face is O(n�(n))
where�(n) is the very slowly-growing inverse of Ackerman’s
function. The best previously known deterministic algorithm
is an O(n log2 n) method due to Mitchell [32], yet there are
randomized ones that run in expected time O(n�(n) logn)
[12, 18]. The known lower bound is Ω(n logn).

We describe an almost-optimal deterministic algorithm,
in that it runs in time O(n�2(n) logn). The algorithm uses
a divide-and-conquer approach based on deterministic geo-
metric sampling, together with a pruning mechanism to avoid
a blow-up in the total size of the subproblems as the compu-
tation progresses.

Simplices in higher dimensions. Let S be a set of n (d�1)-
simplices in IRd, for any fixed d � 3, e.g., triangles in IR3,
or tetrahedra in IR4. When the simplices in S may intersect,
the complexity k of A(S) can vary between n and nd. For
d = 3, de Berg, Guibas, and Halperin [19] build a vertical
decompositionD ofA(S) of sizeO(n2+�+k) inO(n2+�+
jDj logn) time, for any constant � > 0; it supports point
location queries inO(log2 n) time. For d � 3, Pellegrini [35]
constructs a covering5 for A(S) of size O(nd�1+� + k) in
O(nd�1+�+k) time, for any constant� > 0. Using the same
space, but withO(nd�1+� + k logn) work, the covering can
be augmented to support point location queries in O(log3 n)
time. We know of no parallel methods for processing A(S)
when d � 3.

We describe methods for constructing a covering forA(S)

of sizem = O(nd�1 logO(1) n+k), which can be augmented
to support point location queries in O(logn) time using the
same storage. In the EREW PRAM model, the covering is
constructed inO(logn) time usingO(m) work, and the point
location structure in O(log2 n) time using O(m + k logn)
work. Thus, in addition to supplying the first parallel meth-
ods, we improve on the best known sequential results [19, 35]
by reducing the query time, and also the size and construc-
tion cost of the covering. When the simplices inS are interior
disjoint, e.g., non-simple polyhedra, a triangulation of A(S)
of size O(nd�1) can be built inO(logn) time usingO(nd�1)
work in the EREW PRAM model, matching the sequential
result of Pellegrini [35].

4Recently, this has also been solved by I. Balaban [5] with an entirely
different approach. His algorithm, however, does not seem to parallelize nor
to be adaptable to computing the arrangement.

5A covering is a set of cells of constant descriptive complexity whose
union containsA(S). Unlike decompositions composed of interior disjoint
cells, such as triangulations, the cells in a covering may overlap.

Contents of the paper. Section 2 contains the geometric
sampling results needed in our algorithms for segments. Sec-
tions 3 and 4 contain the algorithms for all faces and single
face in an arrangement of segments respectively. Section 5
contains the results for simplices in higher dimensions.

2 Geometric sampling

Let X be a class of geometric objects in IRd (for example
all line segments in the plane), and let X � X be of size
n. The arrangement of X is the collection of connected
components of IRd�Sx2X x, together with the arrangements
on each x 2 X ofX �fxg restricted to x. In general, we are
interested in a particular subsetA(X) of the arrangement, and
its decomposition T (X) into a collection of cells of constant
complexity. Let R � X � X . For a cell � 2 T (R), let the
triggers of �, denoted as ∆(�), be the set of objects inX that
determine �, and let the killers of �, denoted as X� , be the
set of objects in X that intersect �, which we also call the
conflict list of �. We restrict our attention to classes where
j∆(�)j � D for some constant D � 1.

In some applications (X ; T ) satisfies a property called
locality: for R � X � X , � 2 T (R) iff ∆(�) � R and
X� \R = ;. This is the case, for example, for the complete
arrangement. In some applications where one is interested
only in a subset of the arrangement, for example a single face
in an arrangement, locality fails. However, it has been noted
[1, 18] that in this case a property that we call monotonicity
holds: for R;R0 � X, if � 2 T (R) then ∆(R) � R and
X� \R = ;; and if � 2 T (R) and R0 � R with ∆(�) � R0,
then � 2 T (R0). Note that locality implies monotonicity.

Polynomial construction

The basis for our divide-and-conquer approach is the geomet-
ric sampling theorem below. We state it in some generality,
and then specialize it to our particular problem. For complete-
ness, we give a detailed proof. It uses standard techniques in
geometric sampling (see e.g. [1, 4, 17, 21, 29]).

For sequential computation, the r� factor in property (ii)
of the theorem can be improved to log r using derandomiza-
tion by the method of conditional probabilities. However, we
prefer our form for three reasons: the method of limited inde-
pendence is better suited for parallelization; even sequentially
there is no apparent way to derandomize using the method of
conditional probability when locality does not apply; and fi-
nally the method of limited independence is computationally
simpler.

We need the following tail estimate for random variables
with limited independence (see [38, 34]).

Lemma 2.1 Let I =
Pm

j=1 Im be the sum of m 2K-wise
independent (K fixed), identical 0-1 random variables (i.e.
each variable is 1 with probability p > 0 and 0 other-
wise). Let � = E[I] = mp. Then, for some constant
C > 0, ProbfjI � �j � �=tg � C(t2K=�K). In partic-
ular ProbfI = 0g � C(1=�K).



A p-sample of X is a sample R obtained by n identical
independent 0-1 (characteristic) random variables, each of
which is 1 with probabilityp. Let f(X; r) = E[jT (R)j] for a
p-sample with p = r=n. AK-wise independent p-sample and
fK(X; r) are defined similarly for K-wise independent 0-1
random variables. In the cases we consider, K is sufficiently
large so that fK(X; r) = O(f(X; r)). Our way of dealing
with monotonicity follows the analysis in [1].

Theorem 2.2 Let (X ; T ) be such that it satisfies the mono-
tonicity property, and that, for X � X , f(X; r=t) =
O(f(X; r)) for t � 1. For 0 < � < 1, and c � 1, there
are constants c0; r0 such that for X � X with jXj = n

and r0 � r � n, a sample R � X with the follow-
ing properties can be computed in polynomial time sequen-
tially, more precisely in time O(n2K+D+1) where K =
dmax(c+2+3D=2; (D+1)=�+D=2)e: (i) jjRj�3r=2j � r,
(ii) max�2T (R) jX� j � (n=r)r�, (iii)

P
�2T (R) jX� jc �

c0(n=r)cf(X; r). In the EREW model the computation can
be performed in time O(logn) and work proportional to the
sequential time.

Proof: Let R � X be a 2K-wise independent p-sample
with r=n < p � 2r=n. In the argument for (iii) when
monotonicity but not locality holds, we need to make use
of a particular construction of the sample space for the 0-1
random variables I1; : : : ; In that determine R. We use the
construction of Joffe [26]: Let � be a prime number with
n � � < 2n; the sample space is Ω(�; 2K) = Z2K

� . For
1 � i � � and (a0; : : : ; a2K�1) 2 Ω(�; 2K), let Xi =P2K�1

j=0 aji
j mod � and let Ii = 1 if 0 � Xi < 2r. The 0-1

random variables I1; : : : ; I� defined by giving each vector of
Ω(�; 2K) probability 1=�2K, are 2K-wise independent and
p := ProbfIi = 1g satisfies r=n < p � 2r=n.

We claim that R satisfies (i)-(iii) with probability at least
1=2. To show this, we verify that each of (i)-(iii) fails with
probabilityat most 1=6. For (i), this follows for r0 sufficiently
large by Lemma 2.1 (the expected value is between r and 2r
depending on the number � in sample space construction).
The argument for (ii) and (iii) is as follows.

Let T(X) = f� 2 T (R) : R � Xg. Let A� be the
event that ∆(�) � R and X� \ R = ;. For � 2 T(X),
let t� = jX�j(r=n). p� := ProbfA�g is equal to p�;1 � p�;2
where p�;1 = ProbfX� \ R = ;j∆(�) � Rg and p�;2 =

Probf∆(�) � Rg. By independence p�;2 = pj∆(�)j, since

2K � D. By Lemma 2.1, p�;1 � C0(1=tK�D=2
� ) (after fixing

at most D variables, the remaining ones are (2K �D)-wise
independent). Thus, since Probf� 2 T (R)g � p� (equality
holds if there is locality),

1 � Probf max
�2T (R)

jX�j � (n=r)r�g =

=
X

�2T(X)

Probf� 2 T (R)g � [jX�j > (n=r)r� ]

� C
0(1=r�(K�D=2))

X
�2T(X)

p�;2

< C
00(1=r�(K�D=2))rD < 1=6;

if K > (D + 1)=� + D=2 and r � r0 is sufficiently large
(we have used

P
�2T(X)

p�;2 = O(rD)). This verifies the
claim for (ii).

For t = 1; : : : ; r, let Tt(X) = f� 2 T(X) : (t �
1)(n=r) � jX�j < t(n=r)g. Let Rt be a 2K-wise in-
dependent pt-sample with r=4nt < pt � r=2nt. Using
the sample space described above, the corresponding 0-1
random variables I(t)1 ; : : : ; I

(t)
n are defined by I

(t)
i = 1 if

0 � Xi < br=4tc. For � 2 T(X), let A(t)
� , p(t)� , p(t)�;1

and p
(t)

�;2 be defined for Rt analogously to the same terms
for R above. We want to show that for � 2 Tt(X),
Probf� 2 T (R)g=Probf� 2 T (Rt)g < C0=(t � 1)K�3D=2

for t > 1. For this we first argue that Probf� 2
T (R)g=Probf� 2 T (Rt)g � p�=p

(t)
� : this follows by mono-

tonicity since our specific construction of 0-1 variables im-
plies that Probf� 2 T (R)jA�g � Probf� 2 T (Rt)jA(t)

� g
and hence Probf� 2 T (R)g=p� � Probf� 2 T (Rt)g=p(t)� .
Then, we verify that p�=p

(t)
� � C0=(t � 1)K�3D=2: this

follows because p�;1 < C00=(t � 1)K�D=2 for t > 1 by

Lemma 2.1, p(t)�;1 � 1=2 because E[jRt \ X� j j∆(�) �
Rt] � 1=2, and p�;2=p

(t)
�;2 � (8t)j∆(�)j � (8t)D. Thus,

E[
P

�2T (R) jX�jc] equals

X
�2T(X)

Probf� 2 T (R)g � jX�j
c

�
�
n

r

�c X
�2T1(X)

Probf� 2 T (R)g+

rX
t=2

�
tn

r

�c C 0

(t� 1)K�3D=2

X
�2Tt(X)

Probf� 2 T (Rt)g

�
�
n

r

�c
f(X;2r) +

C
00
�
n

r

�c rX
t=2

1
(t� 1)K�c�3D=2

f(X;r=2t)

< C
000(n=r)cf(X;2r);

if K � c + 3D=2 + 2, where we have usedP
�2T(X)

Probf� 2 T (Rt)g = f(X; r=t) = O(f(X; r)).
By Markov’s inequality, it follows that there is a c0 so that
(iii) holds with probability at most 1=6.

The polynomial time claim follows because the probabil-
ity space has size O(n2K), and each point in it can be tested
in time O(nD+1) with a not so efficient algorithm (it is guar-
anteed that a sample satisfying (i)-(iii) will be found). The
parallelization is straightforward, in particular, each of the
candidate samples can be tested in parallel.

For definiteness, we will use Theorem 2.2 with � = 1=2.

Efficient construction

For our purposes, we need a faster construction of a sample
R. This can be achieved using �-approximations which can
be constructed efficiently using a technique of Matoušek [30].



Approximations. A pair (X;F), where X � X is as before
and F is a family of subsets of IRd defines a range space
(X;R(X;F)) where R(X;F) = fT � X : T = fx 2 X :
 \ x 6= ;g for  2 Fg. A � X is a (1=r)-approximation
for (X;R(X;F)) if for each T 2 R(X;F), jjA \ T j=jAj �
jT j=jXjj � 1=r. Matoušek’s construction is originally for
the range spaces defined by the pairs (P;H(IRd)), where P
is a finite point set in IRd and H(IRd) is the collection of
closed half-spaces in IRd, and is easily extended to the pairs
(P;L(IRd)) where L(IRd) is the collection of linear cells in
IRd. A linear cell is the union ofO(1) intersections of each of
O(1) half-spaces. A parallelization is due to Goodrich [21].

Lemma 2.3 There is an 0 < � < 1, such that for a given
P � IRd with jP j = n and r � n�, a (1=r)-approximation of
size O(r2 log r) for (P;R(P;L(IRd))) can be constructed in
timeO(n log r). In the EREW PRAM model the construction
takes time O(logn log r) using work O(n log r).

Here, we are interested in the pairs (X;T(X)) and
(X;T(X )), where T(X ) = f� 2 T (X) : X � X ; jXj �
Dg. A standard trick to obtain a good r-sample for X ef-
ficiently consists in first computing a (1=r)-approximation
A for (X;R(X;T(X))) in time O(n log r) and then com-
pute a good (r=jAj)-sample for A in time polynomial in jAj.
With r � n� and � sufficiently small, the total time is still
O(n log r).

Linearization. To apply Matoušek’s construction for approx-
imations, and in order to compute the conflict lists of T (R)
efficiently, we make use of linearization for (X ;T(X )) (first
described by Yao and Yao [41], and introduced in geometric
sampling by Matoušek [27, 29]). The pair (X ;F) is lineariz-
able if there are maps ' from X into IRd, and  from F
into L(IRd) such that for x 2 X and � 2 F , x \ � 6= ; iff
'(x) 2  (�). The mapping ' is given by bounded degree
polynomials in the parameters defining an object x 2 X; the
functions describing the coefficients in the equations of the
hyperplanes defining  (�) are bounded degree polynomials
in the parameters defining �.

After linearization, an approximation can be constructed
using directly the technique of Matoušek in time O(n log r)
for r � n�.

Computing conflict lists. Linearization also simplifies the
problem of computing the conflict lists X� for � 2 T (R):
this is translated into a problem of point location queries in
an arrangement of hyperplanes in IRd (see for example [29]).

Let H be the collection of all the hyperplanes bounding
the linear cells  (�) for � 2 T (R). jHj is O(rD). We can
construct a point location data structure D for H to achieve
an O(logn) query time with size O(jHjD) [9], but we can
also use the following less-efficient construction: For each
leaf l of D (its number is O(jHjD)), determine the list L(l)
of each cell � 2 T (R) for which  (�) contains the cell in the
arrangement of H corresponding to l. (The time (and space)
used in this construction can be made O(n) by choosing �
appropriately.) To compute the conflict lists, first, for each
object x, perform a search for '(x) in D and let l(x) be the

leaf where this search “lands”. Then, we collect , for each
cell � 2 T (R), the objects x for which L(l(x)) contains �.
This can be done in time linear in the total size of the conflict
lists. Parallel versions of these point location data structures
are also known [4].

To summarize, then, we have the following:

Theorem 2.4 Let (X ; T ) be such that it satisfies the mono-
tonicity property and (X ;T(X )) is linearizable. For 0 < � <

1, there are constants c0; r0; � such that forX � X with jXj =
n and r0 � r � n�, a sample R � X can be constructed in
time O(n logr) by first obtaining a (1=r)-approximation A
for (X;T(X)) (or (X;T(X ))) and then an (r=jAj)-sample
for A according to Theorem 2.2, so that it satisfies the
properties: (i) jjRj � 3r=2j � r, (ii) max�2T (R) jX�j �
(n=r)r�, (iii) jT (R)j � c0f(A; r), (iv)

P
�2T (R) jX� j �

c0(n=r)f(A; r). The triangulation T (R) and conflict lists
can be computed in time O(n log r + (n=r)f(A; r)). The
construction takes timeO(logn log r)and optimalO(n logr)
work in the EREW PRAM model.

Segments and trapezoids

In our applications X = S is the class of segments in the
plane. The arrangementA(S) forS � S consists of the faces,
edges and vertices determined by S. The visibility diagram
of S is obtained by extending each endpoint and intersection
point vertically until it hits another segment, each connected
component of the complement of the visibility diagram is
called a trapezoid, and the trapezoidal decomposition T (S)
of S is the collection of all such trapezoids. The size ofA(S)
is O(n+ k) where k is the number of intersections between
the segments; the same bound applies to T (S).

We elaborate on linearization for the pair (S;T(S)). For
a segment s, let (l1; l2) and (r1; r2) be the endpoints of s, the
map ' is into IR8 and is defined so '(s) equals the tuple

(l1; l2; r1; r2; l1l2; l1r2; r1l2; r1r2):

The map  (�) is determined by writing a complete case
analysis of the conditions under which a segment s intersects
�: s intersects � iff either (i) � contains one endpoint of
s, or (ii) s intersects one of the vertical edges of �, or (iii)
s intersect both the top and bottom edges of �. The result
is of the form c1 _ � � � _ cm where each ci is of the form
ci;1 ^ � � �^ ci;ni where each ci;j is an inequality. When these
inequalities are written so as to avoid division, one finds that
the variables appearing in them are those above defining'(s).
Thus, these inequalities determine half-spaces in IR8. Since
m and ni are O(1), the inequalities determine a linear cell.

Estimation of the number of intersections. For the com-
plete arrangement of segments f(X; r) = O(r + k(r=n)2),
so to have the right parameters in (iii) and (iv) of Theorem 2.4,
we need to verify that f(A; r) = O(r + k(r=n)2).

A (1=r)-approximation A for (S;R(S;T(S))) is also a
(1=r)-approximation for (S;R(S;S)). Then, by a result of
Brönnimann et al [7] on product range spaces, A can also be



used to estimate the number of intersections in A(S) inside
any convex region. More precisely, for a set of segments
X, let v(X;�) denote the number of intersections between
segments in X that lie in �, then

Lemma 2.5 Let A be a (1=r)-approximation for S. For any
simplex �, jv(S; �)=jSj2 � v(A; �)=jAj2j < 1=r.

Thus, we have that f(A; r) � C((r=jAj)2v(A; �)+ r) �
C((r=n)2v(S; �) + r), as desired. To summarize, we obtain
the following construction:

Theorem 2.6 For 0 < � < 1, there are constants C; r0; �

such that for r0 � r � n�, in time O(n log r + (r=n)k) one
can compute a sample R � S, its triangulation T (R) and
conflict lists, with the followingproperties: (i) jjRj�3r=2j �
r, (ii) jT (R)j � C(r + (r=n)2k), (iii) max�2T (R) jS�j �
(n=r)r�, (iv)

P
�2T (R) jS�j � C(n + (r=n)k). In the

EREW model the computation can be performed in time
O(logn log r) and work proportional to the sequential time.

In our second application, we are interested in computing
the face fp(S) of A(S) that contains a given point p. The
complexity of a face f is the number of vertices and edges
on its boundary. Let Tp(R) be the trapezoidal diagram T (R)
restricted to fp(R). The complexity of fp(S) is O(n�(n))
where � is the very slowly-growing inverse of Ackerman’s
function [24, 36]; this bound can be achieved [40]. The same
bound applies to Tp(S). For Tp(R) monotonicity but not
locality holds. Theorem 2.4 directly implies the following.

Theorem 2.7 For 0 < � < 1, there are constants C; r0; �

such that for r0 � r � n�, in timeO(n logr)one can compute
a sample R � S, its triangulation Tp(R) and conflict lists
with the following properties: (i) jjRj � 3r=2j � r, (ii)
jT (R)j � Cr�(r), (iii) max�2T (R) jS�j � (n=r)r�, (iv)P

�2T (R) jS�j � Cn�(r).

Randomized algorithms

Efficient randomized algorithms are known for bothproblems
on segments we are considering. Here, we point out that
for both, algorithms with equal asymptotic performance can
be obtained using the approach used by Chazelle [10] and
Brönnimman et al [7] for half-space intersection.

The sampling is global, that is, at a given stage a single
global sample determines the sample in each subproblem,
rather than an independent sample for each subproblem. As
a result, one maintains T (Ri) for a single sample Ri of S
at each stage. This has the advantage of bounding globally
the sum of the sizes of all subproblems at each step. This
approach is related to the lazy randomized incremental con-
struction of [1, 18].

The algorithm inserts the segments in rounds. For each
segment s and i = 0; 1; 2; 3; : : :; k, where k = Θ(logn), let
Is;i be a 0-1 random variable with ProbfIs;i = 1g = pi where
p0 = c=n and pi = 2i�1p0=(1 � 2i�1p0), for some constant
c. R0

i = fs : Is;i = 1; Is;j = 0 for j < ig is the set of

segments inserted in the i-th round. The set Ri =
Si
j=0 R

0
j,

those segments inserted up to the i-th round, is a qi-sample
where qi = 2ip0 (thus, the expected size of Ri doubles in
every round); and R0

i is a pi-sample of S �R0
i�1.

For computing the segment arrangement, in the i-th round,
for each � 2 T (Ri�1), compute T ((R0

i)�) restricted to �
and the corresponding conflict lists. A not very efficient
algorithm can be used for these local computations as the
expected size of (R0

i)� is O(1). Then a global clean-up puts
together pieces of the same trapezoid � 2 T (Ri) which are
in different trapezoids � 2 T (Ri�1), and their corresponding
conflict lists. The final result is T (Ri).

For computing the face containing a point p, the clean-up
includes determining through a graph search those trapezoids
reachable from p, thus obtaining Tp(Ri) at stage i.

An analysis similar to that in [7] shows that these al-
gorithms have expected running times O(n logn + k) and
O(n�(n) logn) respectively.

Unfortunately, it is not clear how to apply the techniques
in [7] to derandomize these algorithms. Because of the lack
of locality, this seems especially hard for the single face
problem. Thus, for derandomization, in the next two sections
we turn to local sampling.

3 Arrangement of segments

An inefficient algorithm

We first describe a simple, inefficient algorithm that will be
useful in the optimal algorithm to deal with subproblems of
small size: the algorithm computes a sample R according
to Theorem 2.4 for r = n� and some constant 0 < � < 1,
computes the conflict lists of the trapezoids in T (R), and
then it recurses on each of the trapezoids whose conflict list
is larger than a certain constant and finishes the smaller ones
with some “brute” force method.

The sample and the corresponding conflict lists are com-
puted in time O(n logn + (r=n)k) and results in O(r +
k(r=n)2) trapezoids. Thus, the total running time for the root
problem isO(n logn+kr=n). An inductive proof shows that
the total running time is O(n logc n + k) for some constant
c > 1. The algorithm is readily parallelized with a running
time O(log2 n) and work O(n logc n + k).

Lemma 3.1 Let S be a set of n line segments that have k
pairwise intersections. Then one can compute the arrange-
ment of the segments inS (deterministically and sequentially)
in time O(n logc n+ k). In the EREW PRAM model it takes
time O(log2 n) using work O(n logc n+ k).

An efficient algorithm

To avoid the total size blow-up that results in the undesired
polylog term, we use an extra cutting step in each stage. Let
Ti denote the collection of active trapezoids at the beginning
of stage i (those on which the algorithmrecurses);T1 consists
of a single infinite trapezoid.



For a trapezoid � , let S� denote those segments in S that
intersect � , and let Sc� and Snc� denote those segments in S�
that cross and those that do not cross (that is, with an endpoint
inside) � respectively. Also, let Sc;lite� (respectively, Sc;heavy

� )
denote those segments in Sc� with less than (resp., at least)
� intersections in � . Let n� = jS� j and let k� denote the
number of segment intersections inside � .

During each level of recursion the algorithm will maintain
the following invariant:

Invariant: The total size of all active subproblemsP
�2Ti

n� is O(n+ k=�), where � = logn.

The following steps are performed at stage i:

For each � 2 Ti:
1. Compute a sample R(�) � S� , T(�) := T (R(�)) and

conflict lists according to Theorem 2.6 with r� = n��
2. For each � 2 T(�):
2.1. Compute Sc� and Snc�
2.2. Compute Sc;lite� and Sc;heavy

�

2.3. Compute cutting T �(�) and conflict lists
2.4. For each � 2 T �(�)
2.4.1. if jS�j > �2 then put � in Ti+1

else compute the arrangement of S� restricted to
� using the inefficient algorithm

Cutting T �(� ). The cutting T �(� ) has the following prop-
erties: (i) jT �(� )j = O(jSc;lite� j=�); (ii) each � 2 T �(� )
intersects O(�) lite segments; and (iii) a segment s inter-
sects O(k�;s=� + 1) trapezoids in T �(� ), where k�;s is the
number of intersections on s in � . From this it follows thatP

�2T �(�) n� is O(n� + k�=�).
Now, we describe how to obtain a cutting with those prop-

erties. Let Q � S(�)c� such that Q is not non-intersecting
inside � . Q partitions � into a set of polygons. Let � be
one of them; it has edges on the boundary of � which we call
B-edges, and edges on segments inQwhich we callQ-edges.
For � let b(�) (resp. q(�)) be the number of intersections be-
tween lite segments and itsB-edges (resp. Q-edges). Except
for O(1) of them, these polygons are quadrilaterals with two
B-edges and twoQ-edges, which we call good polygons (the
others are bad). See Figure 3.

Let Q be so that for each polygon �, D� � b(�) � E�,
for some constantsA andB. Clearly, the number of polygons
is O(jSc;lite� j=�). Since a polygon has at most four Q-edges,
then it intersects O(�) lite segments. Let s be a segment.
If s intersects the two Q-edges of a good polygon �, then
s is intersected by at least D=2 � 2� (lite) segments in �,
which is at least � ifD � 6; thus, since s intersectsO(1) bad
polygons, and theB-edges ofO(1) good polygons, it follows
that s intersects O(k�;s=�+ 1) polygons. Properties (i)-(iii)
above apply to the collection of trapezoids resulting from the
trapezoidal decomposition of the polygons, which is then our
cutting T �(� ).

For E sufficiently large, such set Q can be constructed
by adding segments incrementally, and it can be done in time
O(n� ) assuming that the endpoints of the segments on the

s

t

u

v

w

Figure 1: Cutting T �(� ): s; t are good, u; v; w are bad.

boundary of � are sorted. The algorithm works by scan-
ning the ordered lists of intersections of lite segments with
the boundary of � . The conflict lists can be computed in
time linear with the output size plus O(n� logn� ) overhead.
Thus, the total time for constructing the special cutting is
O(n� logn� + k�=�). We elaborate further in the full ver-
sion.

Invariant. A segment in a nonterminal trapezoid� 2 T �(� ):
(i) has a real endpoint in � , (ii) is heavy (in � ), or (iii) is lite
(in � ). By the properties of T �(� ), cases (i) and (ii) can be
credited to the n and k=� terms respectively. Case (iii) can
be credited to the n term or the k=� term since while there
are onlyO(�) lite segments in �, there are at least �2 �O(�)
other segments in � which can lend credit. Thus the total
subproblem size is O(n+ k=�) and the invariant is enforced
in each stage.

Total work. The sample, triangulation and conflict lists in
step 1 are computed in time O(n� logn� + k�r�=n�) by
Theorem 2.4. By construction

P
�2T(�)

n� = O(n� +

k�(r�=n�)). For each � , step 2.1 is trivially performed in
timeO(n� ), step 2.2 is performed in timeO(n� logn� ) using
well-known techniques (see e.g. [2, 20]), step 2.3 takes time
as indicated above.

Thus, steps 1-2 for� take timeO((n�+k�(r�=n�)) log r�+
k�=�). Using the invariant in the previous stage, this is
O(((n + k=�) + k=�) logri) where ri = max

�2Ti

r� and
� = min

�2Ti

n�=r�. Assuming � � 1=2, since n� > �2 for
non-terminal subproblems, then � � �, and the total time for
the stage is O((n + k=�) log ri), except for the small termi-
nal subproblems that are terminated with the inefficient algo-
rithm. Since ri decreases as n(1��

0

)
i�0 , for some 0 < �0 < 1,

then
P

i log ri = O(logn). So adding this time over all
stages results in time O(n logn+ k).

Now we consider the terminal subproblems. They are
of size O(�2), so the arrangement inside � can be com-
puted in time O(n� logc logn + k�) using the inefficient
algorithm. Since

P
�2T �(�) n� is O(n� + k�=�), andP

�2T(�)
(n� + k�=�) is O(n� + k�=�) (although � is ter-

minal, n� > �2), then the total amount of terminal work in
one stage is O((n + k=�) logc logn + ki), where ki is the
number of intersections found in these terminal subproblems.
This added overO(log logn) stages isO(n logn+k). Thus,



the total time is O(n logn+ k).

The previous discussion is summarized in the following.

Theorem 3.2 The arrangement of a set of n line segments
in the plane with k intersections can be computed in time
O(n logn+ k) sequentially and deterministically.

This result was first obtained by Chazelle and Edelsbrun-
ner [11] using a sweep algorithm. Our algorithm provides a
divide-and-conquer sequential alternative, and has the advan-
tage of being parallelizable and of using O(n) space when
only required to output the k intersections.

Parallel algorithm

An important characteristic of our algorithm is that it can be
readily parallelized using simple techniques.

Theorem 3.3 The arrangement of a set of n line seg-
ments in the plane with k intersections can be computed
in the EREW model deterministically in time O(log2 n) and
work O(n logn + k). Using randomization, the time is
O(logn log logn) with n-polynomial probability.

All steps in stage i can be parallelized in a straight forward
manner using known parallel techniques (see, e.g., [4, 37]). In
particular, stage i runs inO(log2 ri) time using optimal work.
Also, at each round it suffices to perform one single global
processor allocation call. If a model that allows non-global
processor allocation calls is used then the time required by
the randomized algorithm is reduced to O(logn).

Linear space

Chazelle and Edelsbrunner [11] posed the problem of whether
the k intersections of n given segments can be output in time
O(n logn + k) using space O(n). Our algorithm can be
adapted for this task.

Theorem 3.4 The k intersections of a set S of n segments
in the plane can be reported using space O(n) and time
O(n logn+ k).

Proof: At any given time, it is sufficient to keep only one
path of the computation tree from the root down to a leaf
(or just down to subproblems of size O(

p
n) which can then

be solved in O(n) space). At each node on this path one
cannot afford to compute all conflict lists at once. Instead,
they are computed in batches of size O(n�). This is possible
for � 2 Ti: first compute the sizes of the conflict lists, then
output them in batches of size Θ(n�). Similarly, for each
� 2 T(�). This is done within the same optimal time.

4 Single face

For Q � S let A�(Q) denote the arrangement A(Q) re-
stricted to the trapezoid � (it includes the two segments on
the top and the bottom). The set of faces in A�(Q) that can
be reached from p (when the portions of segments outside �
are clipped away) is denoted by fp;�(Q). Clearly, fp;�(Q)
contains fp(S) \ �.

The algorithm keeps at every stage a collection of active
trapezoids, whose union is guaranteed to contain fp(S) (with
the exception of some pieces that will be explained later).
Let Ti be the collection of active trapezoids at the beginning
of stage i. In general, Ti is not Tp(R) for some R because
sampling is independent in each subproblem. For � 2 Ti, we
have a conflict list S(�), which is in general different from
S� because of pruning. Let n� = jS(�)j. For a trapezoid �
contained in �, following convention, S(�)� denotes the list
of conflicts of � in S(�). Let S(�)c� be those segments in
S(�)� that cross (have no endpoint inside) � , and let S(�)nc�
be those segments that do not cross (have at least one endpoint
in) � . For each trapezoid �, we maintain for its left (resp.
right) vertical edge l(�) (resp. r(�)) the sorted list Ll(�)
(resp. Lr(�)) of intersections between segments in S(�)
and l(�) (resp. r(�)). These lists also contain connectivity
information to be described later. The following steps are
performed at stage i:

1 For each � 2 Ti:
1.1 If n� is smaller than a constant then compute fp;�(S�)

by some brute force method.
1.2 Compute a sample R(�) � S(�), T(�) := T (fp;�(R(�)))

and conflict lists according to Theorem 2.7 with r� = n��
1.3 For each � 2 T(�):
1.3.1 Compute S(�)c� and S(�)nc�
1.3.2 Compute fp;� (S(�)c� )
2 Use a graph search to determine all faces in fp;� (S(�)c� )

for some � 2 T(�) and � 2 Ti that can be reached from
p, and mark them as reachable

3 For each � 2 Ti:
3.1 Put each reachable � 2 T(�) in Ti+1

3.2 For each � 2 Ti+1 prune S(�)� to obtain S(�) and
update connectivity accordingly

Running time. Step 1.2 is performed in time O(n� logn�)
by Theorem 2.7. Steps 1.3.1 and 1.3.2 are performed in time
O(n� logn� ) for each � and hence time O(n��(r�) logn�)
for all � in a given � (note that 1.3.2 is not a recursive compu-
tation, this is a computation of the zone of a line in an arrange-
ment of lines or the intersection of some halfplanes, both of
which are simpler problems). Thus, the total time for step
1 is O(

P
�2Ti

n��(r�) log r�). We will see that for each i
pruning enforces the global bound

P
�2Ti

n� = O(n�(n)).
Thus, the total time performed in step 1 at each stage is
O(n�(n)�(r) log r) where r = max

�2Ti

r�. The graph
search performed in step 2 takes time O(n�(n)�(r)) be-
cause this is a bound on the number of trapezoids that can
be reached. It will be clear after the explanation of pruning
below that step 3 can be performed within the time bound



O(n�(n)�(r) log r). Since
P

i log ri = O(logn), the total
running time is O(n�2(n) logn).

Arrangement of clipped segments. The first observation
needed to obtain the global bound on the subproblems is
that the graph search of step 2 determines the single face
of p in an arrangement of n segments Sclip. Indeed, for a
segment s, if its endpoint is in the interior of a trapezoid � ,
then its portion inside � is effectively clipped by removing
S(�)nc� from consideration. Thus, the segments in Sclip are
the original segments in S each one possibly with pieces
containing its endpoints clipped away. This gives a global
boundO(n�(n)) on the number of vertices (real vertices, not
intersections of segments with vertical boundary segments)
in the face computed by the graph search of step 2.

Actually, the previous argument is not quite complete as
there are additional pieces of segments removed by pruning.
But it will be clear from the explanation of pruning that the
claim above remains true.

Pruning. For a trapezoid � , we want to prune its conflict
list S(�)� to obtain S(� ). First, we put all the noncrossing
segments S(�)nc� in S(� ). Let freach(� ) be those faces in
fp;� (S(�)c� ) that were marked by the graph search of step
2 as reachable. All those s 2 S(�)c� not bounding a face
in freach(� ) are eliminated from consideration for S(� ). For
each vertex of a face in freach(� ), we include in S(� ) the
two segments intersecting at that vertex. The only segments
bounding freach(� ) that are not yet considered are those cor-
responding to pairs of segments in S(�)c� bounding a face of
freach(� ) that cuts through and has no vertices inside � (these
two edges go from one side of � to the other, do not intersect,
are not intersected by any other segment in S(�)c� , and have
no segment in S(�)c� between them). We call them tunnel
pieces, and they form tunnels when all the pieces bounded by
the same segments and in neighbor trapezoids � are put to-
gether. We cannot put the two segments bounding a tunnel T
in S(� ) for each � that contains a tunnel piece of T , because
a tunnel may go through many trapezoids � . Thus, we need
to consider in detail these tunnel pieces.

Tunnel pieces. We distinguish three types of tunnel pieces:
A tunnel piece is unobstructed if it is not intersected by any
noncrossing segment; it is completely obstructed if it is in-
tersected and crossed by some noncrossing segment; or it is
potentially obstructed if it is intersected by noncrossing seg-
ments but not crossed by any of them. See Figure 4. Tunnel
pieces are easily identified: to classify them we perform a
point location of the endpoints of the segments in S(�)nc�
among the strips determined by all the tunnel pieces in � , and
then we identify strips that are not crossed. This takes time
O(n� logn� ) for each � , and O(n�(n)�(r) logr) globally.

For a tunnel T , let s1(T ); s2(T ) 2 S be the two segments
bounding it. Similarly s1(t); s2(t) for a tunnel piece t. The
troublesome tunnel pieces are the unobstructed and the com-
pletely obstructed ones because there can be many of them.
On the other hand, a partially obstructed tunnel piece t in � is
easy to handle: put s1(t); s2(t) in S(� ); these two segments
can be charged to some segment s with an endpoint in t (a

t

u

v

w

Figure 2: Tunnel pieces: t, u, and v are unobstructed, poten-
tially obstructed and completely obstructed respectively. w
is not a tunnel piece.

given segment s cannot get more than four charges in this
manner). The other two types are handled as follows.

Let t be an unobstructed tunnel piece in a trapezoid � .
Then t does not put s1(t) or s2(t) in S(� ) (still the neighbor
faces in � may put s1(t) or s2(t) inS(� )), but we need to store
the connectivity information that would be lost otherwise as
follows. Consider a maximal chain t of unobstructed tunnel
pieces and let l(t) and r(t) be its vertical edges on the left
and on the right. Let �l (resp. �r) be the trapezoid whose right
(resp. left) vertical edge contains l(t) (resp. r(t)). �l and �r
will store in their listsLr(�l) andLl(�r) pointers that allow to
jump directly between �l and �r in both directions; previous
connectivity information may need to be updated (to connect
pieces of tunnel previously found).

Finally, let us consider the completely obstructed tunnel
pieces. Only two of them in a particular tunnel T , contained
in trapezoids �l and �r respectively, can possibly intersect
fp(S) (for example, if p is outside the tunnel, then they are
the leftmost and the rightmost completely obstructed tunnel
pieces in the tunnel). Pruning is handled as follows: put
s1(T ); s2(T ) in S(�l) and S(�r ) (any other completely ob-
structed piece t inT does not put s1(T ); s2(T ) in its trapezoid
� , but again the neighbor faces may do it). Those segments
that are kept (at most four) can be charged to a vertex of the
single face of Sclip.

Note that after the pruning is performed, the single face
of p in the resulting arrangement of segments (since some of
them had pieces taken away, the resulting set is different) is
the same as the single face of p in the original arrangement: no
less can be reached because we are only taking away pieces
of segments (the connectivity information of unobstructed
tunnel pieces is not lost); and no more can be reached because
a segment piece is removed only if it does not bound fp(S)
(except for the bounding segments of an unobstructed tunnel
piece, but in that case the tunnel piece itself is removed and the
connectivity information prevents unreachable points from
becoming reachable).

This completes the argument that gives the global boundP
�2Ti

n� = O(n�(n)).



5 Simplices in higher dimensions

In this section we consider a set S of n possibly intersecting
(d � 1)-simplices in IRd, for any fixed d � 3, e.g., triangles
in IR3, or tetrahedra in IR4. When the simplices in S may
intersect, the complexity k of A(S) can vary between n and
nd. We give methods for constructing a covering forA(S) of
size m = O(nd�1 logO(1) n + k). We also describe how the
hierarchical description of the covering can be used to answer
point location, vertical ray shooting, and incidence queries in
O(logn) time using the same storage. The constructions are
performed sequentially in O(m) time, except for the point
location structure which requires O(m + k logn) time. In
parallel, the constructions take O(logn) time using O(m)
work in the EREW PRAM model, and the point location
structure is built in O(log2 n) time using O(m + k logn)
work. When the simplices in S are interior disjoint, e.g.,
non-simple polyhedra, the construction can be optimized to
build a a triangulationofA(S) of sizeO(nd�1) using as much
work.

Our construction is inspired by Pellegrini [35], who gives
a recursive construction that has O(logn) stages, each using
constant size cuttings6 of the simplices in S. An augmented
version of the resulting hierarchical structure answers inci-
dence and vertical ray-shooting queries in O(log2 n) and
O(log3 n) time, respectively. Point location queries take
O(log3 n) time as they are reduced to d vertical ray shooting
queries in A(S). The essential change we make to reduce
the size of the covering and obtain faster query times is to
decrease the depth of the recursion by increasing the size of
the cuttings. Of course, to obtain query times of O(logn),
all secondary structures must follow this principle as well.
Finally, increasing the size of the cuttings implies changes
for the queries, e.g., a point can be located inO(1) simplices
by brute force, but a more efficient method must be used if
there are O(n�) simplices. We need the following for the
construction.

Definition 5.1 Let � be a (d � 1)-simplex and � be a d-
simplex or vertical d-cylinder. � crosses � if � intersects �
and no (d� 2)-face of � intersects �, and � partially crosses
� if some (d�2)-face of � intersects �. If � partially crosses
�, then the vertical projections to IRd�1 of � and � intersect.

Lemma 5.2 ([4]) Given a simplex � and a set H of n hy-
perplanes intersecting � in IRd, a (1=r)–cutting for H (re-
stricted to �), including conflict lists, with m = O(rd�1 +
(r=n)dv(H;�)) simplices can be constructed in O(logn)
time using O(nrc + nm) work in the EREW PRAM model,
where c � 1 is some constant and v(H;�) is the number of
vertices of A(H) in �.

Constructing a covering of A(S). We build a sequence
C0; C1; : : : ; Ch of sets of d-simplices and vertical d-cylinders.
For each � 2 Ci, we partition its conflict list S� into two sets
Spc� and Sc� , where Spc� contains the (d � 1)-simplices that

6In a (1=r)–cutting, the conflict list of each simplex in the cutting has
size at most n=r.

partially cross �, and Sc� contains the (d� 1)-simplices that
cross �. The basis C0 is a large simplex �0 containing S
with Spc�0

= S and Sc�0
= ;. Inductively, we have a set Ci�1

that covers �0, such that, for every � 2 Ci�1, jSpc� j � ni�1

and jSc� j � ni�2, where ni�1 = ni�2=ri�1, ri�1 = n�i�2,
for some constant 0 < � < 1, and n�1 = n0 = n. Ci is
obtained from Ci�1 by refining � 2 Ci�1 if jSpc� j > ni or
jSc�j > ni�1.

If jSc� j > ni�1, we construct a (1=�1)-cutting (restricted
to �) for the hyperplanes spanning the simplices in Sc�, where
�1 = ri�1jSc�j=ni�2 � ri�1. Thus, each new simplex � in
Ci has jSc� j � jSc�j=�1 = ni�2=ri�1 = ni�1 (the set Spc� is
empty since every simplex in Sc� crosses � ). By Lemma 5.2,
there are O(�1

d�1 +( �1
jSc

�
j )
dv(S; �)) simplices in the cutting.

If jSpc� j > ni, we vertically project � and the simplices
in Spc� to IRd�1, obtaining a (d � 1)–simplex and a set S0pc�
of (d � 1)–simplices, respectively. We construct a (1=�2)-
cutting for the hyperplanes spanning the (d � 2)-faces of
simplices in S0

pc
� , where �2 = rijSpc� j=ni�1 � ri. Next,

the (d � 1)-simplices in the resulting cutting are vertically
projected obtaining d–cylinders which are restricted to�. The
choice of �2 guarantees that each new d-cylinder � in Ci has
jSpc� j � jSpc� j=�2 = ni�1=ri = ni and jSc� j � jSpc� j � ni�1.
There are O(�2

d�1) d-cylinders resulting from the cutting.
There are h = O(log logn) levels in the recursion. The

size of Ci is given by the recurrence

jCij �
X

�2C
i�1

c1

(
�1
d�1 +

�
�1

jSc�j

�d

v(S; �) + �2
d�1

)

� Ar
d�1
i�1 jCi�1j+B

�
ri�1

ni�2

�d

k

for some constants A;B > 1. This recurrence’s solution is
jCij � Ci(n=ni�1)d�1 +D(1=ni�1)dk for some constants
C;D � 1. Verifying this inductively we need C � A and
D � ADr�1

i�1+B, which are satisfied for appropriate choices
of C and D, e.g., C � A, D = A+B, and D < ri�1. Thus,
the total number of simplices generated is

hX
i=0

C
i

�
n

ni�1

�d�1

+D

�
1

ni�1

�d

k = O(nd�1 logO(1) n+ k):

We now examine the time and work bounds of the algo-
rithm. By Lemma 5.2, for each � 2 Ci we spendO(logni�1)
time and O(ni�1r

E
i ) work for some constant E � d. Thus,

the total time is
P

i logni�1 = O(logn), and the total work
is

hX
i=0

ni�1r
E
i jCij � n

d�1
hX
i=0

C
i
n

2�d
i�1 r

E
i +Dk

hX
i=0

n
1�d
i�1 r

E
i

= n
d�1

hX
i=0

C
i
n

2�d+�E
i�1 +Dk

hX
i=0

n
1�d+�E
i�1

= O(nd�1 logO(1) n+ k);

for � chosen sufficiently small so that �E < d� 2.



Below we describe how the hierarchical structure built
when constructing the covering of A(S) can be augmented
to answer incidence and vertical ray shooting queries in
O(logn) time. Then we briefly discuss how point location
queries can be performed in O(logn) time using a sequence
of d vertical ray shooting queries.

Incidence queries. As in [35], the basic data structure is a
two–level search tree. The primary search tree T pc (a PC-
tree) is built from the cylinders generated from the sets Spc� ,
and each secondary search tree T c (a C-tree) is built from
the d-simplices generated from the sets Sc�. For example, for
� 2 Ci the cylinders of Ci+1 resulting from the cutting of
Spc� are stored in the node v� associated with � in T pc, and
the simplices of Ci+1 resulting from the cutting of Sc� are
contained in the root of v�’s secondary structure T c.

During an incidence query, the query point p is first lo-
cated in the set of d-cylinders contained at the root of T pc.
Since there areO(rd�1

i+1 ) d-cylinders contained in each node at
level i in T pc, the search cannot be performed by brute force
(as was done in [35]). However, we can build a point location
structure for the (d� 1)-dimensional arrangement of the hy-
perplanes spanning the (d�2)-faces of the simplices in S0pc� .
This can be done in O(log ri+1) time using O(rd�1

i+1 ) work,
and the point location query can be answered in O(log ri+1)
time [4]. If p is contained on the boundary of a d-cylinder
� 2 T pc, then a simple check determines whether p is inci-
dent to the (d � 1)-simplex in S defining �. If not, then p is
located recursively in the secondary search tree T c (for the
current node of T pc) and in the indicated subtree of T pc. We
also build a point location structure for each node in a C-tree,
the only difference being that we build a d-dimensional struc-
ture using O(rdi ) work. Thus, an incidence query takes timeP

i log ri = O(logn). For each � 2 Ci we spend O(rdi )
work so the point location structures can be built within the
same resource bounds as the basic structure, i.e., the work is
folded into the rEi factor.

Vertical ray shooting queries. Consider a d-cylinder
� 2 T pc containing the query point p: the (d � 1)-simplex
immediately below p in Spc� [Sc� is either the (d�1)-simplex
immediately below p in Spc� or the (d � 1)-simplex imme-
diately below p in Sc� . Since T pc is composed of vertical
cylinders, queries can be answered recursively on PC-trees.
Next consider simplices �1 2 Ci and �2 2 Ci+1 where
p 2 �2 � �1 and both �1 and �2 are contained in a C-tree.
Let b(�2) be the subset of the (d� 1)-simplices in Sc�1

n Sc�2

that lie below �2. Queries in C-trees can be answered recur-
sively since the (d� 1)-simplex immediately below p in Sc�1

is either the (d�1)-simplex immediately below p in b(�2) or
in Sc�2

. Thus, we explain how to answer a query in b(�2). As
in [35], we use an auxiliary structure to answer the query in
b(�2). However, we will use a different (and arguably sim-
pler) method. Using the algorithm of Amato et al. [4], we
compute the intersection (in �1) of the halfspaces containing
�2 whose bounding hyperplanes span the (d � 1)-simplices
in b(�2). Next, we vertically project the resulting intersection
b(�2)

\ to obtain a (d � 1)–dimensional arrangement of size

O(nbd=2c
i�2 ), and build a point location structure for it. This

point location structure is used to find the simplex below p in
b(�2) (see Figure 3).

1s

s 2

p

S
2s
c

a

b

c

a b c

b(s  ) 2

Figure 3:

Since the intersection is constructed hierarchically, a hi-
erarchical (d� 1)-dimensional point location structure with
query time O(logni�2) can be constructed when the inter-
section is computed. The point location structures are built in
O(logni�2) time usingO(n

bd=2c
i�2 logO(1) ni�2)work (adding

O(r
bd=2c(d�1)
i�1 ) work to each stage of the intersection con-

struction, which does not affect the complexity bounds of
the intersection algorithm [4]). Given these auxiliary struc-
tures, a vertical ray shooting query for S is answered inP

i logni�2 = O(logn) time. Using nbd=2c+�
i�2 , 0 < � < 1,

as an upper bound on the work for � 2 Ci, the total work of
building the auxiliary point location structures is bounded by

hX
i=1

n
bd=2c+�
i�2 jCij

�

hX
i=1

n
bd=2c+�
i�2

(
C
i

�
n

ni�1

�d�1

+D

�
1

ni�1

�d

k

)

= n
d�1

hX
i=1

C
i
n

1+��dd=2e+�(d�1)
i�2 +Dk

hX
i=1

n
��dd=2e+�d
i�2

= O(nd�1 logO(1) n+ k);

for � chosen sufficiently small so that �d < dd=2e � �.

Point location queries. In [35], a point location query is re-
duced to a series of d vertical ray shooting queries in faces of
A(S) of decreasing dimension. Using our vertical ray shoot-
ing data structures in the point location algorithm of [35] we
obtain a query time ofO(logn), and storage and construction
costs of m = O(nd�1 logO(1) n + k) and O(m + k logn),
respectively. To obtain the parallel result we note that Pel-
legrini’s [35] construction of the connectivity graph of A(S)
(used in the search) can be parallelized in a straightforward
manner yielding the point location structure in O(log2 n)



time in the EREW PRAM model. The construction uses
O(m + k logn) work. The time is O(log2 n) because we
construct planar line segment arrangements (Theorem 3.2).
The construction also uses a parallel algorithm for finding the
connected components of a graph (see, e.g., [13, 25]) (details
will be provided in the full paper).

Triangulating non-intersecting (d�1)–simplices in IRd. If
the simplices in S are interior disjoint, then Pellegrini [35]
notes that a slight modification of the method for building
the incidence query data structure can be used to construct a
triangulation ofA(S) of sizeO(nd�1) in timeO(nd�1). The
hierarchical representation of the triangulation supports point
location queries in O(logn) time. This idea can be used in
parallel to construct a triangulation ofA(S) of size O(nd�1)
in O(logn) time using O(nd�1) work in the EREW PRAM
model (details will be provided in the full paper).

References
[1] P. Agarwal, J. Matoušek, and O. Schwarzkopf. Computingmany faces in arrange-

ments of lines and segments. In Proc. 10th Annu. ACM Sympos. Comput. Geom.,
1994.

[2] P. K. Agarwal. Partitioning arrangements of lines: II. Applications. Discrete
Comput. Geom., 5:533–573, 1990.

[3] P. K. Agarwal. Geometric partitioning and its applications. In J. E. Goodman,
R. Pollack, and W. Steiger, editors, Computational Geometry: Papers from the
DIMACS special year. Amer. Math. Soc., 1991.

[4] N.M. Amato, M.T. Goodrich, and E.A. Ramos. Parallel algorithms for higher-
dimensional convex hulls. In Proc. 35th Annu. IEEE Sympos. Found. Comput.
Sci. (FOCS 93), pages 683–694, 1994.

[5] I.J. Balaban. An optimal algorithm for finding segment intersections. In Proc.
11th Annu. ACM Sympos. Computational Geometry, 1995.

[6] J. L. Bentley and T. A. Ottmann. Algorithms for reportingand countinggeometric
intersections. IEEE Trans. Comput., C-28:643–647, 1979.
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