
Topology B-Trees and Their ApplicationsPaul Callahan? Michael T. Goodrich?? Kumar Ramaiyer???Dept. of Computer Science, The Johns Hopkins Univ., Baltimore, MD 21218, USAAbstract. The well-known B-tree data structure provides a mechanismfor dynamically maintaining balanced binary trees in external memory.We present an external-memory dynamic data structure for maintainingarbitrary binary trees. Our data structure, which we call the topologyB-tree, is an external-memory analogue to the internal-memory topol-ogy tree data structure of Frederickson. It allows for dynamic expressionevaluation and updates as well as various tree searching and evalua-tion queries. We show how to apply this data structure to a numberof external-memory dynamic problems, including approximate nearest-neighbor searching and closest-pair maintenance.1 IntroductionThe B-tree [8, 12, 14, 15] data structure is a very e�cient and powerful way formaintaining balanced binary trees in external memory [1, 11, 13, 18, 19, 21, 22,2]. Indeed, in his well-known survey paper [8], Comer calls B-trees \ubiquitous,"for they are found in a host of di�erent applications. Nevertheless, there aremany applications that operate on unbalanced binary trees.In this paper we describe a data structure, which we call the topology B-tree,for maintaining unbalanced binary trees in external memory. We allow for dy-namic expression updates [7] and we consider a number of tree-search queries onarbitrary binary trees, which in turn can be used to solve a number of dynamicexternal-memory problems, including approximate nearest-neighbor searchingand closest-pair maintenance. The topology B-tree is an external memory ana-logue to the topology tree data structure of Frederickson [10], which is an elegantinternal-memory method for maintaining unbalanced binary trees.Before we describe our results, let us review the model for external mem-ory [1, 11, 13, 18, 19, 21, 22] that we will be assuming throughout this paper.1.1 The External-Memory ModelWe assume that the external-memory device (e.g., a disk) is structured so thatseek time is much larger than the time needed to transfer a single record; hence,? This research supported by the NSF under Grant CCR-9107293.?? This research supported by the NSF under Grants CCR-9300079, IRI-9116843 andCCR-9300079.??? This research supported by the NSF under Grants CCR-9300079, IRI-9116843 andCCR-9300079.



to compensate for this time di�erence data is transferred between internal andexternal memory in blocks of records. We let B denote the number of recordsthat can be transferred in a single external-memory input or output (i/o), andour measure of e�ciency will be in terms of the total number of i/o's needed fora particular computation. Indeed, the model does not at all consider the numberof internal computations performed by the CPU (provided this is kept withinreason). This is motivated by the large di�erence in speed between modern CPUand disk technologies, for most computations on modern CPU's are measured innanoseconds whereas most access times for modern disk drives are measured inmilliseconds. As Comer1 puts it, this is analogous to the di�erence in speed insharpening a pencil by using a sharpener on one's desk or by taking an airplaneto the other side of the world and using a sharpener on someone else's desk.In addition to the parameter B, measuring block size, we also use M todenote the number of records that can �t in internal memory, and we use N todenote the total number of records i.e., input size. For the problems we consider,we make the reasonable assumptions that M < N , and 1 � B �M=2.1.2 Our ResultsAs mentioned above, in this paper we give an external-memory analogue tothe topology tree data structure, which we call the topology B-tree. We showhow use this data structure to dynamically maintain arbitrary binary trees,subject to the operations insertion and deletion of nodes, a generalized deepest-intersection search, and evaluation of arithmetic expressions, which we imple-ment using O(logB N) block i/o's. In addition, we show that each of the opera-tions on dynamic expression trees require �O(logB N) block i/o's2. Finally, usingthese primitives, we design optimal external-memory methods for dynamicallysolving the following geometric problems:{ Approximate nearest neighbor [3, 4]: given a set S of points in IRd, for �xedd, a query point p, a metric Lt, and a parameter �, �nd a point q in Sthat is within distance at most (1 + �) times the distance of the actualnearest neighbor of p in S under Lt metric. We support this query under theoperations of insertion and deletion of points in S.{ Closest pair [6, 5]: given a set S of points in IRd, for �xed d, �nd a pair ofpoints in S which are the closest among all pairs of points in S under theEuclidean distance metric. We support this operation under insertion anddeletion of points from S.Our query algorithms all use an optimal O(logB N) external-memory i/o's.2 The Topology Tree Data StructureBefore we describe our data structure in detail, however, let us �rst review thestructure of the topology tree [10], and discuss how to implement insertion and1 Personal communication.2 We use the notation �O(:) to describe amortized complexity.



deletion of nodes, a generalized deepest-intersection search, and the evaluationof arithmetic expressions.Given any rooted tree T = (V;E), the topology tree T is a balanced treeconstructed on top of the nodes of T by repeated clustering. The topology treeT has multiple levels, and at each level there is a tree structure de�ned on thenodes at that level. Moreover, the nodes at any level de�ne a partition of V . Therules for clustering the nodes are simple, and they enforce certain constraintson the resulting structure, which makes the topology tree balanced. The leavesof the topology tree T are the nodes V of tree T , and are at level 0. We referto the tree T0 = T as the base tree of the topology tree. These nodes of T0 areclustered to form bigger nodes, and result in a new tree structure T1. The nodesof T1 are the nodes at level 1 of the topology tree, and from each node v of T1there are edges (in T ) to the leaves of the topology tree which were combinedto form v. Now clustering is done on nodes of T1 to obtain the nodes for level 2of the topology tree, and so on. We refer to the tree Ti as the level i tree, for itsnodes are all at level i in the topology tree T (numbering up from the leaves).Eventually the clustering results in a single node which forms the root of thetopology tree. The clustering is done according to the following simple rules:1. Each cluster of degree 3 is of cardinality 1.2. Each cluster of degree less than 3 is of cardinality at most 2.3. No two adjacent clusters can be combined and still satisfy the above.The �rst two rules guide the clustering operation, and the last one speci�esthe maximality property of clustering at each level. Based upon these clusteringrules, it is fairly straightforward to show that the number of levels in a topologytree is O(logN), where N is the number of nodes in the base tree T . Freder-ickson [9] proves the following (stronger) lemma which relates the number ofclusters at one level with the previous level:Lemma1. [9] For any level l > 0 in a topology tree, the number of clusters atlevel l is at most 5=6 of the number of clusters at level l� 1.2.1 Implementation of Primitives on Topology TreeIn this section, we discuss how to implement the dynamic operations on thetopology tree. Our methods are very similar to those of Frederickson [10], butsimpler, since we consider here only a subset of the operations he considers.We consider the following operations on an arbitrary rooted binary tree T :insert(T, v, w, pos): Insert the node v in the tree T as the pos (left or right)child of node w.delete(T, v): Delete node v from the tree T .swap(T;Tv ;w): Given a tree Tv rooted at node v, replace the subtree rootedat w in T with Tv.



2.2 Augmenting the Tree for Generalized SearchingWe augment the topology tree to perform a generalized searching computa-tion and evaluate arithmetic expressions, under the dynamic operations outlinedabove. Additional operations we implement are as follows:intersect(T, x, v): Suppose each node w of the tree T stores an O(1)-sizeddescription of a set Qw, such that the set stored at a node w always containsthe sets stored at its children. This operation tests if an object x intersectsa set Qv for a given node v in T .deepest-intersect(T, x): Suppose again that each node w of the tree T storesan O(1)-sized description of a set Qw, such that the set stored at a node walways contains the sets stored at its children. This operation identi�es eachnode v in the tree T in which x intersects Qv, but x does not intersect theset associated with any of v's children (or v is a leaf).eval-expression(T, v): Suppose the leaves of the tree T store values froma semiring (S;+; �; 0; 1), and the internal nodes store the operations + or�. This operation evaluates the arithmetic expression represented by thesubtree Tv rooted at v in T .Our implementation of the insert, delete, and swap operations is similarto Frederickson [10]. We implement these operations using constant number ofreclustering operations i.e., removal of clusters along a root-to-leaf path in T ,and performing the clustering again. The complexity of reclustering operation isO(logN) as shown in the following lemma:Lemma2. The reclustering operation along a path in a topology tree T uses atotal of O(logN) pointers from T and from all the level trees. Moreover at eachlevel, the number of pointers modi�ed in the level tree is constant (at most 2).Hence the maintenance of the topology tree after any of the dynamic oper-ations takes O(logN) time. We also show in the full version how the additionaloperations can be implemented on a topology tree in O(logN) time (O(k�logN)for deepest-intersect queries, where k is the size of the output).3 B-ListsIn this section, we divert our attention and consider a method that is probablypart of the folklore in external-memory algorithms, but which is applicable inthe construction of our �nal data structure.Suppose we are given a doubly-linked list of N weighted nodes, and a param-eter B, where each node u in the list is of weight wu � B. Let W = PNi=1 wi.The problem is to appropriately group the nodes in the list into blocks so thatthe weight of each resulting block is less than or equal B, and the total numberof blocks is O(W=B). Also, we require that the structure supports the operationsof insertion and deletion of nodes in the list.



We solve this problem by simply grouping contiguous nodes into blocks,and maintain the following weight invariant: the sum of the weights of any twoadjacent blocks is at least B, and the weight of each block is less than or equalto B. We refer to the resulting structure as a B-list.We can easily show that insertion and deletion operations on B-lists manip-ulates only O(1) blocks. Also, it is easy to show that the operations of weightupdates of nodes can also be done similarly by changing only O(1) blocks.4 Hierarchical B-listsIn this section, we show how to build a structure using the B-list structures,which we call the hierarchical B-list. This structure is motivated by the skip liststructure of Pugh [20].The hierarchical B-list consists of a hierarchy of B-lists in which only theblocks of adjacent B-lists are connected. We assign a level to each B-list, and thelevel numbers increase from bottom to the top of the hierarchy. The pointers aredirected, and we refer to them as down or up pointers based on the direction.We require the blocks in the underlying B-lists satisfy the following connectivityconstraint: each block has at most B down pointers, and has at most constantnumber of up pointers (if present). We de�ne the hierarchical B-lists to be gov-erned if all the inter-level pointers are down pointers, and ungoverned otherwise.The blocking on the individual B-lists are done independently as discussedin the previous section. When we split (merge) blocks the pointers get added(removed) to (from) the blocks in the next B-list which may require furtherspliting (merging). We can do update operations on hierarchical B-lists as inhysterical B-trees [15]. We give the details in full version.In ungoverned hierarchical B-lists, during spliting and merging we may needto perform O(B) pointer changes, since we need to add new up pointers toparent blocks. But using a result of hysterical B-trees [15], we can prove thatthe number of pointer changes during a split or merge is �O(1).We now consider hierarchical B-lists consisting of O(logB N) B-lists, whichwe can easily show as requiring a storage of O(N=B) i/o blocks. We can also showthe following lemma for update operations on ungoverned hierarchical B-lists.Lemma3. We can perform the operations of search and updates on a un-governed hierarchical B-list requiring a storage of O(N=B) i/o blocks, using�O(logB N) i/o's.For governed hierarchical B-lists, however, we can show the following:Lemma4. We can perform the operations of top-down search and updates ona governed hierarchical B-list requiring a storage of O(N=B) i/o blocks, by per-forming only O(logB N) i/o's.



5 The Topology B-TreeIn this section we give details of the construction of our external-memory datastructure, the topology B-tree, and we also discuss some of its properties.Given a topology tree T , we group the clusters of T to form a tree of biggernodes, which we call super clusters. This process increases the degree of eachnode in the resulting tree. We prove bounds on the degree, the size of the newclusters, number of nodes, and the depth of the resulting tree. We also show howto implement dynamic operations on this topology tree of super clusters. Werefer to this method of grouping of clusters into super clusters as strati�cation,and we call the resulting tree the strati�ed topology tree.The lemma 1 shows that the number of clusters in a topology tree decreasesin a geometric progression as we move from leaves to the root. This provides usa method for strati�cation, which we now discuss in detail. We split the levelsof a topology tree into groups of contiguous log2B levels. We refer to each levelof T that is a multiple of log2B as a super level. We refer to the contiguousgroup of log2B levels between two super levels, say i and i+ 1, in T as a layeri of T . From every node u in each super level, we construct a super cluster byincluding all the descendants of u in T up to but not including the nodes of thenext super level. We refer to the resulting tree of layers of super clusters as thestrati�ed topology tree. To obtain our �nal structure, we construct a B-list on thesuper clusters in each layer of strati�ed T (ordered left to right), and then builda hierarchical B-lists structure over the B-lists constructed on all the layers ofT . We call the resultant structure the topology B-tree.Now consider a block b at level i in the hierarchical B-lists. The block bcontains one or more super clusters from layer i of T . But the total numberof nodes of T in b from these super clusters is at most B. These nodes havedescendants which belong to at most B blocks at level (i� 1) of the hierarchicalB-lists. We make the down pointers for the block b point to these blocks inthe B-list at level i � 1. Similarly we make the up pointers for a block pointto the blocks containing the ancestor super clusters (if the application needsungoverned hierarchical B-lists). We can easily bound the number of up pointersrequired for each block by at most 2.We now prove some properties of the topology B-tree:Lemma5. In a topology B-tree T 0 corresponding to a topology tree T of Nnodes,1. the number of blocks in T 0 is O(N=B),2. the depth of T 0 is O(logB N), and3. each super cluster belongs to exactly one block.Proof: These follow directly from the above discussions.We begin our discussion of the implementation of our dynamic operations by�rst proving an important bound on the number of blocks that may be modi�edin a reclustering operation performed on a topology B-tree due to an insertionor deletion of a node in T . When we access a block, we have information about



adjacencies in the topology tree as well as information from all the level treenodes in that blocks. When we perform the changes required for reclusteringwithin a block, we use the level tree edges which point to other blocks. Thisoperation could potentially access a large number of blocks. But, as we showin the following lemma, the number of blocks that may be accessed during thereclustering operation is not too large.Lemma6. The total number of blocks accessed during a reclustering operationon a topology B-tree is O(logB N).
x y

v w

super cluster

Fig. 1. The Structure of a Topology B-Tree (blocking not shown).Proof: The structure of a topology B-tree T 0 is shown in Figure 1. Considera super cluster x at layer l in the corresponding strati�ed topology tree T . Itcontains part of T , and also information about the level tree nodes contained init. There are some level tree edges going out from x to other super clusters (seeFigure 1). Consider a node v at level i within x. Suppose v has a edge e goingto the node w in the super cluster y. There are two cases:Case 1: The parent of node v at level i+1 is v itself in T . In this case, the nodev is not part of the clustering at level i. So, the level tree edge is inherited bythe parent nodes of v and u, and hence by the corresponding super clusters.Case 2: The parent of node v at level i+ 1 is some other node, say u in T . Inthis case, either the nodes v and w become part of the same super cluster orwe fall back to Case 1.Hence the total number of super clusters accessed during a reclustering oper-ation is proportional to the number of layers or the depth of strati�ed topologytree T , which is O(logB N). Since each super cluster belongs to exactly one



block in T 0 (see lemma 5), the number of blocks accessed during a reclusteringoperation on a topology B-tree is also O(logB N).Using the above lemmas we can show the following:Theorem7. The dynamic operations insert, delete, and swap on the topologyB-tree use O(logB N) i/o's. The intersect operation at any node in the base treeuses O(logB N) i/o's, and the deepest-intersect query uses O(k � logB N) i/o's,where k is the number of nodes identi�ed by the search. The arithmetic expressionevaluation, and the maintenance of the dynamic expression tree uses �O(logB N)i/o's.Proof: The claim follows from the lemmas 3, 4, 5, and 6, and from the dis-cussions above. The topology tree built on an expression tree does not supportsearch operation for a leaf node, and hence it requires ungoverned hierarchicalB-lists for reclustering operation. As a result, we get amortized complexity asshown in lemma 3. However, for implementing other operations we assume theunderlying tree supports search operation for locating a leaf. Once the search isdone, we can use the path information obtained during reclustering.6 ApplicationsIn this section we consider two fundamental problems in computational geome-try, and discuss dynamic solutions for those problems using our topology B-tree.Both the applications involve tree structure which supports top-down searchfrom the root to locate any leaf. Hence, we use a topology B-tree which is builtusing governed hierarchical B-lists.6.1 Dynamic Approximate Nearest NeighborThe problem we consider here is as follows: Given a set S of points in d dimen-sions (d is a constant), a query point p, a metric Lt, and a parameter �, �nd apoint q 2 S such that dist(p;q)dist(p;p�) � 1 + �, where dist(:; :) represents the distancebetween two points in Lt metric, and p� is the actual nearest neighbor of p inS. Our goal is to come up with a data structure to answer this approximatenearest neighbor query, and to maintain the data structure under the operationsof insertion and deletion of points in S.Arya and Mount [3] �rst presented a (static) linear-space data structure forthe approximate nearest neighbor problem that answered queries in O(log3N)time, which was later improved by Arya et al. [4] to O(logN) time and also madedynamic. All the previous work on this problem is for the internal memory model.We give a brief outline of their method here. The set of points in S in ddimensions is partitioned into boxes of \good" aspect ratio. The partitioning isdone by repeatedly splitting boxes of points into two boxes using hyperplanesparallel to one of the d dimensions. The boxes are arranged in a binary tree withleaves representing the boxes containing some constant number of points, and



the internal nodes containing boxes which are the union of the boxes containedin the children3. The tree of boxes can have linear depth in the worst case. Buta topology tree is constructed on top of it to obtain a balanced structure.The algorithm of Arya et. al. [4] can be characterized as a method thatperforms constant number of point location queries on the topology tree con-structed, maintaining the closest point found so far. This observation helps usto \externalize" the algorithm. We represent the tree of boxes obtained by par-titioning the point space using a topology tree whose nodes are augmented withsets of constant size. The tree of boxes supports searching for a leaf node, andhence we use a topology B-tree built using governed hierarchical B-lists.Using topology B-tree, we can compute the approximate nearest neighborfor a query point using O(logB N) i/o's. We can also update the data structureusing O(logB N) i/o's, during the operations of insertion and deletion of points.We give the details in the full version.6.2 Dynamic Closest PairRecently, Bespamyatnikh [5] has developed an algorithm to maintain the closestpair of points in a point set S in optimal worst case O(logN) time for insertionsand deletions. The space requirement is linear in N . We adapt his algorithm tothe present framework in order to externalize it, using the same box decomposi-tion used in the preceding section for computing approximate nearest neighborqueries.Callahan and Kosaraju [6] have shown how to maintain such a box decompo-sition of S under point insertions and deletions using only algebraic operations.In the present framework, this box decomposition corresponds to the tree T0 inwhich each node v is labeled by a rectangle R(v). The adapted algorithm can bemodi�ed to require O(logB N) i/o's in the external-memory model.Bespamyatnikh maintains a linear-size subset E of the set of distinct pairsof S such that E is guaranteed to contain the closest pair. As in the O(log2N)algorithm of [6], which solves a more general class of dynamic problems, thesepairs are then maintained on a heap, resulting in the maintenance of the closestpair. The set E must satisfy certain invariants, which we now recast in theterminology of Callahan and Kosaraju [6].Let lmax(R) denote the longest dimension of some rectangle R, let p(v) de-note the parent of v in T0 (where the point a is used interchangeably with theleaf representing it), and let dmin and dmax denote, respectively the minimumand maximum distances between two point sets. We also introduce constant pa-rameters � and � that must be adjusted to reconcile the new de�nitions withthose of Bespamyatnikh.First, we de�ne a rejected pair to be an ordered pair (a; b) of points from Ssuch that there exists v in the box decomposition T0 satisfying the following:1. a 62 R(v),3 There are other types of nodes also, representing doughnut cells, but we omit thedetails here.



2. lmax(R(v)) � �lmax(R(p(a))) ,3. dmin(R(p(a)); R(p(v))) � �lmax(R(p(v))) , and4. dmax(a;R(v)) < d(a; b).Then we maintain the invariant that for all a; b 2 S, fa; bg 2 E unless (a; b)or (b; a) is a rejected pair. For su�ciently small � and �, the conditions forrejection are stronger than those of Bespamyatnikh, and will therefore su�ce toprove correctness.Second, we de�ne Ep to be the set of all those pairs in E that contain the pointp, and let Nd denote some d-dependent constant. We maintain the additionalinvariant that for all p 2 S, jEpj � Nd. Note that this gives us a linear boundon jEj. This requirement is justi�ed by a theorem of Bespamyatnikh deriving aconstant Nd such that for any p such that jEpj > Nd, there is some fp; qg in jEpjsuch that either (p; q) or (q; p) is a rejected pair.There are two kinds of searches we must perform in order to maintain theset E. First, for any point p, we must be able to retrieve a set Ep containingat most Nd points. This is necessary for restricting the size of these sets underupdates when we add new pairs to E. Second, we must be able to retrieve a setA(v) for any v that contains all p 2 S such that there exists a (p; q) that is arejected pair by virtue of the rectangle R(v). This is necessary for determiningwhen new pairs must be added to E to account for the deletion of some point.Bespamyatnikh has shown that the size of A(v) is constant. Intuitively, thisfollows from conditions 2 and 3, which allow us to apply a packing argument.See [5] for a proof that these two operations are su�cient.The above searches can be reduced to an invocation of an approximate near-est neighbor search of the preceding section and a search de�ned in [6] in whichwe construct a �-rendering of a given d-cube C, denoted ��(C). Intuitively, ��(C)is an approximate covering of the points in C using a constant number of rect-angles from T0. More formally, ��(C) is a set containing all tree nodes w suchthat lmax(R(w)) � �l(C) < lmax(R(p(w))), and R(w) intersects C. It is straight-forward to show by a packing argument that the size of a �-rendering is O(1)(with constants dependent on � and d).We can implement the construction of a �-rendering as a search on the topol-ogy tree that is much like point location, but in which we may need to descendinto both children of a cluster, resulting in a search subtree of the topology treerather than a single path. The objects for such a \truncated" deepest-intersectquery now correspond to rectangle intersection rather than point inclusion. De-tails of this search will be given in the �nal version. Because the number of leavesin such a search will be bounded by the size of the �-rendering, the total numberof i/o's will remain bounded by the depth of the search tree, and will thereforehave complexity O(logB N) in the external memory model.Computing Ep: Given a point p, we compute Ep as follows. First, we �nd theapproximate nearest neighbor of p using the algorithm of the preceding section.Let r denote the distance to this neighbor. Clearly r is at least the distance tothe actual nearest neighbor. Moreover, it can be greater by a factor of at most(1 + �). The value of � used is not critical, though it may be chosen to optimize



e�ciency.We now let C be the cube centered at p with sides of length 2r, and compute��(C) for � su�ciently small that the diameter of each R(w) is bounded aboveby r(1 + �)�1. We let Ep consist of all those points q such that w 2 ��(C) andS\R(w) = fqg. That is, we rule out any points contained in boxes in which thereis more than one point. Note that for any q 2 S \ R(w) such that w 2 ��(C)and jS \R(w)j > 1, one can construct a v (a descendant of w) such that (q; p) isa rejected pair. Hence, we may maintain the �rst invariant while rejecting suchq. It is even easier to verify that we may reject all points not covered by boxesin ��(C). We derive the constant Nd by bounding j��(C)j in terms of d and �.Computing A(v): For this computation, we recall conditions 2 and 3, andconsider the set of all a 2 A(v). One can easily verify from condition 3 thatR(p(a)) must intersect a cube C of length (2� + 1)lmax(R(p(v))) on a side.For su�ciently small �, it su�ces to consider those a such that there existsw 2 ��(C) with S \ R(w) = fag. Once again, we may rule out any w such thatR(w) contains multiple points. In this case, the reason is that R(p(a)) wouldthen violate condition 2.Recall that the number of i/o's needed to perform an approximate near-est neighbor query and to construct ��(C) is O(logB N). It follows that theabove operations can be performed in O(logB N) i/o's. We use standard B-treesto implement heap maintenance in the same i/o complexity. Combining thiswith the result of [5], we obtain an algorithm for closest-pair maintenance usingO(logB N) i/o's.7 ConclusionsWe give an e�cient method for maintaining arbitrary rooted binary trees inexternal memory in a dynamic fashion. We show how to perform the dynamicexpression tree updates and how these can be applied to solve some interestingdynamic computational geometry problems in external memory. We believe thereare other applications, as well, such as approximate range searching [17].AcknowledgementsWe would like to thank David Mount for several helpful discussions concerningthe topics of this paper.References1. A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and relatedproblems. Communications of the ACM, 31(9):1116{1127, 1988.2. Lars Arge. The bu�er tree: A new technique for optimal i/o algorithms. In Proc.on Fourth Workshop on Algorithms and Data Structures, 1995.3. S. Arya and D. M. Mount. Approximate nearest neighbor queries in �xed dimen-sions. In Proc. 4th ACM-SIAM Sympos. Discrete Algorithms, pages 271{280, 1993.



4. S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Wu. An optimalalgorithm for approximate nearest neighbor searching. In Proc. 5th ACM-SIAMSympos. Discrete Algorithms, pages 573{582, 1994.5. Sergei N. Bespamyatnikh. An optimal algorithm for closest pair maintenance. InProceedings 11th Annual Symposium on Computational Geometry, 1995.6. P. B. Callahan and S. R. Kosaraju. Algorithms for dynamic closest pair and n-body potential �elds. In Proc. 6th ACM-SIAM Symp. on Discrete Algorithms,pages 263{272, 1995.7. R. F. Cohen and R. Tamassia. Dynamic expression trees and their applications.In Proc. 2nd ACM-SIAM Sympos. Discrete Algorithms, pages 52{61, 1991.8. D. Comer. The ubiquitous B-tree. ACM Comput. Surv., 11:121{137, 1979.9. G. N. Frederickson. Ambivalent data structures for dynamic 2-edge connectivityand k-smallest spanning trees. In Proc. 32nd Annu. IEEE Sympos. Found. Com-put. Sci., pages 632{641, 1991.10. G. N. Frederickson. A data structure for dynamically maintaining rooted trees.In Proc. 4th ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 175{184,1993.11. Michael T. Goodrich, Jyh-Jong Tsay, Darren E. Vengro�, and Je�rey Scott Vitter.External-memory computational geometry. In Proc. 34th Annu. IEEE Sympos.Found. Comput. Sci. (FOCS 93), pages 714{723, 1993.12. O. Gunther and H.-J. Schek. Advances in spatial databases. In Proc. 2nd Sympo-sium, SSD '91, volume 525 of Lecture Notes in Computer Science. Springer-Verlag,1991.13. P. C. Kanellakis, S. Ramaswamy, D. E. Vengro�, and J. S. Vitter. Indexing fordata models with constraints and classes. In Proc. 12th ACM SIGACT-SIGMOD-SIGART Conf. Princ. Database Sys., pages 233{243, 1993.14. Robert Laurini and Derek Thompson. Fundamentals of Spatial Information Sys-tems. A.P.I.C. Series. Academic Press, 1992.15. D. Maier and S. C. Salveter. Hysterical B-trees. Information Processing Letters,12(4):199{202, 1981.16. J. Matou�sek. Reporting points in halfspaces. Comput. Geom. Theory Appl.,2(3):169{186, 1992.17. D. Mount and S. Arya. Approximate range searching. In Proc. 11th ACM Symp.on Computational Geometry, 1995.18. M. H. Nodine, M. T. Goodrich, and J. S. Vitter. Blocking for external graphsearching. In Proceedings of the 12th Annual ACM Symposium on Principles ofDatabase Systems (PODS '93), pages 222{232, 1993.19. M. H. Overmars, M. H. M. Smid, M. T. de Berg, and M. J. van Kreveld. Maintain-ing range trees in secondary memory, part I: partitions. Acta Inform., 27:423{452,1990.20. W. Pugh. Skip lists: A probabilistic alternative to balanced trees. Communicationsof the ACM, 33(6):668{676, 1990.21. M. H. M. Smid and M. H. Overmars. Maintaining range trees in secondary mem-ory, part II: lower bounds. Acta Inform., 27:453{480, 1990.22. J. S. Vitter. E�cient memory access in large-scale computation. In 1991 Sym-posium on Theoretical Aspects of Computer Science (STACS), Lecture Notes inComputer Science,, Hamburg, 1991. Springer-Verlag.This article was processed using the LaTEX macro package with LLNCS style


