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Abstract 

We show that linear programming in IRd can be solved 
deterministically in O((loglogn)d) time using linear work 
in the PRAM model of computation, for any fixed constant 
d. Our method is developed for the CRCW variant of 
the PRAM parallel computation model, and can be easily 

implemented to run in O(logn(loglogn)d-l) time using 
linear work on an EREW PRAM. A key component in 
these algorithms is a new, efficient parallel method for 
constructing c-nets and c-approximations (which have wide 
applicability in computational geometry). In addition, we 
introduce a new deterministic set approximation for range 
spaces with finite VC-exponent, which we call the b-relative 

c-approtimation, and we show how such approximations can 
be efficiently constructed in parallel. 

1 Introduction 

The linear programming problem is central in the study 
of discrete algorithms. It has been applied to a host 
of combinatorial optimization problems since the first 
efficient algorithms for solving it were developed in the 
1940’s (e.g., see [17, 22, 37, 541). Geometrically, it can 
be viewed as the problem of locating a point that is max- 
imal in a given v’ direction in the polyhedral region P 
defined by the intersection of n halfspaces in IRd. This 
viewpoint is particularly useful for the case when the 
dimensionality, d (corresponding to the number of vari- 
ables), is fixed, as occurs, for example, in several appli- 
cations of linear programming in geometric computing 
(e.g., see [15, 20, 27, 50, 51, 551) and machine learn- 
ing (e.g., see [9, lo]). Indeed, a major contribution of 
computational geometry research has been to show that 
fixed-dimensional linear programming can be solved in 
linear time, starting with the seminal work of Dyer 1251 
and Megiddo [50, 511, and following with subsequent 
work in the sequential domain concentrated primarily 
on reducing the constant “hiding behind” the big-oh in 
these results (e.g., see [15, 18, 20, 26, 36, 46, SO]) or on 
building data structures for linear programming queries 
(e.g., see [ZS, 491). 

In the parallel domain, Alon and Megiddo [3] give 
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analogous results, showing that through the use of 
randomization one can solve a fixed-dimensional lin- 
ear program in 0( 1) time with very high probabil- 
ity using n processors in a randomized CRCW PRAM 
model’. The existing deterministic parallel algorithms 
are not as efficient, however. Ajtai and Megiddo [2] 
give a deterministic 0( (loglogn)d) time method, but 
it has a suboptimal O(n(log log n)d) work2 bound and 
it is defined for the very powerful parallel model that 
only counts ‘Lcomparison” steps [62]. The only work- 
optimal deterministic PRAM result we are familiar 
with is a method by Deng [23] for 2-dimensional lin- 
ear programming that runs in O(logn) time using 
O(n) work on a CRCW PRAM. Recently, Dyer [24] 
has given an O(logn(loglogn)d-l) time method that 
uses O(nlogn(loglogn)d-‘) work in the EREW PRAM 
model. In addition, we have recently learned that 
Sen [61] has independently discovered a CRCW PRAM 
LP method that runs in 0( (loglogn)d+‘) time using 
O(n) work. 

1.1 Our results for parallel LP. In this paper 
we give a deterministic parallel method for fixed dimen- 
sional linear programming that runs in O((log logn)d) 
time using O(n) work in the CRCW PRAM model. 
Thus, our method improves the work bound and the 
computational model of the Ajtai-Megiddo method 
while matching their running time, which is also an im- 
provement over the time bound of Deng’s method for 
d = 2. (It is also slightly faster than the recent re- 
sult by Sen, which uses an approach that is consider- 
ably different than that for our method.) In addition, 
our method can be implemented in the EREW PRAM 

‘Recall that this is the synchronous shared-memory parallel 
model where processors are allowed to perform concurrent reads 
and concurrent writes, with concurrent writes being resolved, 
say, by requiring all writing processors to be writing the same 
common value (this standard resolution rule is the one we use 
in this paper). Alternatively, in the weaker EREW PRAM 
model processors may not concurrently access the same memory 
location. 

2The war/c performed by a parallel algorithm is the product 
of the running time and the number of processors needed. 
It corresponds to the running time of the derived sequential 
algorithm. 
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model to run in O(logn(Ioglogn)d-l) time using O(n) 
work, which improves the work bound of the parallel 
method by Dyer. 

At a high level our method is actually quite simple: 
we efficiently derandomize a simple recursive procedure. 
In order to avoid the large time and processor bounds 
that come from known derandomization methods, how- 
ever, we have had to develop a new approach to the 
parallel derandomization of geometric algorithms-one 
that is more “approximate” than previous approaches. 

1.2 Derandomization. Randomized algorithms 
in computational geometry most often exploit small- 
sized random samples, and the derandomization of 
such algorithms is then done by (1) quantifying the 
combinatorial properties needed by random samples, 
and (2) showing that sets having these combinatorial 
properties can be constructed efficiently without using 
randomization. Interestingly, most of the combinatorial 
properties needed by geometric random samples can be 
characterized by two notions-the c-approzcimation [45, 
631 and the e-net 134, 451. These concepts are defined 
for very general frameworks, where one is given a set 
system (X, R) consisting of a finite ground set, X, and 
a set, R, of subsets of X. The subsets in R are often 
referred to as ranges, for R typically is defined in terms 
of some well-structured geometry or combinatorics. A 
subset Y is an e-approximation for (X, 72.) if, for each 
range R E 72, 

WRI PI <e 

VI IXI - . 
That is, Y is such that the absolute error between 

IY ” WYI and IRlllXl is at most e. Relaxing this 
error requirement a bit, Y is said to be an c-net [34, 451 
of (X, R) if Y fl R # 0 for each R E R such that 

PI ’ 4x1. This is clearly a weaker notion than 
that of an c-approximation, for any +approximation is 
automatically an t-net, but the converse need not be 
true. 

We generalize the e-approximation definition to say 
that, given non-negative parameters 6 < 1 and e < 1, 
a subset Y is a S-relative e-approximation if, for each 
range R E R, 

P”‘RI PI ~-- 
WI 

<61RI+e 
1x1 - 1x1 * 

This notion is a combined measure of the absolute and 
relative error between IY n RI/IY/ and IRl/lXl, and it 
is somewhat similar to a notion Brijnnimann et al. [13] 
refer to as a “sensitive” e-approximation. Note that this 
notion also subsumes that of an e-net, for any S-relative 
c-approximation is automatically an (e/( 1 - &))-net. 

Of course, our specific interest in this paper is in 
the design of fast and efficient deterministic methods 
for constructing small-sized b-relative e-approximations 
in parallel and applying these methods to fixed- 
dimensional linear programming. Our methods have 
other applications as well, including fixed-dimensional 
convex hull and geometric partition construction [5, 61, 
but these are beyond the scope of this paper. 

1.3 Previous work on derandomizing geo- 
metric algorithms. Before we describe our results, 
however, let us review some related previous work. The 
study of random sampling in the design of efficient com- 
putational geometry methods really began in earnest 
with some outstanding early work of Clarkson [19], 
Haussler and Welzl [34], and Clarkson and Shor [al]. 
One general type of geometric structure that has mo- 
tivated much of the derandomization research, and one 
that motivated the development of the e-approximation 
and e-net notions for computational geometry, is the ge- 
ometric partition (e.g., see [l, 451). In this problem, one 
is given a collection X of n hyperplanes in IRd, and a 
parameter T, and one wishes to construct a partition of 
lRd into O(rd) constant-sized cells so that each cell in- 
tersects as few hyperplanes as possible. It is easy to see, 
for example, that an O(r)-sized e-net of X can be used 
to construct such a partitioning so that each cell inter- 
sects at most en hyperplanes. Moreover, one can apply 
random sampling to construct such a geometric parti- 
tioning of space for e = log r/r [21, 341. Chazelle and 
Friedman [14] show that one can construct such a par- 
titioning with e = l/r deterministically in polynomial 
time, and Berger, Rompel, and Shor [ll] and Motwani, 
Naor, and Naor [52] show that one can construct simi- 
lar geometric partitions for e = logr/r in NC. Unfor- 
tunately, the running time of Chazelle and Friedman’s 
algorithm is quite high, as are the time and processor 
bounds of the implied parallel algorithms (they run in 
O(log4 n) time using a number of processors propor- 
tional to the time bound of Chazelle and Friedman’s 
algorithm). 

One can improve the running time of the Chazelle 
and Friedman algorithm for the case when the range 
space (X, R), where R is defined as the set of combi- 
natorially distinct ways to intersect X by “cells,” has 
bounded Vapnik-Chervonenkis [63] (VC)-dimension. 
Letting RIA denote the set {A n R : R E R}, the VC- 
dimension of (X, R) is defined as the maximum size of 
a subset A of X such that RIA = 2A (e.g., see [45]). A 
related and simpler notion, however, is based upon the 
shatter function 
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In particular, we say that (X,R) has I/C-exponent [7, 
12] e if nn(m) is O(n2”)3. For example, in the &per- 
plane set system, where X is a set of n hyperplanes 
in lRd and R is the set of all combinatorially dis- 
tinct ways of intersecting hyperplanes with simplices, 
it is easy to see that the VC-exponent is bounded by 
d(d+ 1). Interestingly, the VC-exponent definition sub- 
sumes that of the VC-dimension, for if (X,R) has VC- 
dimension e, then it has VC-exponent e as well 158, 631. 
There are several recent results that show that one 
can construct a (1 /r)-approximation of size O(r2 log r) 
for any range space with bounded VC-exponent e in 
time O(nF) for some constant c depending on e (e.g., 
see [13, 15, 44, 43, 48, 471). In addition, the author [30] 
has shown that one can construct such sets of size 
O(n’r2) in parallel in O(logn) time using O(nF) work 
on an EREW PRAM. Chazelle and Matousek [15] give 
slower NC algorithms using O(n.r”) work that construct 
such sets of size O(T 2+a) for any fixed constant Q! > 0. 

1.4 Our results on parallel geometric de- 
randomization. We give fast and efficient efficient 
parallel algorithms for constructing e-nets and 6- 
relative e-approximations. For example, our methods 
can be implemented in the CRCW PRAM model to 
run in O(log logn) time using O(nrc) work to pro- 
duce (log log r)-b-relative (l/r)-approximations of size 
O(r2+“) for any fixed constants o > 0 and b > 0, 
and some constant c 2 1. We aIso show how to 
find such approximations of size O(r2 log r) using more 
time and work. In addition, our methods can be 
implemented in the EREW PRAM model to run in 
O(logn) time using O(nrc) work to produce (O-relative) 
(l/r)-approximations of size O(r2+“) for any fixed con- 
stant (Y > 0. Thus, our methods improve the pre- 
vious size bounds from those achieved previously by 
the author [30] while also improving the time bounds 
from those achieved previously by Chazelle and Ma- 
tousek [ 15]. We also derive similar bounds for construct- 
ing (1 jr)-nets, and this is the result we use to design a 
new efficient parallel method for fixed-dimensional lin- 
ear programming. 

2 Linear Programming in Fixed Dimensions 

Recall the geometric view of fixed-dimensional linear 
programming. For simplicity of expression, let us 
assume that the optimal point p exists and is defined 
by the intersection of exactly d halfspace boundaries. 
Let us also assume that the origin, o, is contained in P, 

3Strictly speaking, we should define e as the infimum of all 
numbers s such that am is O(mS), but this definition will 
suffice for our purposes. 
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the polytope defined by the linear constraints. These 
assumptions can be removed with minor modifications 
to our method (similar to those used, for example, 
by Seidel f60]). Without loss of generality, we may 
additionally assume that v’ = (O,O, . . . ,O, -l), i.e., we 
are interested in the “lowest” vertex in P. Our method 
for finding p is inspired by the methods of Ajtai and 
Megiddo [2] and Dyer [24], but is nevertheless quite 
different. We find the optimal solution p by calling the 
following recursive procedure as ParLPd(X, 2n). 

Procedure ParLPd(X, w): 
Output: An optimal solution p for X (using work that 
is O(w)). 

1. 

2. 

3. 

4. 

Let n = IX]. If n 5 no, find the optimal solution by 
any “brute force” method, where no is a constant 
set in the analysis, and return. Likewise, if d = 1, 
then compute the minimum of the numbers in X 
and return. 

Compute a (l/r)-net Y for X of size O(ri+e) (in 
the hyperplane set system), where T = (w/n)‘lc 
such that c is a constant to be set in the analysis 
and e is a sufficiently small constant. (As we will 
show in the sections that follow, the time needed 
for this step is O(loglogn) in a CRCW PRAM 
implementation; the work needed for this step can 
be made O(w) if c is a large enough constant (larger 
than the constant of Theorem 4.1).) 

Compute the intersection of the halfspaces in Y and 
a canonical triangulation 7 [14] of this polyhedral 
region (with the origin as base apex), using a 
“brute force” method that uses O(r”) work. (In 
a CRCW implementation this can be done in 
O(loglogr) time; an EREW implementation takes 
O(logr) time. Both implementations are simple 
applications of parallel minimum-finding [35, 39, 
561 and are left to the reader.) 

Using ParLPd-1 as a subroutine, determine the 
simplex u in I that contains p. This is imp16 
mented as follows: 

(a> 

(b) 

For each simplex u in I compute the inter- 
section of the halfspaces in X with each of 
(T’S (d - l)-dimensional boundary faces. This 
takes O(1) time with O(nr’+‘) work, which is 
O(w) if c> 1 +e. 

For each simplex boundary face f we use 
ParLPd-I to solve the linear program de- 
fined by f and the halfspaces that inter- 
sect f. Assuming that ParLP+.l uses lin- 
ear work, this step can be implemented us- 
ing O((n/r)r(‘+‘)Ld12~) work, which is O(w) if 
c> (l+c)[d/2] - 1. 
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(c) Each point that forms a solution to the linear 
program for a boundary face f of simplex G 
belongs to a line Lj that intersects n. The 
simplex that contains the true optimal point 
p can therefore be determined in O(1) time 
by examining, for each simplex 0, how the Lf 
lines for its faces intersect 0. Since d is a fixed 
constant, this step can be implemented using 
O(n) work. 

Thus, if c is a large enough constant (which may 
depend upon d), then this step can be implemented 
using O(w) work. 

strating a fast and efficient method for computing (l/r)- 
nets. Before we describe such a work-efficient method, 
however, we first describe some algorithms for con- 
structing (l/r)-nets and (1 /r)-approximations that are 
fast but not work-efficient. 

3 O((nr)“(‘))-Work Approximation Finding 

Our approach to constructing small-sized approxima- 
tions and nets of range spaces with bounded VC- 
exponent is to derandomize a straightforward proba- 
bilistic algorithm, Approx, which is based upon the 
random sampling technique [ 191. 

5. Compress the array of halfspaces whose bound- 3.1 Probabilistic analysis. We do this using the 
ary intersects this simplex 0 and reCUrSiVdy Cdl limited . d 

ParLPd on this set of at most n/r halfspaces. The 
zn ependence technique [4, 38, 40, 411, which 

work bound we pass to this recursive call is w, un- 
assumes Approx uses random variables that are only 
k- 

less this level in the recursion is equal to ci + 1, 
wise independent. The generic situation is that one 

for some integer i 2 1, in which case we pass the 
is given a set X of n objects and an integer parameter 

work bound w/2l/“. (To implement this step in 
s, and one wishes to construct a subset Y C X of size 

the CRCW PRAM model we use X-upprozimate 
s. In this paper we assume such a sample is chosen by 
d fi e 

compaction 129, 32, 421, where one is given an ar- 
ning, for each element 5% in X in parallel, a random 

ray A with m of its locations “occupied” and one 
variable X; that is 1 with probability s/n; we use the 

wishes to map these m distinguished elements to 
rule that xi E Y if Xi = 1 [ll]. Note that one is 

an array B of size (1 + x)m. The time bound is 
guaranteed a set of IY] = X1 + X2 + + X, unique 

O(log log n) 1291 using linear work. Of course, in 
elements, which we call an expected s-sample, for its 
size may not be equal to s, although it is easy to see, 

the EREW PRAM model this step can easily be by th 
implemented in O(logn) time via a parallel prefix 

e mearity of expectation, that E(IYI) = s. We 1. 

computation [35, 39, 561.) 
also restrict the Xi’s to be only k-wise independent for 
some integer parameter k. Unfortunately, restricting 

Since this method always recurses in a region (T our attention to k-wise independent indicator random 
guaranteed to contain the optimal point and we include variables prevents us from directly using the well- 
in the subproblem all halfspaces whose boundary inter- known and powerful Chernoff bounds [4, 16, 33, 531 
sects 0, we will eventually find the optimal point p. To for bounding the tail of the distribution of their sum. 
analyze the time complexity observe that every c lev- Nevertheless, as shown by Rompel [57], we may derive 
els in the recursion the problem size will go from n/r 
to n/r2. 

something analogous: 

Thus, the total depth in the recursion tree 
is O(log logn). For d = 2, therefore, the running time 

LEMMA 3.1. ([57]) Let Xc”) be the sum of n k-wise 

in a CRCW PRAM implementation is 0( (loglogn)2); 
independent random variables taking on values in the 

hence, the running time for d > 2 is O((loglogn)d) in 
range [0, 11, with p = E(Xck)), where k is a positive 
even integer. Then there is a fixed constant c > 0 such 

this model. An EREW PRAM implementation would that 
take O(log n log log n) time for d = 2; hence, the run- 
ning time for d > 2 would be O(logn(loglogn)d-‘) in 
this model. As we have already observed, we can set c 

k,u f k2 ‘I2 
Pr(]Xck) - ~1 2 X) 2 c x2 

so that the work needed in each level of the recursion is 
( > 

, 

O(w). Moreover, since we decrease w by a constant fat- for any x > 0. 
tor every c levels in the recursion, the total work needed 
is O(n). This gives us the following: 

Incidentally, this also seems to follow from an 

THEOREM 2.1. Linear programming in IRd can be 
inequality of Schmidt, Siegel, and Srinivasan [59], which 

solved using O(n) work and O((loglogn)d) time on a 
may yield a better constant factor. 

CRCW PRAM, or, alternatively, using O(n) work and 
We can easily derandomize such algorithms in 

parallel by using the the limited independence tech- 
O(logn(loglogn)d-l) time on an EREW PRAM, for pique 14, 40, 411. I n 
fzxed d. 

applying this technique we COTI- 
struct an O(nO(“))-sized k-wise independent probabil- 

Of course, this theorem depends upon our demon- ity space such that each vector in this space represents 
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an assignment of O’s and l’s to the underlying random 
variables. Then, we can deterministically simuIate the 
running of the randomized algorithm using each vector 
in this space. At least one must succeed, and we can 
then take our output to be that of one of these succeed- 
ing simulations. We review the details of this technique 
in the full version. 

3.2 Geometric random samples. Our first 
methods for finding approximating subsets of X are de 
rived directly from the limited-independence approach 
and can be implemented to run very fast in parallel, 
albeit with a rather large number of processors (we 
will subsequently show how to improve these processor 
bounds). 

Let (X, R) be a given range space with bounded 
VC-exponent, e. Given a parameter 1 < T 5 IX], a 
parameter s that is greater than some fixed constant 
so > 1, and a positive even integer k, let Y be a k-wise 
independent expected s-sample of X. Let us explore the 
probability that Y is an O(s)-sized (O-relative) (l/r)- 
approximation or (l/r)-net under various assumptions 
about s and k. The first lemma establishes the proba- 
bility that ]Y] is O(s). 

LEMMA 3.2. Let Y be defined as above. Then 
s-~cs’~~ 5 IYI < s+/?cs~/~, withprobability l-l//?k/2, 
for some constant c > 0. 

Proof. Omitted in this extended abstract. n 

Let us therefore next bound the probability that 
Y is a (l/r)-net. Like previous arguments, which are 
based upon mutual independence (e.g., see [4, 34]), our 
k-wise independent analysis is based upon a double- 
sampling technique. Rather than define Y directly as 
an expected s-sample of X, we instead define Y to be 
an expected s-sample of a set, 2, which is an expected 
(2s)-sample of X, with both samples being defined by 
k-wise independent indicator random variables. That 
is, each member of 2 is defined by a random variable 
Xjk) that is 1 with probability 2s/n and each member 

of Y is defined by a random variable Xik) that is 1 

with probability l/2 if Xik) = 1. Let us further assume 
that ]Y] = s f O(G) and ]Z] = 2s f @(fi), since, by 
Lemma 3.2, this can be made to occur with probability 
1 - l/m for any fixed constant CO > 0. 

Let A be the event that there exists a set R E R 
such that IRI > n/r but R n Y = 0. We wish to prove 
that Pr(A) 5 l/2. To do so we further define B to 
be the event that there exists a set R E R such that 
[RI > n/r but R f~ Y = 0 and IR f~ 21 > s/27-. 

LEMMA 3.3. Ifs 2 8r, then Pr(B) 2 Pr(A)/2. 

Proof. Clearly, Pr(B) = Pr(A)Pr(B]A). Thus, it 
suffices to show that Pr(B]A) 2 l/2. So, suppose 

event A occurs, i.e., there is a set R E R such that 
[RI > n/r but R n Y = 0. The probability of B 
occurring, given A, is at least the probability that, 
for this particular R, IR n Z] 2 s/2r. Note that the 
quantity IR n Z] = IR n Z\Y] is defined by the sum 
of IRI indicator random variables, each being 1 with 
probability 4(2s/n) = s/n, i.e., it is a binomial random 
variable, with variance ]R](s/n)(l - (s/n)) < IRI(s/n). 
Therefore, by Chebychev’s inequality (which does not 
depend upon any independence assumptions), 

Pr(]RnZ\Y] < s/27-) 5 Pr(]RnZ\Yl < lRIs/2n) 

PI (s/n) 
’ (IRJs/2n)2 ’ F’ 

Taking s 2 8r, then, establishes the lemma. n 

For any set R E R, with IRI 2 n/r, let BR denote 
the event that R n Y = 0 and ] R n Z] 2 s/2r. A crucial 
observation is that, having fixed the set 2, two events 
BR and BRA are identical if R n 2 = R’ n 2. The 
occurrence of BR depends only upon the intersection 
R n 2. Therefore, for any fixed 2, the number of 
distinct BR events is bounded by ]R]z]. Since X has 
VC-exponent e, this is in turn bounded by c]Zle for some 
constant c. Thus, Pr(B) is bounded by c]Z]” times the 
probability, for any range R E R, that BR occurs. 

LEMMA 3.4. FOT any set R E R, given Z as 
above, Pr(BR) 5 C2k(rk/s)k/2, where C is some fixed 
constant. 

Proof. Pr(BR) is equal to Pr(RnY = 0), given that 
IR n Z] 2 s/2r for the set Z, which now is fixed. Note 
that ] R n Y ] is the sum of ] R n Z ] k-wise independent 
indicator random variables, each of which is 1 with 
probability l/2. Moreover, p = E(]R n YI) = IR n 
Z]/2 2 s/~T. Thus, we can use Lemma 3.1, assuming 
p>k,toboundPr(RnY=0) <Pr(]]RnY]--~1 2 

P) 2 C(k/p) ‘I2 < C(4rk/s)k/2, where C is the constant 
from Lemma 3.1yThis completes the proof. n 

Therefore, we have the following: 

LEMMA 3.5. Pr(B) 5 C(2s)“2”(rk/s)“i2, where 
e is the VC-exponent of (X, R) and C is some &ed 
constant. 

Some immediate corollaries, then, are as follows. 

COROLLARY 3.1. Given a parameter 2 2 r 5 n 
and any fied constant 0 < t < 1, there exist constants 
co and ko (depending only upon E and e), such that if 
COT’+’ < s < n and k is an even integer larger than ko, 
then Y,chGen as above, is an O(s)-sized (l/r)-net of 
X with probability at least l/2. 

COROLLARY 3.2. Given a parameter 2 5 r 5 n, 
there exist constants bl and cl (depending only upon e), 
such that if blr logr 2 s 5 n and k is an even integer 
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larger than cl log r, then Y, chosen as above, is an O(s)- 
sized (l/r)-net ofX with probability at least l/2. 

Having established the assumptions on k and s 
needed to allow Y to be a (l/r)-net with constant 
probability, we next turn to an analysis of the conditions 
needed for Y to be a (1 /r)-approximation. Our analysis 
is similar in structure to that used to establish the above 
bounds for Y being a (l/r)-net, although the arguments 
are more intricate. Nevertheless, we give the details in 
the full version so as to derive the following corollaries: 

COROLLARY 3.3. Given a parameter 2 5 r 5 n 
and any fixed constant 0 < 6 < 1, there exist constants 

~0 and ko (depending only upon e and e), such that if 
cgr2fc < s < n and k is an even integer larger than 
ko, then Y,<hosen as above, is an O(s)-sized (l/r)- 

approximation of X with probability at least l/2. 

COROLLARY 3.4. Given a parameter 2 5 T 5 n, 

there exist constants bl and cl (depending only upon e), 
such that if blr2 logr 5 s 5 n and k is an even integer 
larger than cl log r, then Y, chosen as above, is an O(s)- 
sized (1 /r) -approximation of X with probability at least 
l/2. 

3.3 CRCW PRAM algorithms. Unfortunely, 
we cannot immediately derive Poly(log log n)-time 
methods for the CRCW PRAM from the above anal- 
ysis, for checking if a given Y satisfies the condition for 
being a ( 1 /r)-approximation requires fl(log n/ log log n) 
time using a polynomial number of processor, by a sim- 
ple reduction from the parity problem 181. We can avoid 
this lower bound, however, by checking this condition 
approximately rather than exactly. 

To do this we use a fast method for A-approximate 
parallel prefix sums computation [29, 311, where one 
wishes to consistently compute all prefix sums of a 
sequence (al, ~2, , an) with a relative error of X. 

LEMMA 3.6. ([29]) X-approximate parallel prefix 
sums can be computed in 0( 1) time using polynomial 
work on a CRCW PRAM, with X = (loglogn)-b, for 
any jixed constant b > 0. 

This lemma is crucial to our fast CRCW derandom- 
ization procedures, for we use it to estimate the sizes 
]Y n R], ]Y], and ]I?] that are needed in the definition of 
(l/r)-approximations and (l/r)-nets. In particular, for 
any such value IC it allows us to derive an estimate 2’ 
such that z/( 1 +X) < 5’ 5 (1 +X)x, for X 2 (log log n)-b 
for any fixed constant b > 0. Let us therefore denote 
each of the estimates we need as ]Y nRI’, ]Y]‘, and ]R]‘, 
respectively. (We may assume that IX] is known explic- 
itly.) Say that a set Y is X-estimated to be a a-relative 

e-approximation if 

IY n RI’ II?]’ -- 
IV’ 

<61RI’+, 
1x1 - 1x1 . 

LEMMA 3.7. If Y is X-estimated to be a &relative 
e-approximation, then Y is a (6X + 36)-relative 2~- 
approximation, provided X < l/4. 

Proof. Suppose Y is Xestimated to be a b-relative 
e-approximation. Observe that ]Y n RI’/IYI’ 5 (1 + 

W21Y n fwIYI and that ]IZ]‘/]X] 5 (1 + X)]R]/]X]. 
Thus, by the definition of Y, we can derive the following 
bound on ] ]Y n RI/IYI - IRl/lXl I: 

IynRI’ Ifv + IYnRI wnw + 14 I4 ~-- -- 
VI 1-v I I IV IV I I 1x1 I-v 

5 6(1+A)~+((l+X)Z-1)~Y”R~+x~+, 
I-V IV 1x1 

= (X+(1+X)6)~+A(2+X)IYnR’ +e 
1-v JYJ’ 

We also know that 

Iy n RI 
WI 

5 (1+x)Q!y 

5 (1+x)2 
( 

(l+qE +c 
ix1 > 

< (1+X)3(l+c5)~ +(1 +/lye. - 
1-Y 

Thus, we can combine the above bounds to derive the 
following bound on ] ]Y n RI/IYI - lRl/lXl I: 

(A + (1 +x16); + xc+ A) 
( 

cl+ xPu+ 6); + o+ XP. 
> 

+e 

= (A + cl,+ J.16 + X(2 + X)(1 + W3(1 + 6)); + (1 +x(2 +x)(1 + W2). 

I (6X + 36); + 2e, 

provided X 5 l/4. n 

Likewise, we have the following: 

LEMMA 3.8. If Y is an c-approximation, then Y 
will be X-estimated to be a 4X-relative 2e-approximation, 
if x < l/4. 

Proof. Suppose Y is an e-approximation. Then we 
can bound f ]Y n RI’/IYI’ - IRl’/lXll by 

IY’-‘RI IRI 
IYI I-v I I 

+ IYnRI’ IYnRI + IRI PI’ --- -- 
WI WI I I 1-Y I-v 

5 c+X(2+X)Y +z 

I f+x(2+x)(~+f)+g 

I fz + X(2 +A) 
( 

Cl+ XII4 
1x1 

+c +$ 
> 

I 
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Proof. For any R E R, we can write < 2c+4XIRI’ - I4 ’ 
provided X 5 l/4. n 

These two lemmas together imply the following: 

THEOREM 3.1. Let (X, 72) be a range space with 
VC-exponent e, for some constant e > 0, an& let 

n = [XI. Also, let 1 < r < n be a given parameter 
and let e > 0 be any fixed (small) constant. Then, in 
the CRCW PRAM model, for some constant c > 0, one 
cm 

1. 
construct any of the following in the bounds claimed: 
a (log log n)-b-relative (l/r)-approximation A of 
(X, 72) of size 0(r2+t’ ) in 0( 1) time using 0( (nr)c) 
work, 

a (loglogn)-b-relative (l/r)-approximation I3 of 
(X,72) of size Q(r2 logr) in O(1) time using 
0( (nr)c’ogT) work, 

a (l/r)-net C of (X,R) of size Q(rl+e) in O(1) 
time using O((nr)c) work, or 

a (l/r)-net D of (X,R) of size Q(rlogr) in O(1) 
time using O((nr)“Ogr) work. 

Proof. Let us begin with the set A. We can set the 
constant in Corollary 3.1 high enough so that any s- 
sample Y is a (1/4r)-approximation with probability at 
least l/Z, for s = O(r2+’ ). By Lemma 3.8, this implies 
that in applying the limited independence derandomiza- 
tion technique there will be some Y X-estimated to be a 
4X-relative (1/2r)-approximation. But, by Lemma 3.7, 
this in turn implies that Y is a (18X)-relative (l/r)- 
approximation. By taking X = (loglogn)-(bS1), we 
make Y a (log log n)-b-relative (l/r)-approximation (for 
n larger than some constant). The methods for con- 
structing the other sets are similar applications of the 
limited-independence technique using Corollaries 3.2, 
3.3, and 3.4, and Lemmas 3.7 and 3.8. n 

4 O(nr”(‘))-Work Approximation Finding 

As already mentioned, the methods of the previous 
section are simple and can be implemented to run very 
fast in parallel. Their work complexities are quite high, 
however. In this section we show how to reduce this 
significantly. 

Let (X,R) be a range space with bounded VC- 
exponent e. We need some simple lemmas, which are 
adaptations of observations made by MatouSek [43]. 

LEMMA 4.1. Suppose Yl, Yz, . . . , Y, are b-relative 
c-approximations for disjoint range spaces (X1, Rlx,), 
(X2, 731x2), . . . , (X,, 721x,,,), respectively, where the 
Xi’s have equal cardinality, and X = X1 U X-J U . . . U 

X m. Then Y = Yl U Yz U .. . U Y, is a &relative c- 

IynRI IRI 1 m IYirlR( IRnXiI -_- = - ~-- 
VI 1-Y m c i=l Kl IXil 

5 1 
Tn p$nRR( lRnXi( 

m cl i=l m--. PiI 

Moreover, R n Xi is a range in R]xi. Therefore, for 
i = 1,2, . . . , m, 

1W-W W&l &n&l +e 

-m-- 1x1 - lxil . 
Thus, 

IYnRl PI < L m --- 
IV CC 1x1 - m +I 

p:“I +t 
z > 

= g!!Y+, 
I-Y ’ 

which establishes the lemma. n 

LEMMA 4.2. If Y is a &-relative el-approximation 
for (X,R) and Z is a &-relative c2-approximation for 

(Y,%+), then 2 is a (61 + 62 + &&)-relative (er(1 + 
62) + en)-approximation for (X, R). 

Proof. Let R be a range in R. We can write 

I tznRI PI < 
I I 

IZnRI --- IYnRl + IynRI PI -- 
M 1x1 PI IYI --- l I VI 1-v 

< - a,M +e1 + 6zIYnRI +<a 
1-Y IV 
IN IRI 

5 61--- te1 + 62 (1+61)- +fl +cz 
Ixt ( 1-Y > 

= (s1+62+6162)~+.1(1+62)+(2, 

which establishes the lemma. I 

In addition, we will make use of the following 
observation. 

FACT 4.1. If Y is a S-relative er-approximation 
for (X,R) and Z is an c2-net (Y,RIy), then Z is a 

(cl+ ~)/(l - 6)-net for (X,R). 

Given a range space (X, R) with bounded VC- 
exponent, and a parameter 1 5 r 5 n, we wish to apply 
these lemmas to an efficient divide-and-conquer method 
for constructing a &-relative (l/r)-approximation Y of 
(X, R) of size O(r2+“) using only O(nrO(l)) work, for 
any small constants 60 > 0 and (Y > 0, where n = IX]. 
We achieve this by designing an algorithm, Approx, 
which is a modification of earlier simple divide-and- 
conquer methods of Matousek [44] and Goodrich [30]. 

We define Approx in terms of potential functions, 
6(n) and e(n), that dictate the relative error and abso- 

upprox~mation for (X, 72). lute error of the approximation that we return. Specif- 
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ically, given any fixed constant SO 5 l/4, Approx pro- 
duces a S(n)-relative e(n)-approximation, Y, of (X, R), 
where 

1 

(4.1) 6(n) 5 60 - 1 
log log n 

and 

(4.2) e(n) 5 I logn - ’ 
2 ( logn. ) (1+ ‘“~~;~~n ‘> :. 

This is, of course, a slightly stronger approximation 
than a &-relative (l/r)-approximation would be, but 
this formulation will prove easier to work with in our 
recursive algorithm. 

Algorithm Approx(r, (X, 72)): 
1. If n 5 TV, then return X. 

2. Otherwise, divide X into m equal-sized subsets 
Xl, x2, . . ., X, and call Approx(#, (Xi, Rlx,)) 
recursively for each i in parallel, where r’ = r and 
m = ny with 0 < y < 1 being a constant to be set 
in the analysis. (Note: if loglogn’-7 5 l/&s, then 
we do not recurse, but simply return X, so as to 
preserve the invariant of Equation (4.1).) 

3. Let Yi be the set returned by recursive call i, and let 
Y’ = Y~UYQU.. .UY,. Apply Theorem 3.1 to find a 
G’(n)-relative e’(n)-approximation Y of (Y’, Rlyr), 
where 

6’(n) = - hdl - 7) 
2(log log nr -7) log log n 

and 

44 = ( 210;nl~7) ;. 

4. Return Y. 

LEMMA 4.3. Approx produces a S(n)-relative e(n)- 
upprokmtion Y of X of size O( (r log 71)~+~), for any 
j7xed constant cx > 0. The work bound is O(nrc), 
for some constant c 2 1, and the running time is 
O(loglogn) in the CRCW PRAM model. 

Proof. Our proof is an inductive argument based 
upon Lemmas 4.1 and 4.2. The number of levels in the 
recursion is clearly O(log logn), so the time bound for 
a CRCW PRAM implementation is O(loglogn). By 
Theorem 3.1, the size of the approximation produced 
can be made to be O(r2fQ) for any fixed constant a! > 0. 
The work complexity, W( r, n), is therefore bounded by 
the recurrence equation 

nrW(r, nlmr) + O(nr(r logn1-r)2+cY + (r logn)c(2+a)), 

where c is the constant in the work bound of Theo- 
rem 3.1. If we choose y to be a constant strictly less 

than l/c, then W(r,n) will be O(nr2”+‘). There are 
clearly O(loglogn) levels in this recursive algorithm, 
each of which can be implemented in 0( 1) time by The- 
orem 3.1; hence, the total running time is O(loglogn). 
n 

This lemma can in turn be used to derive work- 
efficient methods for constructing approximating sub 
sets, as the following theorem shows: 

THEOREM 4.1. Let (X, R) be a range space with 

bounded VC-exponent, e. Also, let a: be any positive 
constant strictly less than the reciprocal of the constant 
in Theorem 3.1, Then, for some constant c > 0, one 
can produce the fol1owin.g sets in the bounds claimed in 

the 

1. 

2. 

3. 

4. 

CRCW PRAM: 

a (l/4)-relative (l/r-)-approximation A of (X, R) 
,“,;ze O(r2+“) in O(loglogn) time using O(nrc) 

, 

a (l/$)-relative (l/r)-approximation B of (X, R) 
of size O(r2 logr) in O(log log n) time using 

O(nr” 1°gr) work, 

a (l/r)-net of (X,R) C of size O(rlfa) in 

O(loglogn) time, using O(nrc) work, 

a (l/r)-net of (x, R) D of size o(r logr) in 
O(log log n) time using O(nrciOgT) work. 

Proof. The result for A follows by using the al- 
gorithm Approx to find a (l/4 - l/ log log n)-relative 
(1/2r)-approximation of size O( (r log n)2+t) and fol- 
low that by an application of Theorem 3.1.1 to find a 
(log log n)-l-relative (1/4r)-approximation of that. The 
set B is constructed similarly, using Theorem 3.1.2. The 
sets C and D are constructed by using Approx to find a 
(l/4)-relative (1/4r)-approximation of size O(r2+‘) and 
then applying Theorem 3.1.3 or 3.1.4 to find a (1/4r)- 
net of that, which, by Fact 4.1 will be a (l/r)-net of 

(X,R). n 

Thus, we have established the needed result to 
complete the proof of Theorem 2.1 for the CRCW 
PRAM model. For analogous results for the EREW 
PRAM model, we may use the following theorem: 

THEOREM 4.2. Let (X,R) be a range space with 
bounded VC-exponent, e. Also, let QZ be any positive 
constant strictly less than the reciprocal of the constant 
in Theorem 3.1, Then, for some constant c > 0, one 
can produce the following sets in the bounds claimed in 
the ERE W PRAM: 

1. a (l/r)-upprozimution A of (X, R) of size O(r2+“) 
in O(logn) time using O(nrc) work, 

2. a (l/r)-approximation B of (X, R) of size O(r2 log r) 
in o(logn) time using O(nrc’ogT) work, 
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3. a (l/r-)-net of (X, R) C of size O(rl+*) in O(logn) 
time, using O(nrc) work, 

4. a (l/r)-net of (X, R) D of size O(rlogr) in 
O(logn) time using O(nrclogT) work. 

Proof. The method is similar to that used to derive 
the CRCW PRAM bounds, expect that in this case 
we use Theorem 4.2 (in Step 3) and define Approx 
to produce a (O-relative) e(n)-approximation where 

by defining 

m = (log;l-7) ;. 
The time bound for such an EREW PRAM implemen- 
tation can be characterized by the recurrence T(r, n) 5 
T(r, nl--Y ) + O(logn), which is O(logn). 1 
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