
Chapter 16
Fixed-Dimensional Parallel Linear Programming via Relative c-Approximations

Michael T. Goodrich*

Abstract

We show that linear programming in IRd can be solved
deterministically in O((loglogn)d) time using linear work
in the PRAM model of computation, for any fixed constant
d. Our method is developed for the CRCW variant of
the PRAM parallel computation model, and can be easily

implemented to run in O(logn(loglogn)d-l) time using
linear work on an EREW PRAM. A key component in
these algorithms is a new, efficient parallel method for
constructing c-nets and c-approximations (which have wide
applicability in computational geometry). In addition, we
introduce a new deterministic set approximation for range
spaces with finite VC-exponent, which we call the b-relative

c-approtimation, and we show how such approximations can
be efficiently constructed in parallel.

1 Introduction

The linear programming problem is central in the study
of discrete algorithms. It has been applied to a host
of combinatorial optimization problems since the first
efficient algorithms for solving it were developed in the
1940’s (e.g., see [17, 22, 37, 541). Geometrically, it can
be viewed as the problem of locating a point that is max-
imal in a given v’ direction in the polyhedral region P
defined by the intersection of n halfspaces in IRd. This
viewpoint is particularly useful for the case when the
dimensionality, d (corresponding to the number of vari-
ables), is fixed, as occurs, for example, in several appli-
cations of linear programming in geometric computing
(e.g., see [15, 20, 27, 50, 51, 551) and machine learn-
ing (e.g., see [9, lo]). Indeed, a major contribution of
computational geometry research has been to show that
fixed-dimensional linear programming can be solved in
linear time, starting with the seminal work of Dyer 1251
and Megiddo [50, 511, and following with subsequent
work in the sequential domain concentrated primarily
on reducing the constant “hiding behind” the big-oh in
these results (e.g., see [15, 18, 20, 26, 36, 46, SO]) or on
building data structures for linear programming queries
(e.g., see [ZS, 491).

In the parallel domain, Alon and Megiddo [3] give

*This research supported by the National Science Foundation
under Grants IRI-9116843 and CCR-9300079.

analogous results, showing that through the use of
randomization one can solve a fixed-dimensional lin-
ear program in 0(1) time with very high probabil-
ity using n processors in a randomized CRCW PRAM
model’. The existing deterministic parallel algorithms
are not as efficient, however. Ajtai and Megiddo [2]
give a deterministic 0((loglogn)d) time method, but
it has a suboptimal O(n(log log n)d) work2 bound and
it is defined for the very powerful parallel model that
only counts ‘Lcomparison” steps [62]. The only work-
optimal deterministic PRAM result we are familiar
with is a method by Deng [23] for 2-dimensional lin-
ear programming that runs in O(logn) time using
O(n) work on a CRCW PRAM. Recently, Dyer [24]
has given an O(logn(loglogn)d-l) time method that
uses O(nlogn(loglogn)d-‘) work in the EREW PRAM
model. In addition, we have recently learned that
Sen [61] has independently discovered a CRCW PRAM
LP method that runs in 0((loglogn)d+‘) time using
O(n) work.

1.1 Our results for parallel LP. In this paper
we give a deterministic parallel method for fixed dimen-
sional linear programming that runs in O((log logn)d)
time using O(n) work in the CRCW PRAM model.
Thus, our method improves the work bound and the
computational model of the Ajtai-Megiddo method
while matching their running time, which is also an im-
provement over the time bound of Deng’s method for
d = 2. (It is also slightly faster than the recent re-
sult by Sen, which uses an approach that is consider-
ably different than that for our method.) In addition,
our method can be implemented in the EREW PRAM

‘Recall that this is the synchronous shared-memory parallel
model where processors are allowed to perform concurrent reads
and concurrent writes, with concurrent writes being resolved,
say, by requiring all writing processors to be writing the same
common value (this standard resolution rule is the one we use
in this paper). Alternatively, in the weaker EREW PRAM
model processors may not concurrently access the same memory
location.

2The war/c performed by a parallel algorithm is the product
of the running time and the number of processors needed.
It corresponds to the running time of the derived sequential
algorithm.

132

FIXED-DIMENSIONAL PARALLEL LINEAR PROGRAMMING 133

model to run in O(logn(Ioglogn)d-l) time using O(n)
work, which improves the work bound of the parallel
method by Dyer.

At a high level our method is actually quite simple:
we efficiently derandomize a simple recursive procedure.
In order to avoid the large time and processor bounds
that come from known derandomization methods, how-
ever, we have had to develop a new approach to the
parallel derandomization of geometric algorithms-one
that is more “approximate” than previous approaches.

1.2 Derandomization. Randomized algorithms
in computational geometry most often exploit small-
sized random samples, and the derandomization of
such algorithms is then done by (1) quantifying the
combinatorial properties needed by random samples,
and (2) showing that sets having these combinatorial
properties can be constructed efficiently without using
randomization. Interestingly, most of the combinatorial
properties needed by geometric random samples can be
characterized by two notions-the c-approzcimation [45,
631 and the e-net 134, 451. These concepts are defined
for very general frameworks, where one is given a set
system (X, R) consisting of a finite ground set, X, and
a set, R, of subsets of X. The subsets in R are often
referred to as ranges, for R typically is defined in terms
of some well-structured geometry or combinatorics. A
subset Y is an e-approximation for (X, 72.) if, for each
range R E 72,

WRI PI <e

VI IXI - .
That is, Y is such that the absolute error between

IY ” WYI and IRlllXl is at most e. Relaxing this
error requirement a bit, Y is said to be an c-net [34, 451
of (X, R) if Y fl R # 0 for each R E R such that

PI ’ 4x1. This is clearly a weaker notion than
that of an c-approximation, for any +approximation is
automatically an t-net, but the converse need not be
true.

We generalize the e-approximation definition to say
that, given non-negative parameters 6 < 1 and e < 1,
a subset Y is a S-relative e-approximation if, for each
range R E R,

P”‘RI PI ~--
WI

<61RI+e
1x1 - 1x1 *

This notion is a combined measure of the absolute and
relative error between IY n RI/IY/ and IRl/lXl, and it
is somewhat similar to a notion Brijnnimann et al. [13]
refer to as a “sensitive” e-approximation. Note that this
notion also subsumes that of an e-net, for any S-relative
c-approximation is automatically an (e/(1 - &))-net.

Of course, our specific interest in this paper is in
the design of fast and efficient deterministic methods
for constructing small-sized b-relative e-approximations
in parallel and applying these methods to fixed-
dimensional linear programming. Our methods have
other applications as well, including fixed-dimensional
convex hull and geometric partition construction [5, 61,
but these are beyond the scope of this paper.

1.3 Previous work on derandomizing geo-
metric algorithms. Before we describe our results,
however, let us review some related previous work. The
study of random sampling in the design of efficient com-
putational geometry methods really began in earnest
with some outstanding early work of Clarkson [19],
Haussler and Welzl [34], and Clarkson and Shor [al].
One general type of geometric structure that has mo-
tivated much of the derandomization research, and one
that motivated the development of the e-approximation
and e-net notions for computational geometry, is the ge-
ometric partition (e.g., see [l, 451). In this problem, one
is given a collection X of n hyperplanes in IRd, and a
parameter T, and one wishes to construct a partition of
lRd into O(rd) constant-sized cells so that each cell in-
tersects as few hyperplanes as possible. It is easy to see,
for example, that an O(r)-sized e-net of X can be used
to construct such a partitioning so that each cell inter-
sects at most en hyperplanes. Moreover, one can apply
random sampling to construct such a geometric parti-
tioning of space for e = log r/r [21, 341. Chazelle and
Friedman [14] show that one can construct such a par-
titioning with e = l/r deterministically in polynomial
time, and Berger, Rompel, and Shor [ll] and Motwani,
Naor, and Naor [52] show that one can construct simi-
lar geometric partitions for e = logr/r in NC. Unfor-
tunately, the running time of Chazelle and Friedman’s
algorithm is quite high, as are the time and processor
bounds of the implied parallel algorithms (they run in
O(log4 n) time using a number of processors propor-
tional to the time bound of Chazelle and Friedman’s
algorithm).

One can improve the running time of the Chazelle
and Friedman algorithm for the case when the range
space (X, R), where R is defined as the set of combi-
natorially distinct ways to intersect X by “cells,” has
bounded Vapnik-Chervonenkis [63] (VC)-dimension.
Letting RIA denote the set {A n R : R E R}, the VC-
dimension of (X, R) is defined as the maximum size of
a subset A of X such that RIA = 2A (e.g., see [45]). A
related and simpler notion, however, is based upon the
shatter function

134

In particular, we say that (X,R) has I/C-exponent [7,
12] e if nn(m) is O(n2”)3. For example, in the &per-
plane set system, where X is a set of n hyperplanes
in lRd and R is the set of all combinatorially dis-
tinct ways of intersecting hyperplanes with simplices,
it is easy to see that the VC-exponent is bounded by
d(d+ 1). Interestingly, the VC-exponent definition sub-
sumes that of the VC-dimension, for if (X,R) has VC-
dimension e, then it has VC-exponent e as well 158, 631.
There are several recent results that show that one
can construct a (1 /r)-approximation of size O(r2 log r)
for any range space with bounded VC-exponent e in
time O(nF) for some constant c depending on e (e.g.,
see [13, 15, 44, 43, 48, 471). In addition, the author [30]
has shown that one can construct such sets of size
O(n’r2) in parallel in O(logn) time using O(nF) work
on an EREW PRAM. Chazelle and Matousek [15] give
slower NC algorithms using O(n.r”) work that construct
such sets of size O(T 2+a) for any fixed constant Q! > 0.

1.4 Our results on parallel geometric de-
randomization. We give fast and efficient efficient
parallel algorithms for constructing e-nets and 6-
relative e-approximations. For example, our methods
can be implemented in the CRCW PRAM model to
run in O(log logn) time using O(nrc) work to pro-
duce (log log r)-b-relative (l/r)-approximations of size
O(r2+“) for any fixed constants o > 0 and b > 0,
and some constant c 2 1. We aIso show how to
find such approximations of size O(r2 log r) using more
time and work. In addition, our methods can be
implemented in the EREW PRAM model to run in
O(logn) time using O(nrc) work to produce (O-relative)
(l/r)-approximations of size O(r2+“) for any fixed con-
stant (Y > 0. Thus, our methods improve the pre-
vious size bounds from those achieved previously by
the author [30] while also improving the time bounds
from those achieved previously by Chazelle and Ma-
tousek [15]. We also derive similar bounds for construct-
ing (1 jr)-nets, and this is the result we use to design a
new efficient parallel method for fixed-dimensional lin-
ear programming.

2 Linear Programming in Fixed Dimensions

Recall the geometric view of fixed-dimensional linear
programming. For simplicity of expression, let us
assume that the optimal point p exists and is defined
by the intersection of exactly d halfspace boundaries.
Let us also assume that the origin, o, is contained in P,

3Strictly speaking, we should define e as the infimum of all
numbers s such that am is O(mS), but this definition will
suffice for our purposes.

MICHAEL T. GOODRICH

the polytope defined by the linear constraints. These
assumptions can be removed with minor modifications
to our method (similar to those used, for example,
by Seidel f60]). Without loss of generality, we may
additionally assume that v’ = (O,O, . . . ,O, -l), i.e., we
are interested in the “lowest” vertex in P. Our method
for finding p is inspired by the methods of Ajtai and
Megiddo [2] and Dyer [24], but is nevertheless quite
different. We find the optimal solution p by calling the
following recursive procedure as ParLPd(X, 2n).

Procedure ParLPd(X, w):
Output: An optimal solution p for X (using work that
is O(w)).

1.

2.

3.

4.

Let n = IX]. If n 5 no, find the optimal solution by
any “brute force” method, where no is a constant
set in the analysis, and return. Likewise, if d = 1,
then compute the minimum of the numbers in X
and return.

Compute a (l/r)-net Y for X of size O(ri+e) (in
the hyperplane set system), where T = (w/n)‘lc
such that c is a constant to be set in the analysis
and e is a sufficiently small constant. (As we will
show in the sections that follow, the time needed
for this step is O(loglogn) in a CRCW PRAM
implementation; the work needed for this step can
be made O(w) if c is a large enough constant (larger
than the constant of Theorem 4.1).)

Compute the intersection of the halfspaces in Y and
a canonical triangulation 7 [14] of this polyhedral
region (with the origin as base apex), using a
“brute force” method that uses O(r”) work. (In
a CRCW implementation this can be done in
O(loglogr) time; an EREW implementation takes
O(logr) time. Both implementations are simple
applications of parallel minimum-finding [35, 39,
561 and are left to the reader.)

Using ParLPd-1 as a subroutine, determine the
simplex u in I that contains p. This is imp16
mented as follows:

(a>

(b)

For each simplex u in I compute the inter-
section of the halfspaces in X with each of
(T’S (d - l)-dimensional boundary faces. This
takes O(1) time with O(nr’+‘) work, which is
O(w) if c> 1 +e.

For each simplex boundary face f we use
ParLPd-I to solve the linear program de-
fined by f and the halfspaces that inter-
sect f. Assuming that ParLP+.l uses lin-
ear work, this step can be implemented us-
ing O((n/r)r(‘+‘)Ld12~) work, which is O(w) if
c> (l+c)[d/2] - 1.

FIXED-DIMENSIONAL PARALLEL LINEAR PROGRAMMING 135

(c) Each point that forms a solution to the linear
program for a boundary face f of simplex G
belongs to a line Lj that intersects n. The
simplex that contains the true optimal point
p can therefore be determined in O(1) time
by examining, for each simplex 0, how the Lf
lines for its faces intersect 0. Since d is a fixed
constant, this step can be implemented using
O(n) work.

Thus, if c is a large enough constant (which may
depend upon d), then this step can be implemented
using O(w) work.

strating a fast and efficient method for computing (l/r)-
nets. Before we describe such a work-efficient method,
however, we first describe some algorithms for con-
structing (l/r)-nets and (1 /r)-approximations that are
fast but not work-efficient.

3 O((nr)“(‘))-Work Approximation Finding

Our approach to constructing small-sized approxima-
tions and nets of range spaces with bounded VC-
exponent is to derandomize a straightforward proba-
bilistic algorithm, Approx, which is based upon the
random sampling technique [191.

5. Compress the array of halfspaces whose bound- 3.1 Probabilistic analysis. We do this using the
ary intersects this simplex 0 and reCUrSiVdy Cdl limited . d

ParLPd on this set of at most n/r halfspaces. The
zn ependence technique [4, 38, 40, 411, which

work bound we pass to this recursive call is w, un-
assumes Approx uses random variables that are only
k-

less this level in the recursion is equal to ci + 1,
wise independent. The generic situation is that one

for some integer i 2 1, in which case we pass the
is given a set X of n objects and an integer parameter

work bound w/2l/“. (To implement this step in
s, and one wishes to construct a subset Y C X of size

the CRCW PRAM model we use X-upprozimate
s. In this paper we assume such a sample is chosen by
d fi e

compaction 129, 32, 421, where one is given an ar-
ning, for each element 5% in X in parallel, a random

ray A with m of its locations “occupied” and one
variable X; that is 1 with probability s/n; we use the

wishes to map these m distinguished elements to
rule that xi E Y if Xi = 1 [ll]. Note that one is

an array B of size (1 + x)m. The time bound is
guaranteed a set of IY] = X1 + X2 + + X, unique

O(log log n) 1291 using linear work. Of course, in
elements, which we call an expected s-sample, for its
size may not be equal to s, although it is easy to see,

the EREW PRAM model this step can easily be by th
implemented in O(logn) time via a parallel prefix

e mearity of expectation, that E(IYI) = s. We 1.

computation [35, 39, 561.)
also restrict the Xi’s to be only k-wise independent for
some integer parameter k. Unfortunately, restricting

Since this method always recurses in a region (T our attention to k-wise independent indicator random
guaranteed to contain the optimal point and we include variables prevents us from directly using the well-
in the subproblem all halfspaces whose boundary inter- known and powerful Chernoff bounds [4, 16, 33, 531
sects 0, we will eventually find the optimal point p. To for bounding the tail of the distribution of their sum.
analyze the time complexity observe that every c lev- Nevertheless, as shown by Rompel [57], we may derive
els in the recursion the problem size will go from n/r
to n/r2.

something analogous:

Thus, the total depth in the recursion tree
is O(log logn). For d = 2, therefore, the running time

LEMMA 3.1. ([57]) Let Xc”) be the sum of n k-wise

in a CRCW PRAM implementation is 0((loglogn)2);
independent random variables taking on values in the

hence, the running time for d > 2 is O((loglogn)d) in
range [0, 11, with p = E(Xck)), where k is a positive
even integer. Then there is a fixed constant c > 0 such

this model. An EREW PRAM implementation would that
take O(log n log log n) time for d = 2; hence, the run-
ning time for d > 2 would be O(logn(loglogn)d-‘) in
this model. As we have already observed, we can set c

k,u f k2 ‘I2
Pr(]Xck) - ~1 2 X) 2 c x2

so that the work needed in each level of the recursion is
(>

,

O(w). Moreover, since we decrease w by a constant fat- for any x > 0.
tor every c levels in the recursion, the total work needed
is O(n). This gives us the following:

Incidentally, this also seems to follow from an

THEOREM 2.1. Linear programming in IRd can be
inequality of Schmidt, Siegel, and Srinivasan [59], which

solved using O(n) work and O((loglogn)d) time on a
may yield a better constant factor.

CRCW PRAM, or, alternatively, using O(n) work and
We can easily derandomize such algorithms in

parallel by using the the limited independence tech-
O(logn(loglogn)d-l) time on an EREW PRAM, for pique 14, 40, 411. I n
fzxed d.

applying this technique we COTI-
struct an O(nO(“))-sized k-wise independent probabil-

Of course, this theorem depends upon our demon- ity space such that each vector in this space represents

136 MICHAEL T. GOODRICH

an assignment of O’s and l’s to the underlying random
variables. Then, we can deterministically simuIate the
running of the randomized algorithm using each vector
in this space. At least one must succeed, and we can
then take our output to be that of one of these succeed-
ing simulations. We review the details of this technique
in the full version.

3.2 Geometric random samples. Our first
methods for finding approximating subsets of X are de
rived directly from the limited-independence approach
and can be implemented to run very fast in parallel,
albeit with a rather large number of processors (we
will subsequently show how to improve these processor
bounds).

Let (X, R) be a given range space with bounded
VC-exponent, e. Given a parameter 1 < T 5 IX], a
parameter s that is greater than some fixed constant
so > 1, and a positive even integer k, let Y be a k-wise
independent expected s-sample of X. Let us explore the
probability that Y is an O(s)-sized (O-relative) (l/r)-
approximation or (l/r)-net under various assumptions
about s and k. The first lemma establishes the proba-
bility that]Y] is O(s).

LEMMA 3.2. Let Y be defined as above. Then
s-~cs’~~ 5 IYI < s+/?cs~/~, withprobability l-l//?k/2,
for some constant c > 0.

Proof. Omitted in this extended abstract. n

Let us therefore next bound the probability that
Y is a (l/r)-net. Like previous arguments, which are
based upon mutual independence (e.g., see [4, 34]), our
k-wise independent analysis is based upon a double-
sampling technique. Rather than define Y directly as
an expected s-sample of X, we instead define Y to be
an expected s-sample of a set, 2, which is an expected
(2s)-sample of X, with both samples being defined by
k-wise independent indicator random variables. That
is, each member of 2 is defined by a random variable
Xjk) that is 1 with probability 2s/n and each member

of Y is defined by a random variable Xik) that is 1

with probability l/2 if Xik) = 1. Let us further assume
that]Y] = s f O(G) and]Z] = 2s f @(fi), since, by
Lemma 3.2, this can be made to occur with probability
1 - l/m for any fixed constant CO > 0.

Let A be the event that there exists a set R E R
such that IRI > n/r but R n Y = 0. We wish to prove
that Pr(A) 5 l/2. To do so we further define B to
be the event that there exists a set R E R such that
[RI > n/r but R f~ Y = 0 and IR f~ 21 > s/27-.

LEMMA 3.3. Ifs 2 8r, then Pr(B) 2 Pr(A)/2.

Proof. Clearly, Pr(B) = Pr(A)Pr(B]A). Thus, it
suffices to show that Pr(B]A) 2 l/2. So, suppose

event A occurs, i.e., there is a set R E R such that
[RI > n/r but R n Y = 0. The probability of B
occurring, given A, is at least the probability that,
for this particular R, IR n Z] 2 s/2r. Note that the
quantity IR n Z] = IR n Z\Y] is defined by the sum
of IRI indicator random variables, each being 1 with
probability 4(2s/n) = s/n, i.e., it is a binomial random
variable, with variance]R](s/n)(l - (s/n)) < IRI(s/n).
Therefore, by Chebychev’s inequality (which does not
depend upon any independence assumptions),

Pr(]RnZ\Y] < s/27-) 5 Pr(]RnZ\Yl < lRIs/2n)

PI (s/n)
’ (IRJs/2n)2 ’ F’

Taking s 2 8r, then, establishes the lemma. n

For any set R E R, with IRI 2 n/r, let BR denote
the event that R n Y = 0 and] R n Z] 2 s/2r. A crucial
observation is that, having fixed the set 2, two events
BR and BRA are identical if R n 2 = R’ n 2. The
occurrence of BR depends only upon the intersection
R n 2. Therefore, for any fixed 2, the number of
distinct BR events is bounded by]R]z]. Since X has
VC-exponent e, this is in turn bounded by c]Zle for some
constant c. Thus, Pr(B) is bounded by c]Z]” times the
probability, for any range R E R, that BR occurs.

LEMMA 3.4. FOT any set R E R, given Z as
above, Pr(BR) 5 C2k(rk/s)k/2, where C is some fixed
constant.

Proof. Pr(BR) is equal to Pr(RnY = 0), given that
IR n Z] 2 s/2r for the set Z, which now is fixed. Note
that] R n Y] is the sum of] R n Z] k-wise independent
indicator random variables, each of which is 1 with
probability l/2. Moreover, p = E(]R n YI) = IR n
Z]/2 2 s/~T. Thus, we can use Lemma 3.1, assuming
p>k,toboundPr(RnY=0) <Pr(]]RnY]--~1 2

P) 2 C(k/p) ‘I2 < C(4rk/s)k/2, where C is the constant
from Lemma 3.1yThis completes the proof. n

Therefore, we have the following:

LEMMA 3.5. Pr(B) 5 C(2s)“2”(rk/s)“i2, where
e is the VC-exponent of (X, R) and C is some &ed
constant.

Some immediate corollaries, then, are as follows.

COROLLARY 3.1. Given a parameter 2 2 r 5 n
and any fied constant 0 < t < 1, there exist constants
co and ko (depending only upon E and e), such that if
COT’+’ < s < n and k is an even integer larger than ko,
then Y,chGen as above, is an O(s)-sized (l/r)-net of
X with probability at least l/2.

COROLLARY 3.2. Given a parameter 2 5 r 5 n,
there exist constants bl and cl (depending only upon e),
such that if blr logr 2 s 5 n and k is an even integer

FIXED-DIMENSIONAL PARALLEL LINEAR PROGRAMMING 137

larger than cl log r, then Y, chosen as above, is an O(s)-
sized (l/r)-net ofX with probability at least l/2.

Having established the assumptions on k and s
needed to allow Y to be a (l/r)-net with constant
probability, we next turn to an analysis of the conditions
needed for Y to be a (1 /r)-approximation. Our analysis
is similar in structure to that used to establish the above
bounds for Y being a (l/r)-net, although the arguments
are more intricate. Nevertheless, we give the details in
the full version so as to derive the following corollaries:

COROLLARY 3.3. Given a parameter 2 5 r 5 n
and any fixed constant 0 < 6 < 1, there exist constants

~0 and ko (depending only upon e and e), such that if
cgr2fc < s < n and k is an even integer larger than
ko, then Y,<hosen as above, is an O(s)-sized (l/r)-

approximation of X with probability at least l/2.

COROLLARY 3.4. Given a parameter 2 5 T 5 n,

there exist constants bl and cl (depending only upon e),
such that if blr2 logr 5 s 5 n and k is an even integer
larger than cl log r, then Y, chosen as above, is an O(s)-
sized (1 /r) -approximation of X with probability at least
l/2.

3.3 CRCW PRAM algorithms. Unfortunely,
we cannot immediately derive Poly(log log n)-time
methods for the CRCW PRAM from the above anal-
ysis, for checking if a given Y satisfies the condition for
being a (1 /r)-approximation requires fl(log n/ log log n)
time using a polynomial number of processor, by a sim-
ple reduction from the parity problem 181. We can avoid
this lower bound, however, by checking this condition
approximately rather than exactly.

To do this we use a fast method for A-approximate
parallel prefix sums computation [29, 311, where one
wishes to consistently compute all prefix sums of a
sequence (al, ~2, , an) with a relative error of X.

LEMMA 3.6. ([29]) X-approximate parallel prefix
sums can be computed in 0(1) time using polynomial
work on a CRCW PRAM, with X = (loglogn)-b, for
any jixed constant b > 0.

This lemma is crucial to our fast CRCW derandom-
ization procedures, for we use it to estimate the sizes
]Y n R],]Y], and]I?] that are needed in the definition of
(l/r)-approximations and (l/r)-nets. In particular, for
any such value IC it allows us to derive an estimate 2’
such that z/(1 +X) < 5’ 5 (1 +X)x, for X 2 (log log n)-b
for any fixed constant b > 0. Let us therefore denote
each of the estimates we need as]Y nRI’,]Y]‘, and]R]‘,
respectively. (We may assume that IX] is known explic-
itly.) Say that a set Y is X-estimated to be a a-relative

e-approximation if

IY n RI’ II?]’ --
IV’

<61RI’+,
1x1 - 1x1 .

LEMMA 3.7. If Y is X-estimated to be a &relative
e-approximation, then Y is a (6X + 36)-relative 2~-
approximation, provided X < l/4.

Proof. Suppose Y is Xestimated to be a b-relative
e-approximation. Observe that]Y n RI’/IYI’ 5 (1 +

W21Y n fwIYI and that]IZ]‘/]X] 5 (1 + X)]R]/]X].
Thus, by the definition of Y, we can derive the following
bound on]]Y n RI/IYI - IRl/lXl I:

IynRI’ Ifv + IYnRI wnw + 14 I4 ~-- --
VI 1-v I I IV IV I I 1x1 I-v

5 6(1+A)~+((l+X)Z-1)~Y”R~+x~+,
I-V IV 1x1

= (X+(1+X)6)~+A(2+X)IYnR’ +e
1-v JYJ’

We also know that

Iy n RI
WI

5 (1+x)Q!y

5 (1+x)2
(

(l+qE +c
ix1 >

< (1+X)3(l+c5)~ +(1 +/lye. -
1-Y

Thus, we can combine the above bounds to derive the
following bound on]]Y n RI/IYI - lRl/lXl I:

(A + (1 +x16); + xc+ A)
(

cl+ xPu+ 6); + o+ XP.
>

+e

= (A + cl,+ J.16 + X(2 + X)(1 + W3(1 + 6)); + (1 +x(2 +x)(1 + W2).

I (6X + 36); + 2e,

provided X 5 l/4. n

Likewise, we have the following:

LEMMA 3.8. If Y is an c-approximation, then Y
will be X-estimated to be a 4X-relative 2e-approximation,
if x < l/4.

Proof. Suppose Y is an e-approximation. Then we
can bound f]Y n RI’/IYI’ - IRl’/lXll by

IY’-‘RI IRI
IYI I-v I I

+ IYnRI’ IYnRI + IRI PI’ --- --
WI WI I I 1-Y I-v

5 c+X(2+X)Y +z

I f+x(2+x)(~+f)+g

I fz + X(2 +A)
(

Cl+ XII4
1x1

+c +$
>

I

138 MICHAEL T. GOODRICH

Proof. For any R E R, we can write < 2c+4XIRI’ - I4 ’
provided X 5 l/4. n

These two lemmas together imply the following:

THEOREM 3.1. Let (X, 72) be a range space with
VC-exponent e, for some constant e > 0, an& let

n = [XI. Also, let 1 < r < n be a given parameter
and let e > 0 be any fixed (small) constant. Then, in
the CRCW PRAM model, for some constant c > 0, one
cm

1.
construct any of the following in the bounds claimed:
a (log log n)-b-relative (l/r)-approximation A of
(X, 72) of size 0(r2+t’) in 0(1) time using 0((nr)c)
work,

a (loglogn)-b-relative (l/r)-approximation I3 of
(X,72) of size Q(r2 logr) in O(1) time using
0((nr)c’ogT) work,

a (l/r)-net C of (X,R) of size Q(rl+e) in O(1)
time using O((nr)c) work, or

a (l/r)-net D of (X,R) of size Q(rlogr) in O(1)
time using O((nr)“Ogr) work.

Proof. Let us begin with the set A. We can set the
constant in Corollary 3.1 high enough so that any s-
sample Y is a (1/4r)-approximation with probability at
least l/Z, for s = O(r2+’). By Lemma 3.8, this implies
that in applying the limited independence derandomiza-
tion technique there will be some Y X-estimated to be a
4X-relative (1/2r)-approximation. But, by Lemma 3.7,
this in turn implies that Y is a (18X)-relative (l/r)-
approximation. By taking X = (loglogn)-(bS1), we
make Y a (log log n)-b-relative (l/r)-approximation (for
n larger than some constant). The methods for con-
structing the other sets are similar applications of the
limited-independence technique using Corollaries 3.2,
3.3, and 3.4, and Lemmas 3.7 and 3.8. n

4 O(nr”(‘))-Work Approximation Finding

As already mentioned, the methods of the previous
section are simple and can be implemented to run very
fast in parallel. Their work complexities are quite high,
however. In this section we show how to reduce this
significantly.

Let (X,R) be a range space with bounded VC-
exponent e. We need some simple lemmas, which are
adaptations of observations made by MatouSek [43].

LEMMA 4.1. Suppose Yl, Yz, . . . , Y, are b-relative
c-approximations for disjoint range spaces (X1, Rlx,),
(X2, 731x2), . . . , (X,, 721x,,,), respectively, where the
Xi’s have equal cardinality, and X = X1 U X-J U . . . U

X m. Then Y = Yl U Yz U .. . U Y, is a &relative c-

IynRI IRI 1 m IYirlR(IRnXiI -_- = - ~--
VI 1-Y m c i=l Kl IXil

5 1
Tn p$nRR(lRnXi(

m cl i=l m--. PiI

Moreover, R n Xi is a range in R]xi. Therefore, for
i = 1,2, . . . , m,

1W-W W&l &n&l +e

-m-- 1x1 - lxil .
Thus,

IYnRl PI < L m ---
IV CC 1x1 - m +I

p:“I +t
z >

= g!!Y+,
I-Y ’

which establishes the lemma. n

LEMMA 4.2. If Y is a &-relative el-approximation
for (X,R) and Z is a &-relative c2-approximation for

(Y,%+), then 2 is a (61 + 62 + &&)-relative (er(1 +
62) + en)-approximation for (X, R).

Proof. Let R be a range in R. We can write

I tznRI PI <
I I

IZnRI --- IYnRl + IynRI PI --
M 1x1 PI IYI --- l I VI 1-v

< - a,M +e1 + 6zIYnRI +<a
1-Y IV
IN IRI

5 61--- te1 + 62 (1+61)- +fl +cz
Ixt (1-Y >

= (s1+62+6162)~+.1(1+62)+(2,

which establishes the lemma. I

In addition, we will make use of the following
observation.

FACT 4.1. If Y is a S-relative er-approximation
for (X,R) and Z is an c2-net (Y,RIy), then Z is a

(cl+ ~)/(l - 6)-net for (X,R).

Given a range space (X, R) with bounded VC-
exponent, and a parameter 1 5 r 5 n, we wish to apply
these lemmas to an efficient divide-and-conquer method
for constructing a &-relative (l/r)-approximation Y of
(X, R) of size O(r2+“) using only O(nrO(l)) work, for
any small constants 60 > 0 and (Y > 0, where n = IX].
We achieve this by designing an algorithm, Approx,
which is a modification of earlier simple divide-and-
conquer methods of Matousek [44] and Goodrich [30].

We define Approx in terms of potential functions,
6(n) and e(n), that dictate the relative error and abso-

upprox~mation for (X, 72). lute error of the approximation that we return. Specif-

FIXED-DIMENSIONAL PARALLEL LINEAR PROGRAMMING 139

ically, given any fixed constant SO 5 l/4, Approx pro-
duces a S(n)-relative e(n)-approximation, Y, of (X, R),
where

1

(4.1) 6(n) 5 60 - 1
log log n

and

(4.2) e(n) 5 I logn - ’
2 (logn.) (1+ ‘“~~;~~n ‘> :.

This is, of course, a slightly stronger approximation
than a &-relative (l/r)-approximation would be, but
this formulation will prove easier to work with in our
recursive algorithm.

Algorithm Approx(r, (X, 72)):
1. If n 5 TV, then return X.

2. Otherwise, divide X into m equal-sized subsets
Xl, x2, . . ., X, and call Approx(#, (Xi, Rlx,))
recursively for each i in parallel, where r’ = r and
m = ny with 0 < y < 1 being a constant to be set
in the analysis. (Note: if loglogn’-7 5 l/&s, then
we do not recurse, but simply return X, so as to
preserve the invariant of Equation (4.1).)

3. Let Yi be the set returned by recursive call i, and let
Y’ = Y~UYQU.. .UY,. Apply Theorem 3.1 to find a
G’(n)-relative e’(n)-approximation Y of (Y’, Rlyr),
where

6’(n) = - hdl - 7)
2(log log nr -7) log log n

and

44 = (210;nl~7) ;.

4. Return Y.

LEMMA 4.3. Approx produces a S(n)-relative e(n)-
upprokmtion Y of X of size O((r log 71)~+~), for any
j7xed constant cx > 0. The work bound is O(nrc),
for some constant c 2 1, and the running time is
O(loglogn) in the CRCW PRAM model.

Proof. Our proof is an inductive argument based
upon Lemmas 4.1 and 4.2. The number of levels in the
recursion is clearly O(log logn), so the time bound for
a CRCW PRAM implementation is O(loglogn). By
Theorem 3.1, the size of the approximation produced
can be made to be O(r2fQ) for any fixed constant a! > 0.
The work complexity, W(r, n), is therefore bounded by
the recurrence equation

nrW(r, nlmr) + O(nr(r logn1-r)2+cY + (r logn)c(2+a)),

where c is the constant in the work bound of Theo-
rem 3.1. If we choose y to be a constant strictly less

than l/c, then W(r,n) will be O(nr2”+‘). There are
clearly O(loglogn) levels in this recursive algorithm,
each of which can be implemented in 0(1) time by The-
orem 3.1; hence, the total running time is O(loglogn).
n

This lemma can in turn be used to derive work-
efficient methods for constructing approximating sub
sets, as the following theorem shows:

THEOREM 4.1. Let (X, R) be a range space with

bounded VC-exponent, e. Also, let a: be any positive
constant strictly less than the reciprocal of the constant
in Theorem 3.1, Then, for some constant c > 0, one
can produce the fol1owin.g sets in the bounds claimed in

the

1.

2.

3.

4.

CRCW PRAM:

a (l/4)-relative (l/r-)-approximation A of (X, R)
,“,;ze O(r2+“) in O(loglogn) time using O(nrc)

,

a (l/$)-relative (l/r)-approximation B of (X, R)
of size O(r2 logr) in O(log log n) time using

O(nr” 1°gr) work,

a (l/r)-net of (X,R) C of size O(rlfa) in

O(loglogn) time, using O(nrc) work,

a (l/r)-net of (x, R) D of size o(r logr) in
O(log log n) time using O(nrciOgT) work.

Proof. The result for A follows by using the al-
gorithm Approx to find a (l/4 - l/ log log n)-relative
(1/2r)-approximation of size O((r log n)2+t) and fol-
low that by an application of Theorem 3.1.1 to find a
(log log n)-l-relative (1/4r)-approximation of that. The
set B is constructed similarly, using Theorem 3.1.2. The
sets C and D are constructed by using Approx to find a
(l/4)-relative (1/4r)-approximation of size O(r2+‘) and
then applying Theorem 3.1.3 or 3.1.4 to find a (1/4r)-
net of that, which, by Fact 4.1 will be a (l/r)-net of

(X,R). n

Thus, we have established the needed result to
complete the proof of Theorem 2.1 for the CRCW
PRAM model. For analogous results for the EREW
PRAM model, we may use the following theorem:

THEOREM 4.2. Let (X,R) be a range space with
bounded VC-exponent, e. Also, let QZ be any positive
constant strictly less than the reciprocal of the constant
in Theorem 3.1, Then, for some constant c > 0, one
can produce the following sets in the bounds claimed in
the ERE W PRAM:

1. a (l/r)-upprozimution A of (X, R) of size O(r2+“)
in O(logn) time using O(nrc) work,

2. a (l/r)-approximation B of (X, R) of size O(r2 log r)
in o(logn) time using O(nrc’ogT) work,

140 MICHAEL T. GOODRICH

3. a (l/r-)-net of (X, R) C of size O(rl+*) in O(logn)
time, using O(nrc) work,

4. a (l/r)-net of (X, R) D of size O(rlogr) in
O(logn) time using O(nrclogT) work.

Proof. The method is similar to that used to derive
the CRCW PRAM bounds, expect that in this case
we use Theorem 4.2 (in Step 3) and define Approx
to produce a (O-relative) e(n)-approximation where

by defining

m = (log;l-7) ;.
The time bound for such an EREW PRAM implemen-
tation can be characterized by the recurrence T(r, n) 5
T(r, nl--Y) + O(logn), which is O(logn). 1

Acknowledgements. We would like to thank Bon-
nie Berger, Jifi Matotiek, and John Rompel for several help-
ful comments concerning the topics of this paper. We would
also like to especially thank Edgar Ramos for several com-
ments that ultimately led to improvements to our construc-
tions of (l/r)-nets and (l/r)-approximations.

References

[I] P. K. Agarwal. Geometric partitioning and its applica-
tions. In J. E. Goodman, R. Pollack, and W. Steiger,
editors, Computational Geometry: Papers from the DI-
MACS special year. Amer. Math. Sot., 1991.

[2] M. Ajtai and N. Megiddo. A deterministic
poly(log log n)-time n-processor algorithm for linear
programming in tied dimension. In Proc. 24th Annu.
ACM Sympos. Theory Cornput., pages 327-338, 1992.

[3] N. Alon and N. Megiddo. Parallel linear programming
in fixed dimension almost surely in constant time. In
Proc. 31st Annu. IEEE Sympos. Found. Comput. Sci.,
pages 574-582, 1990.

[4] N. Alon and J. Spencer. The probabilistic method. J.
Wiley & Sons, 1993.

[5] N. M. Amato, M. T. Goodrich, and E. A. Ramos.
Parallel algorithms for higher-dimensional convex hulls.
In Pmt. 35th Annu. IEEE Sympos. Found. Comput.
Sci., pages 683-694, 1994.

[6] N. M. Amato, M. T. Goodrich, and E. A. Ramos.
Computing faces in segment and simplex arrangements.
In Proc. 27th Annu. ACM Sympos. Theory Cornput.,
pages 672-682, 1995.

[7] P. Assouad. Densite et dimension. Ann. Inst. Fourier,
Grenoble, 3:232-282, 1983.

[S] P. Beame and J. Hastad. Optimal bounds for decision
problems on the CRCW PRAM. Jozlma2 of the ACM,
36(3):643-670, 1989.

[9] K. P. Bennett. Decision tree construction via linear
programming. In Proceedings of the 4th Midwest Ar-
tijicial Intelligence and Cognitive Science Society Con-
ference, pages 97-101, 1992.

[lo] K.P. Bennett and O.L. Mangasarian. Multicategory
discrimination via linear programming. Optimization
Methods and SoBware, 3:29-39, 1994.

[ll] B. Berger, J. Romped, and P. W. Shor. Efficient NC
algorithms for set cover with applications to learning
and geometry. In Proc. 30th Annu. IEEE Sympos.
Found. Comput. Sci., volume 30, pages 54-59, 1989.

[12] H. Bronnimann and M. T. Goodrich. Almost optimal
set covers in finite vc-dimension. In Pmt. 10th Anna
ACM Sympos. Comput. Gwm., pages 293-302, 1994.

(131 Herve Brijnnimann, Bernard Chazelle, and JiPi Ma-
tousek. Product range spaces, sensitive sampling, and
derandomization. In Proc. 34th Annu. IEEE Sympos.
Found. Comput. Sci. (FOG’S 93), pages 400-409, 1993.

[14] B. Chazelle and J. Friedman. A deterministic view of
random sampling and its use in geometry. Combina-
torica, 10(3):229-249, 1990.

[15] B. Chazelle and J. Matotiek. On linear-time deter-
ministic algorithms for optimization problems in fixed
dimension. In Proc. 4th ACM-SIAM Sympos. Discrete
Algorithms, pages 281-290, 1993.

[16] H. Chernoff. A measure of asymptotic efficiency for
tests of a hypothesis based on the sum of the observa-
tions. Annals of Math. Stat., 23:493-509, 1952.

[f7] V. Chvatal. Linear Programming. W. H. Freeman,
New York, NY, 1983.

[18] K. L. Clarkson. Linear programming in O(n3dz) time.
Inform. Process. Lett., 22:21-24, 1986.

[19] K. L. Clarkson. New applications of random sampling
in computational geometry. Discrete Comput. Gwm.,
2:195-222, 1987.

[20] K. L. Clarkson. A Las Vegas algorithm for linear
programming when the dimension is small. In Proc.
.Wth Annu. IEEE Sympos. Found. Comput. Sci., pages
452-456, 1988.

[21] K. L. Clarkson and P. W. Shor. Applications of random
sampling in computational geometry, II. Discrete
Comput. Gwm., 4:387421, 1989.

[22] G. B. Dantzig. Linear Programming and Extensions.
Princeton University Press, Princeton, NJ, 1963.

[23] X. Deng. An optimal parallel algorithm for linear
programming in the plane. Inform. Process. Lett.,
35:213-217, 1990.

[24] M. Dyer. A parallel algorithm for linear programming
in hxed dimension. In Proc. 11th ACM Symp. on
Computational Geometry, 1995.

[25] M. E. Dyer. Linear time algorithms for two- and three-
variable linear programs. SIAM J. Comput., 13:31-45,
1984.

[26] M. E. Dyer. On a multidimensional search technique
and its application to the Euclidean one-center prob-
lem. SIAM J. Comput., 15:725-738, 1986.

[27] H. Edelsbrunner. Algorithms in Combinatorial Gwm-
etry, volume 10 of EATCS Monographs on Theoretical

FIXED-DIMENSIONAL PARALLEL LINEAR PROGRAMMING 141

Computer Science. Springer-Verlag, Heidelberg, West
Germany, 1987.

[28] D. Eppstein. Dynamic three-dimensional linear pro-
gramming. ORSA J. Comput., 4:36&368, 1992.

[29] T. Goldberg and U. Zwick. Optimal deterministic ap-
proximate parallel prefix sums and their applications.
In Prvc. 4th IEEE Israel Symp. on Theory of Comput-
ing and Systems, pages 220-228, 1995.

[30] M. T. Goodrich. Geometric partitioning made easier,
even in parallel. In Proc. 9th Annu. ACM Sympos.
Comput. Gwm., pages 73-82, 1993.

[31] M. T. Goodrich, Y. Matias, and U. Vi&kin. Optimal
parallel approximation for prehx sums and integer
sorting. In Proc. 5th A CM-SIAM Symp. on Discrete
Algorithms, pages 241-250, 1994.

1321 T. Hagerup. Fast deterministic processor allocation.
In 4th ACM-SIAM Symposium on Discrete Algorithms,
pages l-10, 1993.

1331 T. Hagerup and C. Rub. A guided tour of Chernoff
bounds. Information Processing Letters, 33(10):305-
308, 1990.

[34] D. Haussler and E. Welzl. Epsilon-nets and simplex
range queries. Discrete Comput. Gwm., 2:127-151,
1987.

1351 J. J&J& An Introduction to Parallel Algorithms.
Addison-Wesley, Reading, Mass., 1992.

[36] G. Kalai. A subexponential randomized simplex al-
gorithm. In Proc. 24th Annu. ACM Sympos. Theory
Comput., pages 475-482, 1992.

1371 H. Karloff. Linear Programming. Birkhauser, Boston,
1991.

[38] H. Karloff and Y. Mansour. On construction of &wise
independent random variables. In Proc. ACM Sympos.
Theory of Computing, pages 564-573, 1994.

[39] R. M. Karp and V. Ramachandran. Parallel algorithms
for shared memory machines. In J. van Leeuwen, edi-
tor, Handbook of Theoretical Computer Science, pages
869-941. Elsevier/The MIT Press, Amsterdam, 1990.

[40] M. Luby. A simple parallel algorithm for the max-
imal independent set problem. SIAM J. Comput.,
15(4):1036-1053, 1986.

[41] M. Luby. Removing randomness in parallel computa-
tion without a processor penalty. In Prvc. 29th IEEE
Symp. on Found. Comp. Sci., pages 162-173, 1988.

[42] Y. Matiss and U. Vi&kin. Converting high probability
into nearly-constant time-with applications to parallel
hashing. In 23rd ACM Symp. on Theory of Computing,
pages 307-316, 1991.

[43] J. Matousek. Approximations and optimal geometric
divide-and-conquer. In Proc. 23rd Annu. ACM Sym-
pos. Theory Comput., pages 505-511, 1991. Also to
appear in J. Comput. Syst. Sci.

[44] J. Matotiek. Cutting hyperpiane arrangements. Dis-
crete Comput. Geom., 6:385-406, 1991.

[45] J. MatouSek. Epsilon-nets and computational geome-
try. In J. Path, editor, New Trends in Discrete and
Computational Geometry, volume 10 of Algorithms and
Combinatorics, pages 69-89. Springer-Verlag, 1993.

[46] J. MatouSek, M. Sharir, and E. Welzl. A subexponen-
tial bound for linear programming. In Proc. 8th Annu.
ACM Sympos. Comput. Gwm., pages l-8, 1992.

[47] J. Matousek, E. Welzl, and L. Wernisch. Discrep-
ancy and &-approximations for bounded VC-dimension.
Combinatorics, 13:455466, 1993.

[48] J. Matousek. Efficient partition trees. Discrete Com-
put. Geom., 8:315-334, 1992.

[49] J. MatouSek. Linear optimization queries. J. Algo-
rithms, 14:432-448, 1993. The results combined with
results of 0. Schwarzkopf also appear in Proc. 8th ACM
Sympos. Comput. Gwm., 1992, pages 16-25.

[50] N. Megiddo. Linear-time algorithms for linear pro-
gramming in R3 and related problems. SIAM J. Com-
put., 12:759-776, 1983.

[51] N. Megiddo. Linear programming in linear time when
the dimension is fixed. J. ACM, 31:114-127, 1984.

[52] R. Motwani, J. Naor, and M. Naor. The probabilistic
method yields deterministic parallel algorithms. In
Proc. 30th Annu. IEEE Sympos. Found. Comput. Sci.,
pages 8-13, 1989.

[53] R. Motwani and P. Raghavan. Randomized Algorithms.
Cambridge University Press, New York, 1995.

[54] C. H. Papadimitriou and K. Steiglitz. Combinatorial
Optimization: Algorithms and Complexity. Prentice
Hall, Englewood Cliffs, NJ, 1982.

[55] F. P. Preparata and M. I. Shamos. Computational
Geometry: An Introduction. Springer-Verlag, New
York, NY, 1985.

[56] J. H. Reif. Synthesis of Parallel Algorithms. Morgan
Kaufmamr Publishers, Inc., San Mateo, CA, 1993.

[57] J. T. Rompel. Techniques for Computing with Low-
Independence Randomness. Ph.D. thesis, Dept. of
EECS, M.I.T., 1990.

[58] N. Sauer.. On the density of families of sets. Journal of
Combinatorial Theory, 13:145-147, 1972.

1591 J. P. Schmidt, A. Siegel, and A. Srinivasan. Chernoff-
Hoeffding bounds for applications with limited inde-
pendence. In Proc. 4th ACM-SIAM Symp. on Discrete
Algorithm-s, pages 331-340, 1993.

[60] R. Seidel. Small-dimensional linear programmi ng and
convex hulls made easy. Discrete Comput. Gwm.,
6:423-434, 1991.

[61] S. Sen. A deterministic poly(log log n) time optimal
CRCW PRAM algorithm for linear programming in
.fixed dimension. Technical Report 95-08, Dept. of
Computer Science, University of Newcastle, 1995.

[62] L. Valiant. Parallelism in comparison problems. SIAM
J. Comput., 4(3):348-355, 1975.

[63] V. N. Vapnik and A. Y. Chervonenkis. On the uniform
convergence of relative frequencies of events to their
probabilities. Theory Probab. Appl., 16:264-280, 1971.

