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Abstract

We provide O(n)-time algorithms for constructing the follow-
ing types of drawings of n-vertex 3-connected planar graphs:
e 2D convex grid drawings with (3n) x (3n/2) area under the
edge Lj-resolution rule;
e 2D strictly convex grid drawings with O(n®) x O(n®) area
under the edge resolution rule;
e 2D strictly convex drawings with O(1) X O(n) area under
the vertex-resolution rule, and with vertex coordinates rep-
resented by O(nlogn)-bit rational numbers;
e 3D convex drawings with O(1) x O(1) X O(n) volume un-
der the vertex-resolution rule, and with vertex coordinates
represented by O(nlogn)-bit rational numbers.

We also show the following lower bounds:
e For infinitely many n-vertex graphs G, if G has a straight-
line 2D convex drawing in a w X h grid satisfying the edge
Li-resolution rule then w,h > 5n/6 + Q(1) and w + h >
8n/3+ Q(1).
e For infinitely many bounded-degree triconnected planar
graphs G with n vertices, any 3D convex drawing of G' must
have volume 22(") under the angular resolution rule.

1 Introduction and Overview

The research area of graph drawing is concerned
with methods for automatically displaying a graph
G so as to accent fundamental properties of G, while
also optimizing important aesthetic qualities of the
drawing, such as its size. It is a research area that
combines computational geometry and graph theory
to study interesting theoretical questions concerning
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algorithms for drawing graphs, as well as trade-offs
for various geometric optimization criteria. Graph
drawing algorithms have significant practical appli-
cations in computer graphics, software engineering,
and databases.

In this paper, we investigate a classical geomet-
ric property in drawings of graphs: convexity. A 2D
convex drawing (see Fig. 1.a) is a planar straight-line
drawing such that each face is a convex polygon. A
2D strictly conver drawing (see Fig. 1.b) is a pla-
nar straight-line drawing such that each face is a
strictly convex polygon. A 3D conver drawing (see
Fig. 1.c) is a realization of the graph by the skele-
ton of a 3D convex polytope. Convex drawings are
important in visualization applications because of
their aesthetic appeal. They have intrigued mathe-
maticians for more than a century, with early work
on the subject by Maxwell [40], Steinitz [47], and
Tutte [50, 51].

Our work aims at characterizing the area/volume
requirement of 2D /3D convex drawings. Of course,
specifying a 2D area or a 3D volume bound begs the
question of how this is to be measured, since one
could reduce drawing dimensions by scaling. In or-
der to prevent it, we will impose bounds on the min-
imum distances between vertices and (nonincident)
edges. We define the following resolution measures:
vertex resolution: minimum distance between ver-
tices;
edge resolution: minimum distance between an edge
and a non-incident edge or vertex;
angular resolution: minimum angle between two
edges incident at the same vertex.

In the above definition we assume that the dis-
tance is measured with the Euclidean metric Ly. For
grid drawings it is convenient to use the L, metric
instead of Ly. In that case, we will use the term
L-resolution to indicate that we use L{ metric.

With each of the above measures, we associate
the corresponding resolution rule. We will restrict
our attention in this paper to straight-line drawings
that are drawn so as to achieve one of the follow-
ing rules: The vertex (edge) resolution rule is that
the vertex (edge) resolution is at least one. The



angular resolution rule states that the vertex reso-
lution is verified, and that the angular resolution is
at least «(d), where a(d) is a predefined function of
the maximum degree of the graph.

The resolution rules make it possible to assign
a meaningful measure to the area of the drawing.
The three rules are motivated by the respective aes-
thetic desires that each vertex be distinguished from
every other vertex, that each vertex be distinguished
from each non-incident edge, and that each edge in-
cident upon the same vertex be distinguished from
its neighbors. Note that the vertex resolution rule
is strictly weaker than requiring a grid drawing (in-
teger coordinates for the vertices). However, the
edge-resolution and angular-resolution rules can be
either more or less restrictive than grid drawing re-
quirement, depending on the drawing.
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Figure 1: Convex drawings of a triconnected pla-
nar graph: (a) 2D convex drawing; (b) 2D strictly
convex drawing; (c¢) 3D convex drawing.

1.1 Previous Related Work

In this section, we overview previous related work on
drawings of graphs, with special attention to their
area, volume, and convexity requirements. When
measuring the area (volume) of a drawing, we con-
sider the smallest axis-parallel box covering the
drawing, and often use the notation a x b (a x b x ¢),
referring to the length of the sides of the box. The
area/volume requirement is affected by the type of
resolution rule adopted for preventing vertices and
edges to be placed arbitrarily close to one another.

2D Drawings. Straight line drawings of planar
graphs are a classic topic in Mathematics, both in
the plane [22, 46, 50, 51] and in 3-dimensions [26,

47]. Unfortunately, when translated into algorithms
the proofs to these classic theorems produce draw-
ings with poor resolution characteristics. Thus, re-
cent attention has turned to area-efficient schemes
for straight-line planar graph drawings, with the
first breakthrough coming from de Fraysseix, Pach,
and Pollack [14, 15], who show that any planar tri-
angulation can be drawn as a straight line embed-
ding in an O(n) x O(n) integer grid. Moreover,
Chrobak and Payne [8] show that the approach of
de Fraysseix ef al. can be implemented in O(n) time.
Using a different and quite elegant approach, Schny-
der [44] gives an alternate linear-time scheme for
producing an O(n) x O(n) integer grid drawing of a
triangulated planar graph, whose edge resolution is
O(1/n). Since then, several researchers have worked
on extending and tightening these results in the in-
teger grid model [6, 7, 34]. We will refer to the
method from [14, 15, 8], as the shift method, as it
works by successively adding vertices to the draw-
ing and shifting horizontally parts of the existing
drawing.

Several researchers have also considered trade-
offs involving the angular resolution (e.g., see [23,
24, 39]). Tor example, Garg and Tamassia [24]
show that the problem of drawing a fixed-degree 3-
connected planar graph under angular resolution in
R? requires exponential area. In addition, Di Bat-
tista, Tamassia, and Tollis [17] prove an interest-
ing lower bound, which holds under any “reason-
able” finite-resolution rule, that there exist an infi-
nite family of planar acyclic digraphs such that for
any digraph G in the class, any upward (i.e., with
all edges “pointing up”) planar straight-line draw-
ing of G requires exponential area. Our formulation
of the above resolution rules for 3D graph drawing
extends these resolution notions.

2D Convex Drawings. Tutte [50, 51] shows that
every triconnected planar graph admits a 2D strictly
convex drawing, and that a 2D strictly convex draw-
ing can be constructed by solving a certain sparse
system of linear equations. Eades and Garvan [20]
show that the drawings produced by Tutte’s method
have exponential area in the worst-case, under the
vertex resolution rule.

Combinatorial characterizations of the graphs
that admit 2D convex and strictly convex draw-
ings are given by Tutte [50, 51], Thomassen [48, 49],
Chiba, Yamanouchi, and Nishizeki [5], and Di Bat-
tista, Tamassia, and Vismara [18]. Linear time
algorithms for constructing 2D convex drawings
with real-valued coordinates are provided in [5].
This work is extended by Chiba, Onoguchi, and
Nishizeki [4] to construct 2D “quasi convex” draw-



ings for planar graphs that do not admit 2D convex
drawings. Becker, Hotz and Osthof [2, 3] extend the
notion of convex drawing to nonplanar graphs, and
generalize some results of Tutte.

Kant [34, 33] presents a linear time algorithm for
constructing 2D convex drawings with integer coor-
dinates and (2n — 4) x (n — 2) area. Chrobak and
Kant [6] and, independently, Schnyder and Trotter
[45] reduce the grid size to (n—2) x (n—2). Lin and
Skiena [35] (see also [1]) show that strictly convex
drawings may require area (n?), since a strictly
convex drawing of an n-vertex cycle requires such
area. An on-line algorithm that tests whether a pla-
nar graph admits a 2D (strictly-) convex drawing in
a dynamic environment where vertices and edges are
incrementally inserted is given in [18].

3D Drawings. Due to the inherent “flat” nature
of paper and most display hardware, it should come
as no surprise that the vast majority of previous
graph drawing research has focused on 2D draw-
ings (e.g., see [16]). But recent advances in 3-
dimensional visualization hardware have made 3D
drawings technically feasible, and a handful of re-
searchers (and film makers!) have begun to explore
the possibilities of displaying graphs using this new
technology [9, 13, 20, 21, 27, 32, 36, 42, 43].

3D Convex Drawings. The well-known Steinitz’s
theorem says that a graph admits a 3D convex draw-
ing if and only if it is planar and triconnected [47]
(see also Griinbaum [26]), properties that can be
verified in linear time (see, e.g., [29, 30]). Inter-
estingly, it is a easy exercise to derive from the
published proofs of Steinitz’s theorem a cubic-time
method for constructing 3D convex drawings in the
real-RAM model [41]. Unfortunately, this approach
seems to require at least exponential volume and an
exponential number of bits to implement.

Maxwell [40] (see also [10, 12, 52]) describes a
mapping that transforms a 2D convex drawings with
a certain “equilibrium property” into a 3D convex
drawing. Further results on this transformation are
given by Hopcroft and Kahn [31]. Eades and Gar-
van [20] show how to construct 3D convex drawings
by combining the above transformation with the 2D-
drawing method of Tutte [50, 51]. They also show
that their drawings have exponential volume in the
worst case. Smith (see [28]) claims a polynomial-
time algorithm for constructing a 3D convex draw-
ing inscribed in a sphere, with vertex coordinates
represented by O(nlogn)-bit numbers, if a graph

L An important plot element in the movie Jurassic Park
involves a 3D virtual-reality traversal of a tree representing
a Unix file system.

is known to be inscribable (which can be tested in
linear time, e.g., for planar triangulations, due to
a result of Dillencourt and Smith [19]). Das and
Goodrich [13] present a linear-time algorithm for
constructing a 3D convex drawing of a maximal pla-
nar graph such that the vertex coordinates are ra-
tional numbers that can be represented with a poly-
nomial number of bits.

1.2 New Results

Let G be a triconnected planar graph with n ver-
tices. We provide efficient algorithms for construct-
ing the following types of drawings of G-

e a 2D convex grid drawing of GG with (3n) x (3n/2)
area under the edge Li-resolution rule in linear time
(previous methods achieved Q(n? x n?) area);

e a 2D strictly convex grid drawing of G with
O(n®) x O(n®) area under the edge resolution rule
in linear time (it was not previously known how to
achieve polynomial area);

e a 2D strictly convex drawing of G with O(1)xO(n)
area under the vertex resolution rule, and with ver-
tex coordinates represented by O(nlogn)-bit ra-
tional numbers in O(n'-?) time (previous methods
achieved Q(n x n) area);

e a 3D convex drawing of G with O(1) x O(1) x O(n)
volume under the vertex resolution rule, and with
vertex coordinates represented by O(n logn)-bit ra-
tional numbers in O(n'?) time (it was not previ-
ously known how to achieve polynomial volume).

We also show the following lower bounds on the
area/volume of 2D/3D convex drawings under the
edge/angular resolution rule:

e For infinitely many n-vertex graphs G, if G has a
straight-line drawing in a w x h grid satisfying the
edge Lji-resolution rule then w, k> 5n/64£(1) and
w4+ h > 8n/3+Q(1) (previously it was known that
w, h > 2n/3).

e For infinitely many bounded-degree triconnected
planar graphs G with n vertices, any 3D convex
drawing of G must have volume 2%(*) under the
angular resolution rule (no nontrivial lower bound
was previously known).

In the sections that follow we outline the main
ideas behind each of the above results.

2 2D Convex Drawings

We begin with our results involving 2-dimensional
convex drawings.



2.1 Improving Resolution for 2D
Convex Drawings

Previous methods for straight-line drawings of pla-
nar graphs [8, 14, 15, 44] use grids of size (2n—4) x
(n—2)or (n—1) x (n—1), and their vertex resolu-
tion is, obviously, at least one. However, their edge
resolution for some graphs is only O(1/n), and un-
der the edge resolution rule they may require area
as large as Q(n?).

In this section we show that further improve-
ment of the aestheticity of straight-line drawings of
planar graphs is possible, by providing a new grid
drawing algorithm that uses a (3n —7) x (3n—7)/2
grid, and thus only quadratic area, under the edge
Li-resolution rule. We find it interesting, that by
increasing the grid size by a small constant factor,
we can increase the edge resolution by an order of
magnitude.

We use the concept of a canonical decomposi-
tion, as introduced by Kant [33, 34] which general-
izes canonical orderings defined by de Fraysseix et
al. [14, 15] for triangulated graphs.

Canonical Decompositions. Let G be an arbi-
trary, n-vertex, 3-connected plane graph and (v, v2)
an edge on the external face of G. Let 7 =
(Vi,...,Vy) be a partition of V. By G we denote
the subgraph of GG induced by V, U...UV,,, and by
C}; we denote the external face of G,. We say that «
is a canonical decomposition of G with bottom edge
(v1, vg) if it satisfies the following conditions:

C.1. O, is a face of G, and each C is a cycle con-
taining (vq, v2).

C.2. Each G is 2-connected and internally 3-
connected (that is, removing two internal vertices
of G does not disconnect it).

C.3. For every k = 2,...,m—1, one of the following
conditions holds:

(a) Vi = {z}, for some z that belongs to Cj and
has at least one neighbor in G — GY.

(b) Vi, = (#1, ..., 22), where each z; has at least one
neighbor in G — Gy, z1 and z; each have ex-
actly one neighbor on Cj 41, and zs,...
have no neighbors in G 41.

y ZL—1

If V, satisfies Condition C.3.a, we call it a single-
ton; if it satisfies Condition C.3.b, we call it a chain.
By 3-connectivity of GG, ¥} must be a singleton. The
following lemma was proven by Kant [33, 34]:

Lemma 2.1: Every 3-connected plane graph has a
canonical decomposition, and it can be constructed
in linear time.

Our algorithm, ConvexDraw, will add succes-
sively sets Vi in reverse order, adjusting the em-
bedding at every step. By f(v) we denote the cur-
rent position of vertex v on the grid, i.e., f(v) =
(z(v),y(v)). By f(u,v) we denote the embedding of
edge (u,v), that is, the line segment that connects
f(u) with f(v). With each vertex w we will asso-
ciate a set of vertices, U(w), that contains vertices
that have to be shifted right whenever w is shifted
right. The set U(w) changes during the execution
of the algorithm. The general idea is that, unlike
the previous approaches [14, 15, 8, 44], at the time
when a new vertex is installed we shift all covered
vertices to the right, ensuring that the are far from
nonincident edges.

We give the details for ConvexDraw in the full
version, proving the following theorem.

Theorem 2.2: Algorithm ConvexDraw draws con-
vexly every 3-connected planar graph in a (3n—7) x
(3n — 7)/2 grid, under the edge L!-resolution rule,
and it can be implemented in linear time.

Lower bound. What is the minimum grid size
for grid drawings under the edge resolution rule? It
is known that a grid of size 2n/3 x 2n/3 may be
necessary for some graphs, even if there are no re-
strictions on edge resolution. We show the following
lower bound (the proof will be given in the full ver-
sion.)

Theorem 2.3: For each n > 1 there exists a plane
graph (G, on n vertices such that if GG, is embedded
into a w x h grid under the edge L'-resolution rule,

then h,w > 5n/6 + (1) and h +w > 8n/3 + Q(1).

2.2 Strictly Convex Drawings

In this section we consider strictly convexr drawings
of 3-connected planar graphs. We will show, using
the results from the previous section, that a grid of
size O(n®) x O(n?) is sufficient.

We assume we use a grid whose left-bottom cor-
ner is at (0,0). If f = (fs, fy) is a grid embedding
of a 3-connected planar graph and D a positive inte-
ger, then Df is an enlargement of f with factor D,
defined by Df(u) = (Dfs(u), Dfy(u)). If fis con-
vex (not necessarily strictly) than a strictly convex
drawing g is called strictly conver D-adjustment of
f (or simply a D-adjustment) if f(u) = Dg(u) for
all vertices u at which f is strictly convex. Note that
f must be strictly convex at three or more vertices
on the external face.

Theorem 2.4: Let f be a 3n x 3n/2 grid embed-
ding of G produced by Algorithm ConvexGridDraw.



Then there exists a D-adjustment of f for D = cn?,
if ¢ is sufficiently large. Consequently, GG has a
strictly convex embedding into the O(n®) x O(n?)
grid.

Proof: Let D = cn?, for some ¢ large enough. For
simplicity, assume first that the external face of GG is
a triangle; we will deal with the general case later.
Define a straight segment to be a maximum-length
sequence of consecutive vertices on a face boundary
such that all edges in-between form a straight line.
Initially, we assume ¢ = Df and then we will per-
turbate vertices in the interiors of straight segments
of the faces of (G. Note that, by 3-connectivity, each
vertex can belong to only one interior of a straight
segment.

Algorithm ConvexDraw produces two types of
straight segments: “bottom” segments, whose slope
is either 45° or —45°, and “ceilings”, which are hor-
izontal segments on the top boundaries of faces.
These boundaries of a face F are called ceiling(F)
and bottom(F). FEach vertex on F belongs to
ceiling(F) or bottom(F). We also have side edges
(left and right).

Pick an arbitrary straight segment P =
uouy ... up with slope 45°. Let z; = fy(w;) and
define 6; = (@ — @o)(wy — ;) for all i. Tor
t = 1,...,k — 1, change the y-coordinates of wu; to
gy(u;) := Dfy(u;) —d;. Other straight segments are
perturbed in a similar way, always in the direction
away from the face (vertically). Note that each ver-
tex is shifted by at most § = n?/4.

Since f satisfies the edge resolution rule, each
vertex is at distance at least 1 from each edge. This
distance will be > ¢n? in g. This implies the cor-
rectness of the embedding, since no vertex will cross
any edge after perturbation. In the full version we
show also that each face is strictly convex. B

3 3D Convex Drawings

3.1 Stress Functions

Let GG be a 3-connected planar graph embedded in
R?. Such an embedding is convex if every face of G
is convex. Let (1,2,...,n) be a listing of the ver-
tices of GG and let p; = (#,y;) denote the point in
the plane corresponding to vertex ¢. A stress func-
tion defined on & is an assignment of weights w; ; so
that w; ; = w;;, for all ¢ # j, and w; ; = 0if (4, j) is
not an edge in G. A stress function is convex if the
weight of each interior edge of (¢ is (strictly) positive
while the weight of each exterior edge is (strictly)
negative. A stress function is merely internally con-
vex if the weight of each interior edge is positive. A

stress function w is at equilibrium for G if, for all ¢,
> wii(pi —py) = (0,0) (1)
j=1

A stress function is at internal equilibrium if Equa-
tion (1) is guaranteed to hold only for the internal
vertices of G. A stress function w’ is an external
extension of a function w if w’' agrees with w on
each internal edge of G. Tutte establishes an inter-
esting connection between these properties of stress
functions and the convexity of the embedding for G-

Theorem 3.1 [51]: Let GG be a 3-connected pla-
nar graph embedded in R* to have a convex exter-
nal face. If there exists an internally-convex stress
function at internal equilibrium for GG, then the em-
bedding of G is convex.

Tutte shows how to use this theorem to draw
(. His approach is to embed convexly the external
face of G, define w; ; = 1 for each internal edge of
G, and then solve the linear system determined by
the boundary points and Equation (1) to determine
the locations of all the internal vertices. Unfortu-
nately, for our purposes, this approach does not in
general produce nice drawings, for Eades and Gar-
van [20] show that such drawings can require expo-
nential area under the vertex-resolution rule. Thus,
if we are to achieve polynomial area using this ap-
proach, we must use a more “adaptive” approach.
As a step in this direction we note the following
useful result of Hopcroft and Kahn:

Lemma 3.2 [31]: Let G be an embedded planar
graph with triangular external face, and let w be an
internally-convex stress at internal equilibrium for
(. Then there is an external extension w' of w that
is convex and at equilibrium for G

By Equation (1), an external extension w’ can be
computed from w in linear time simply by solving a
linear system defined by the three external vertices
(for there are only three undetermined variables).

3.2 3D Convex Drawings

There is a well-known duality between convex stress
graphs and 3-dimensional convex polyhedra, dat-
ing back to Maxwell [40] (see also [10, 12, 52]). In
this subsection we review the explicit formulation of
Hopcroft and Kahn [31] for this mapping.

Let G be a convex embedding of a 3-connected
planar graph and let G have a convex equilibrium
stress w. With each face r in G associate a lin-
ear function f.(z,y) = a,z + byy + ¢,. View G



as being embedded in the plane z = 1 and choose
an arbitrary reference point p. = (2., y«, 1) that is
not collinear with any edge of G. The set of func-
tions F = {f,} defines a w-consistent mapping if,
for each edge in G between points (p;, p;), incident
upon faces r and s,

(5(7“, 5)(fs(l‘*, y*) - fT(x*a y*))
[piapjap*]

where [p;, pj, p«] = det([p;, pj, p<])) and d(r, s) is the
orientation coefficient, defined to be +1 if v; pre-
cedes v; in a counterclockwise ordering of the ver-
tices around r, and —1 otherwise. Hopcroft and
Kahn show that w-consistency is independent of the
choice of reference point p, (provided that it is not
collinear with any edge of ).

Equation (2) may not by itself specify a unique
w-consistent mapping F. We may fix such an F,
however, by adding additional constraints implied
by the topology, such as f.(z,y) = fs(z,y) for any
(z,y) on the line segment joining p; and p;. Given
such F, define a convex polyhedron by associating
the plane z = 1 with the external face and the
plane defined by f,. with each internal face r in G.
Hopcroft and Kahn [31] show the following:

b (2)

wij =

Theorem 3.3 [31]: If w is a convex equilibrium
stress for a convex embedding G, then the polyhe-
dron defined by a w-consistent mapping is strictly
convex.

Thus, we have a template for producing 3-
dimensional strictly-convex drawings of 3-connected
planar graphs:

1. Construct an embedding of G' with a convex equi-
librium stress w.

2. Find a w-consistent mapping F to define a 3-
dimensional convex polyhedron P that has G as its
1-skeleton.

This template forms a very high-level descrip-
tion of our approach, as well as that of Eades and
Garvan [20]. Our algorithm differs from theirs sig-
nificantly in Step 1, however.

Note that, under any of our resolution rules, if
G has area A, then we can draw P to have vol-
ume A (by scaling the range of z-values to the in-
terval [0, 1]). Let us therefore now concentrate on a
method for drawing a 3-connected planar graph as a
small-area planar convex equilibrium stress graph.

3.3 Computing a Convex Embedding
with an z-Equilibrium Stress

Hopcroft and Kahn [31] show that there are convex
planar embeddings that do not admit an equilib-

rium stress. Nevertheless, they show that embed-
ded graphs that contain z-monotone spanning trees
can be weighted to give a stress that satisfies Equa-
tion (1), for each ¢ € {1,2,...,n}, a condition we
call z-equilibrium. Still, their method would not,
in general, yield a convex stress. In this section
we show that any 3-connected planar graph can be
drawn as a small-area convex stress graph under the
vertex resolution rule.

Let GG be a 3-connected planar graph with a tri-
angular external face (v1,v2,vy). Suppose further
that we are given a convex embedding of G in an
O(n)x O(n) integer grid so that there are no vertical
edges. This can be achieved by a simple modifica-
tion of the 2-dimensional convex drawing algorithm
of Chrobak and Kant [6], which we explore in the full
version of this paper. Vertices vy, vg, v, are mapped
into the triangle with coordinates (0, 0), (4n,0) and
(2n,2n). Define the z-cost, ¢; ;, of an edge (v;, v;)
to be |w; ;(z; — ;)|

Lemma 3.4: If G is an n-node 3-connected pla-
nar graph convexly embedded as above, then one
can compute, in time O(n), a convex z-equilibrium
stress on G so that each x-cost ¢; ; is a positive in-
teger with magnitude O(n).

Proof: Let us orient each edge in G from left to
right (which is a well-defined notion, since G con-
tains no vertical edges). Throughout this proof,
(v, v;) will denote an oriented edge, that is an edge
of & such that z; < z;. By the assumptions of the
lemma, for each internal edge (v;, v;), there exists a
directed path P;; from vq to v, that contains (v;, v;).
View the xz-cost on each edge as a flow from left to
right (with the xz-equilibrium equation serving the
role of flow conservation at each node). We do not
set any capacity constraints on edges, however. The
initial flow is 0 on all edges. Then for each (v;, v;),
increase by 1 the flow along the path F;; from v, to
vp. Since we maintain internal z-equilibrium with
each “augmentation,” this procedure will result in
an internally-convex stress function that is at inter-
nal z-equilibrium. This can be extended to a convex
stress at z-equilibrium by Lemma 3.2. Moreover,
the flow on any internal edge is increased by 1 at
most 3n times; hence, the z-cost on any internal
edge is at most 3n. By the proof of Lemma 3.2, this
implies that all z-costs in G are integers bounded
by O(n).

The above method works in time O(n?). In order
to achieve a running time of O(n), we carefully pick
the augmenting paths P;;. At each vertex pick one
incoming edge. This defines a tree 77 rooted at v.
Symmetrically define tree 15 rooted at v, by picking
one outgoing edge from each vertex. Define F;; as



the concatenation of the path from vy to v; in T}
(that we call the prefix of P;;), edge (v;,v;), and
the path from v; to v, in T5 (called the suffix of
P”)

Recall that the flow ¢4 on an edge (vgq, vp) is the
number of augmenting paths F;; that contain this
edge, which can be expressed as ¢q, = 14 pgp + Sab,
where pqp and sgp are, respectively, the numbers of
prefixes and suffixes of the augmenting paths con-
taining (vg, vp). We have pgp = 0if (v, vp) ¢ T1. To
compute pgp for edges (v, vp) € T1, we traverse Ty
in postorder. When backtracking from v to v,, we

set pap = Z(Uhvd e, Pod T Z(vb,vd) 1. The numbers
sqp are computed similarly using 75. B

Thus, we can take the above convex embed-
ding of a 3-connected planar graph G and in time
O(n) produce a convex z-equilibrium stress for G.
This stress function will in general not be at y-
equilibrium, however.

3.4 Computing a Convex Embedding
with an Equilibrium Stress

Nevertheless, we can easily convert such a drawing
into a convex equilibrium stress graph. In partic-
ular, we let Az = b denote the linear system de-
fined by the weight function, which achieves z-
equilibrium, Equation (1), and the boundary condi-
tions fixing the exterior triangle for G. Since all the
equations in this system involving z-coordinates are
already satisfied, solving the system Az = b finds
the y-coordinates of the vertices of G that produce
a convex equilibrium stress graph embedding G’ for
G, while keeping the z-coordinates unchanged.
This algorithm clearly produces a convex embed-
ding of GG in the plane together with a convex equi-
librium stress defined on this embedding, by The-
orem 3.1. Moreover, if we start with G being em-
bedded in an O(n) x O(n) integer grid, then G' will
be a convex embedding such that each z-coordinate
is a positive integer with magnitude O(n), and G’
will have no vertical edges. In addition, by well-
known properties of rational-arithmetic linear sys-
tem solving, we can guarantee that the number of
bits needed to represent any y-coordinate, as a ra-
tional number, is O(nlogn). If we scale the y-
coordinates to lie in the interval [0, 1], then the
drawing will still be a convex equilibrium stress em-
bedding, but will have area O(n) under the vertex-
resolution rule. Thus, we have the following:

Theorem 3.5: Given a 3-connected planar graph
(G, one can produce a convex equilibrium stress
embedding of G with O(n) area under the vertex-
resolution rule. The running time needed to achieve

this is O(P(n)), where P(n) is the time needed to
solve an n x n linear system defined by planar con-
straints.

Note that this area bound contrasts sharply with
the exponential lower bound of Eades and Gar-
van [20] for the area of Tutte drawings under the
vertex-resolution rule.

Incidentally, there are fairly simple separator-
based methods [25, 37, 38] for achieving an O(n'?)
bound for P(n), while much more sophisticated
methods allow one to achieve an O(M (n'/?)) bound,
where M (n) is the time needed to multiply two
n X n matrices (the current best bound for M(n)
is O(n?37%) [11]). Thus, by our template, we have
the following:

Theorem 3.6: Given a 3-connected planar graph
G, in time O(M(n'?)) one can draw G as a con-
vex polyhedron in R® using O(n) volume under the
vertex-resolution rule.

Thus, under current theoretical definition of
M(n) [11], we can achieve a running time of
O(n'1?), but in practice the O(n'-%) bound is prob-
ably more realistic.

3.5 On Angular Resolution and Vol-
ume of 3D Drawings

In this section we show that under the angular res-
olution rule there are 3-connected planar graphs
that require exponential volume to draw as 3-
dimensional convex polyhedra. We establish this
lower bound via a reduction from the problem of
drawing a fixed-degree 3-connected planar graph un-
der angular resolution in R?, which was shown to
require exponential area by Garg and Tamassia [24].

The main difficulty in extending their proof to
convex drawings in R? is that the third dimension
allows a tremendous amount of extra drawing free-
dom. For example, a convex drawing in R® can
achieve angular resolution and yet have many 2-
dimensional projections that do not achieve angular
resolution. The main idea of our lower bound con-
struction is to demonstrate an n-node 3-connected
planar graph G, such that any 3D convex drawing
of G,, that achieves angular resolution contains a
connected subgraph of size ©(n) that projects to a
2D drawing that also achieves angular resolution.
By the lower bound of Garg and Tamassia [24], this
would establish an exponential lower bound on the
area of this projection, hence the volume of this
drawing would also be at least exponential.

We define G, algorithmically. We begin with

a 17-node cycle Py7, which will form a face in G,



hence Py7 must be drawn in some plane in R?. So,
let P/, be a planar drawing of Py7 as a convex poly-
gon. Orient each edge of PJ; in the clockwise di-
rection. For a vertex v on Pj;, let p(v) and s(v)
respectively denote the predecessor edge and succes-
sor edge incident upon v in this orientation. Define
the external angle 3(v) at v to be the angle formed
at v between an extension of p(v) (as a ray with
p(v)’s orientation) and an extension of s(v). Also,
following Griinbaum [26], let us measure angles as
fractions of 1 (so that a right angle is 1/4).

Lemma 3.7: Pj. has two consecutive vertices with
external angles less than 1/8.

Proof: In a convex polygon P, we have
ZvePn B(v) = 1. Pyp can have at most 8 vertices
with external angle at least 1/8. Thus, P, must
have at least 9 vertices with external angle less than
1/8. Moreover, by a simple pigeon-hole argument,
two of these vertices must be consecutive. B

Let us continue, then, with our definition of G,,.
Our next augmentation is to add a vertex v* that
is adjacent to each vertex on Pi7 (so as to define a
pyramid). Let @ denote this new graph. For each
edge e of () incident upon v* define the external
angle, 8(e), at e analogously to the planar external
angle at a vertex. Specifically, define G(e) to be
the fraction of the sphere defined between the two
planes incident upon e and oriented in a clockwise
direction. Define an edge e to be shallow if §(e) <
1/8. By Lemma 3.7, we know that, no matter where
v* is placed, two consecutive edges incident upon v*
must be shallow.

We wish to force there to be a triangle 7 in
@ with all three of its edges being shallow. This
is because any subgraph placed in the interior of
7 and drawn to achieve angular resolution would
project to the plane containing 7 so as to achieve
(2-dimensional) angular resolution. This would then
allow us to complete the proof by placing the graph,
Hy;, used in the 2-dimensional lower bound of Garg
and Tamassia [24], in the interior of 7. Let us there-
fore augment ) with additional triangular faces in a
fashion that will allow us to argue that there must
be at least one triangular face with three shallow
edges. If we can accomplish this by adding just a
constant number of additional edges to ), then we
can place Gy in the interior of each such face to
complete the proof.

Let ¢ be the triangular face of @) with two shallow
edges. If t actually has three shallow edges, then we
are done, so let us assume that the third edge of ¢
is not shallow. Of course, it must nevertheless have
measure less than 1/2. Define the stellation of a tri-
angular face s to be the placement of a new vertex in

the interior of s which is then made to be adjacent
to the three vertices of s. We start with ¢ and stel-
late it. This creates two triangular faces ¢; and t2
that are incident upon v* and a triangular face that
is not incident upon v*. Let us therefore repeat this
procedure, likewise stellating ¢; and ¢5. This creates
four new triangular faces incident upon »* and two
new edges incident upon v* as well. Let us continue
to iterate this procedure, stellating all the triangular
faces incident upon v* in each iteration. We repeat
this procedure for a total of £ iterations, thus ob-
taining a subgraph S:. It is useful to note that the
planar dual of S; is a depth-£ complete binary tree
B with additional edges connecting the leaves of B.
We can show that there exists a sufficiently large
integer constant ¢ such that at least one triangle 7
of S; has three shallow edges.

To sum up, then, our construction of G, starts
with Pi7, adds v* to be adjacent to each vertex of
Py7, augments each triangle incident to v* to be-
come the subgraph S;, and then adds the lower-
bound graph Hj, of Garg and Tamassia [24] in the in-
terior of each triangle in a S; to complete the proof.
If the resulting graph, G, is drawn as a convex
polyhedron in R? so as to achieve angular resolu-
tion, then, by the above argument, at least one of
these Hy’s will project to a plane so as to preserve
angular resolution. But by the lower bound of Garg
and Tamassia, such a projection must have area at
least 22("); hence, the drawing in R? must have
volume at least 2°2("), We conclude:

Theorem 3.8: There is a fixed-degree n-node 3-
connected planar graph G,, that requires 2(n) vol-
ume to draw as a convex polyhedron in R® under
the angular resolution rule, with a(v) > «q for any
fixed constant ag > 0.
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