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Abstract

We study the problem of sorting n numbers on a

p-processor bulk-synchronous parallel (BSP) com-

puter, which is a parallel multicomputer that al-

lows for general processor-to-processor communica-

tion rounds provided each processor sends and re-

ceives at most h items in any round. We provide

parallel sorting methods that use internal computa-

tion time that is O(*) and a number of commu-

nication rounds that is 0( ~$$~1) ) for h = @(n/p).

The internal computation bound is optimal for any

comparison-based sorting algorithm. Moreover, the

number of communication rounds is bounded by a

constant for the (practical) situations when p <
nl–l/c for a constant c > 1. In fact, we show that—
our bound on the number of communication rounds

is asymptotically optimal for the full range of values

for p, for we show that just computing the “or” of

n bits distributed evenly to the first O(n/h) of an

arbitrary number of processors in a BSP computer

requires fl(log n/ log(h + 1)) communication rounds.

1 Introduction

Most of the research on parallel algorithm design

in the 1970’s and 1980’s was focused on fine-grain

massively-parallel models of computation (e. g., see

[4, 7, 22, 24, 28, 37]), where the ratio of mem-

ory to processors is fairly small (typically O(l)),

and this focus was independent of whether the

model of computation was a parallel random-access

machine (PRAM) or a network model, such as a

mesh-of-processors. But, as more and more par-

allel computer systems are being built, researchers

are realizing that processor-to-processor communi-

cation is a prime bottleneck in parallel comput-
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ing [2, 6, 12, 26, 30, 31, 34, 41, 40]. The real potential

of parallel computation, therefore, will most likely

only be realized for coarse-to-medium-grain paral-

lel systems, where the ratio of memory to proces-

sors is non-constant, for such systems allc,w an al-

gorithm designer to balance communication latency

wit h internal comput at ion time. Indeed, this realiza-

tion has given rise to several new computation mod-

els for parallel algorithm design, which all use what

Valiant [40] calls “bulk synchronous” processing. In

such a model an input of size n is distributed evenly

across a p-processor parallel computer. In a single

computation round (which Valiant calls a superstep)

each processor may send and receive h messages and

then perform an internal computation on its inter-

nal memory cells using the messages it has just re-

ceived. To avoid any conflicts that might be caused

by asynchronies in the network (whose topology is

left undefined) the messages sent out in a round tby

some processor cannot depend upon any messages

that processor receives in round t (but, clf course,

they may depend upon messages received in round

t – 1). We refer to this model of computation as the

Bulk-Synchronous Parallel (BSP) model.

1.1 The BSP Model

As with the PRAM family of computer modelsl, the

BSP model is distinguished by the broadcast and

combining abilities of the network connecting the

various processors. In the weakest versicm, which

is the only version Valiant [40] considers, the net-

work may not duplicate nor combine messages, but

instead may only realize h-relations between the pro-

cessors. We call this the ERE W BSP model, noting

that it is essentially the same as a model Valiant

elsewhere [41] calls the XPRAM and one that Gib-

bons [19] calls the EREW phase-PRAM. It is also

the communication structure assumed by the LogP

model [12, 25], which is the same as the BSP model

except that the LogP model does not explicitly re-

quire bulk-synchronous processing.

But it is also natural to allow for a slightly more

powerful bulk-synchronous model, which we call the

1 Indeed ~ pRAM with as many processors aOd memOry

cells is a BSP model with h = 1, as is a rnodute parallel corrL-

puter (MPC) [31], which is also known as is a distributed-
memory mczchtne (DMM) [23], for any memory size.
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weak- CREW BSP model. In this model we assume

processors are numbered 1, 2, . . .. p, and that mes-

sages can be duplicated by the network so long as

the destinations for any message are a contiguous

set of processors {2, z + 1,. ... j }. This is essentially

the same as a model Dehne et al. [15, 16] refer to

as the coarse-grain multi-computer. In designing an

algorithm for this model one must take care to en-

sure that, even with message duplication, the num-

ber of messages received by a processor in a single

round is at most h. Nevertheless, as we demonstrate

in this paper, this limited broadcast capability can

sometimes be employed to yield weak-CREW BSP

algorithms that are conceptually simpler than their

EREW BSP counterparts.

Finally, one can imagine more powerful instances

of the BSP model, such as a CREW BSP model,

which would allow for arbitrary broadcasts, or even

a CRC W BSP model, which would also allow for

messages to the same location to be combined (using

some arbitration rule). (See also [19, 32].)

The running time of a BSP algorithm is charac-

terized by two parameters: TI, the internal compu-
t ation time, and Tc, the number of communication

rounds. A prime goal in designing a BSP algorithm

is to minimize both of these parameters. Alterna-

tively, by introducing additional characterizing pa-

rameters of the BSP model, we can combine TI and

TC into a single running time parameter, which we

call the combined running time. Specifically, if we

let L denote the latency of the network—that is,

the worst-case time needed to send one processor-

to-processor message—and we let g denote the time

“gap” between consecutive messages received by a

processor in a communication round, then we can

characterize the total running time of a BSP com-

putation as O(T1 + (L + g c). Incidentally, this is

also the running time of implementing a BSP com-

putation in the analogous LogP model [12, 25].

The goal of this paper is to further the study of

bulk-synchronous parallel algorithms by addressing

the fundamental problem of sorting n elements dis-

tributed evenly across a p-processor BSP computer.

1.2 Previous work on parallel sorting

Let us, then, briefly review a small sample of the
work previously done for parallel sorting. Batcher [5]

in 1968 gave what is considered to be the first par-

allel sorting scheme, showing that in a fine-grained

parallel sorting network one can sort in O(log2 n)

time using O(n) processors. Since this early work

there has been much effort directed at fine-grain par-

2There is also an o parameter in the LogP model, but it

would be redundant with L and g in this bound.

allel sorting algorithms (e.g., see Akl [4], Bitton et

al. [7], J6J& [22], Karp and Ramachandran [24], and

Reif [37]). Nevertheless, it was not until 1983 that

it was shown, by Ajtai, Kom16s, and Szemer6di [3],

that n elements can be sorted in O(log n) time with

an O(n log n)-sized network (see also Paterson [35]).

In 1985 Leighton [27] extended this result to show

that one can produce an O (n)-node bounded-degree

network capable of sorting in O (log n) steps, based

upon an algorithm he called “columnsort .“ In 1988

Cole [10] gave simple methods for optimal sorting in

the CREW and EREW PRAM models in O(log n)

time using O(n) processors, based upon an elegant

‘(cascade mergesort” paradigm using arrays, and this

result was recently extended to the Parallel Pointer

Machine by Goodrich and Kosaraju [20]. Thus, one

can sort optimally in these fine-grained models.

These previous methods are not optimal, how-

ever, when implemented in bulk-synchronous mod-

els. Nevertheless, Leighton’s columnsort method [27]

can be used to design a bulk-synchronous parallel

sorting algorithm that uses a constant number of

communication rounds, provided P3 S n. Indeed,

there are a host of published algorithms for achieving

such a result when the ratio of input size to number

of processors is as large as this. For example, a ran-

domized strategy, called sample sort, achieves this

result with high probability [8, 17, 18, 21, 29, 38],

as do deterministic strategies based upon regular

sampling [33, 39]. These methods based upon sam-

pling do not seem to scale nicely for smaller n/p

ratios, however. If columnsort is implemented in a

recursive fashion, then it yields an EREW BSP al-

gorithm that uses TC = O([log n/ log(n/p)]~) com-

munication rounds and internal computation time

that is O(TC (n/p) log(n/p)), where 6 = 2/ (log 3 –

h)ll), which is approximately 3.419. Using an algo-

rithm they call “cubesort,” Cypher and Sanz [13]

show how to improve the Tc term in these bounds

to be 0((25)t10g * ~–10g* (n/P)) [log ~/ log(n/P)]2), ad

Plaxton [36] shows how cubesort can be modi-

fied to achieve Tc = O([log n/ log(n/p)]2). In-

deed, Plaxton3 can modify the “sharesort” method

of Cypher and Plaxton [14] to achieve TC =

O((logn/ log(n/p)) log2(logn/ log(n/p))). Finally,

Chv&tal [9] describes an approach of Ajtai, Komh%,
Paterson, and Szemex+di for adapting the sorting

network of Ajt ai, Kom16s, and Szemer6di [3] to

achieve a depth of O(log n/ log(n/p) ) where the ba-

sic unit in the network is a “black box” that can

sort (n/pi elements. An effective method for con-

structing such a network is not included in Chv&tal’s

report, however, for the method he describes is a

non-uniform procedure based upon the probabilistic

3perSonaI cOmmunicatiOn
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method. In addition, the constant factor in the run-

ning time appears to be fairly large. Incidentally,

these latter methods [9, 14, 13, 27, 36] are actually

defined for more-restrictive BSP models where the

data elements cannot be duplicated and each inter-

nal computation must be a sorting of the internal-

memory elements.

The only previous sorting algorithms we are

aware of that were designed with the BSP model

in mind are recent methods of Adler, B yers, and

Karp [1] and Gerbessiotis and Valiant [18]. The

method of Adler et al. runs in a combined time

that is 0( ‘g ~g m + pg + gL), provided p s nl–~ for

some constant O < 6 < 1. They do not define their

algorithm for larger values of p, but they do give

a slightly better implementation of their method in

the LogP model so as to achieve a running time of
0( ,tg log n

+pg+~) for p similarly bounded. Gerbessi-
otis a;d Valiant give several randomized methods,

the best4 of which runs with a combined time of

O(* + gp’ + gn/p + L), with high probability,

for any constant O < e < 1, provided p s nl-d,

where 6 is a small constant depending upon e.

1.3 Our results

Given a set S of n items distributed evenly across

p processors in a weak-CREW BSP computer we

show how S can be sorted in O(log n/ log(h + 1))

communication rounds and O ( (n log n) /p) internal

computation time, for h = @(n/p). The method

is fairly simple and the constant factors in the run-

ning time are fairly small. Moreover, we also show

how to extend our result to the EREW BSP model

while achieving the same asymptotic bounds on the

number of communication rounds and internal com-

putation time. Our bounds on internal computation

time are optimal for any comparison-based paral-

lel algorithm. In addition, we achieve a determinis-

tic combined running time that is 0(% + (L +

gn/p) (log n/ log(n/p) ) ), which is valid for all val-

ues of p and improves the best bounds of Adler et

al. [1] and Gerbessiotis and Valiant [18] even when
p ~ nl–~ for some constant O < 6 < 1, in which

case our method sorts in a constant number of com-

munication rounds. In fact, if p3 ~ n, then our

method essentially amounts to a sample sort (with

regular sampling). If p = @(n), then our method

amounts to a pipelined parallel mergesort, achiev-

ing the same asymptotic performance as the fine-

grained algorithms of Cole [10] and Goodrich and

4They also give a method with a combmed run-
ning tmne of O([(n/p) 10ga+l p + Llog2 p + 9 10g”+2 p +

g(n/p) 10g p]/ log log p), w]th high probability, prOvided P <

n/ 10g”+l p.

Kosaraju [20]. Thus, our method provides a sort-

ing method that is fully-scalable over all values of

p while achieving an optimal internal computation

time over this entire range.

Indeed, we show that our bounds on the num-

ber of communication rounds needed to sort n ele-

ments on a BSP computer are also worst-case opti-

mal for this entire range of values of p. We establish

this by showing that simply computing the “or” of n

bits distributed evenly across @(n/h) processors re-

quires fl(log n/ log(h + 1)) number of communication

rounds, where each processor can send and receive

h messages in a CREW BSP computer. This lower

bound holds even if the number of addition al proces-

sors and the number of additional memory cells per

processor are unbounded. Since this lower bound is

independent of the total number of processors and

amount of memory in the multicomputer, it joins

lower bounds of Mansour et al. [30] and Adler et

al. [1] in giving further evidence that the prime bot-

tleneck in parallel computing is communication, and

not the number of processors nor the memory size.

2 A weak-CREW BSP Algo-

rithm

Let S be a set of n items distributed evenly in a

p-processor weak-CREW BSP computer. We sort

the elements of S using a d-way parallel mergesort,

pipelined in a way analogous to the binary parallel

mergesort procedures of Cole [10] and Goc)drich and

Kosaraju [20].

Specifically, we choose d = max{ [fi;], 2}, and

let T be a d-way rooted, complete, balanced tree such

that each leaf is associated with a subset S, C S
of size at most [n/pi. For each node v in T de-

fine U(v) to be the sorted list of elements stored

at descendants of v in T, where we define v to be

a descendent of itself if it is a leaf. Nc}te that if

{WI, W2,..., ‘Wd} denote the children of a node v in

T, then U(v) = U(WI) U U(wz) U .0. U U(w~). Our

goal, then, is to construct i7(root(T)). We may as-

sume, without loss of generality, that the elements

are distinct, for otherwise we can break ties using

the original positions of the elements of S.

We perform this construction in a bottom-up
pipelined way. In particular, we perform a series

of stages, where in a Stage t we construct a list

U~(v) G U(v) for each node v that we identify as be-

ing active. A node is full in Stage t if Ut (v) = U(v),

and a node is active if Ut (v) # 0 and v was not full in

Stage t– 3. Likewise, we say that a list A stored at
a node v in T is full if A = U(v). Initially, each leaf

of T is full and active, whereas each internal node is
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initially inactive.

We say that a list B is a k-sample of a list A

if 1? consists of every k-th element of A. For each

active node v in T we define a sample Lt (v) defined

as follows:

●

●

If v is not full, then Li(v) is a dz-sample of

Ut(v).

If v first became full in Stage t, then we define

Lt(v) to be a dz-sample of Vt(v)= U(v); we

define L~+I (v) to be a d-sample of Ut(v), and

we define Lt+z(v) = U(v) (i.e., L~+2(v) is full).

We then define

Ut(v) = Lt–l(wl) U Lt–1(w2) U . . . ULt_l(wJ,

where, again, {WI, W2, . . . . Wd} denote the children of

node v in T. Note that by our definition of Li (v), if

a node v becomes full in Stage t,then v’s parent be-

comes full in Stage t +3. Thus, assuming we can im-

plement each stage with a constant number of com-

munication rounds using the p processors, then we

will be able to sort the elements of S, by constructing

U(rOOt(T)), in just O(k%d’) = 0 ( lo~h~l)
)

com-

munication rounds, for h = @(n/p). Before we give

the details for implementing each stage in our algo-

rithm, however, we establish the folIowing bounds

(whose proofs are included in the full version):

Lemma 2.1: If at most k elements of Ut (v) are in

an interval [a, b], then at most dk + 2d2 elements of

U~+I (v) are in [a, b].

Intuitively, this lemma says that Ut+l (v) will not

be wildly different from U~(v). Similarly, we have the

following corollary that relates Lt+l (v) and Lt (v):

Corollary 2.2: If at most k elements of Lt (v) are in

an interval [a, b], then at most d(k + 1) + 2 elements

of Lt+l(v) are in [a, b].

Having given this important lemma and its corol-

lary, let us now turn to the details of implementing

each stage in our pipelined procedure using just a

constant number of communication rounds.

2.1 Implementing each stage using a

constant number of communica-

tion rounds

We say that a list A is ranked [10, 20] into a list

B if, for each element a ● A, we know the rank

of a’s predecessor in B (based upon the ordering of

elements in A U B). If A is ranked in B and B is

ranked in A, then A and B are cross-ranked. The

generic situation at the end of any Stage t is that we

have the following conditions satisfied at each node

v in T.

Induction Invariants:

1. Lt (v) is ranked into Lt-l (v).

2. If v is not full, then Lt_l (w.) is ranked in Ut(v),

for each child w%of v in T.

3. Lt(v) is ranked into Ut (v).

We maintain copies of the lists L,-l (v), L,(v),

Ut-l (v), and Ut (v) for each active node v in T,

and we do not maintain any other lists during the

computation. As we shall show, this will allow us

to implement the entire computation efficiently us-

ing just p processors. In order to implement each

stage in our computation using just O(1) commu-

nication rounds we also maintain the following im-

portant load-balancing invariant at each node v in

T.

Load-balancing Invariant:

●

●

If a list A is not full, then A is partitioned into

contiguous subarrays of size d each, with each

subarray stored on a different processor.

If a list A is full, then A is partitioned into

contiguous subarrays of size d2 each, with each

subarray stored on a different processor.

We assume that the names of the nodes of v in T

and the four lists stored at each node v are defined so

that given an index, i, into one of these lists, A, one

can determine the processor holding A[z] as a local

computation (not needing a communication step)5.

Given that the induction and load-balancing invari-

ant are satisfied for each node v in T, we can con-

struct Ut+l (v) at each active node, with the above

invariants satisfied for it, as follows.

Computation for Stage t + 1:

1. For each element a in Lt (wi), let b(a) and

c(a) respectively be the predecessor and suc-

cessor of a in Lt–l (w,). We can determine

b(a) and c(a) in O(1) communication rounds,

for each such a, since Lt (w.) is ranked in

Lt (wi) by Induction Invariant 1. In fact, if
L* (w, ) = U(w,), then this is essentially a local

computation. Moreover, by our load-balancing
invariant and Corollary 2.2, even in the general

case, each processor (storing a portion of some

Li_l (wz) ) will receive (and then send) at most

d(d+ 1) + 2 = ~(h) messages to implement this

step.

5We maintain this assumption inductively, as we show in
the full version.
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2.

3.

4.

5.

6.

7.

Determine the location (rank) of b(a) and c(a)

in Ut (v). This can also be easily implemented

with a O(1) communication rounds, as in the

previous step.

Broadcast a (and its rank in L~ (w,)) to all pro-

cessors holding elements of Ut (v) between b(a)

and c(a). By our load-balancing invariant and

Lemma 2,1 we can guarantee that each proces-

sor will receive at most 3d2 + d = @(h) mes-

sages to implement this step (each processor

receives at least one element from each child

of v plus as many elements as fall in its inter-

val of U~(v)); hence, it can be done in O(1)

communication rounds.

Each processor assigned to a contiguous por-

tion [e, j) of Ut (v) receives elements sent in the

previous round and merges them via a simple

d-way mergesort procedure to form a sublist of

Ut+I (v) of size O(d2) = 0(1-L). It is important

to observe that the processor for [e, $) receives

at least one element from each child of w so

as to include all all the elements that may in-

tersect the interval [e, .f), even if none actually

fall inside [e, $). This allows us to accurately

compute the rank of each element in Ut+l (v)

locally; hence, it gives us Vt (v) cross-ranked

with Ut+l (w). Moreover, this step can be ac-

complished in O(1) communication rounds and

0(d2 log d) = O((n/p) log(n/p) ) internal com-

put ation time.

For each element a in Ut+l (v) send a message

to the processor holding a E Lt (w,) informing

that copy of a of its rank in Ut+l (v). This step

can easily be accomplished in 0(1) communi-

cation rounds, and gives us Induction Invari-

ant 2.

Determine the sample Lt+l (w) and rank it into

Ui+l (v), giving us Induction Invariant 3. Also,

use the cross-ranking of Ui+l (v) and Ut (v) to

rank Lt+l (w) into Lt (v), giving us Induction

Invariant 1. This step can easily be accom-

plished in O(1) communication rounds.

Finally, partition the four lists stored at each

node v so as to satisfy the load-balancing in-

variant. Assuming the tot al size of all the non-

full lists in T is O(n/d), then this can easily be

performed in O(1) communication rounds us-

ing p = @(n/d2) processors.

Therefore, given the above assumption regarding
the total size of all the lists, in a constant number
of communication rounds and an internal computa-

tion time that is O((n/p) log(n/p) ) we can build the

set Ut+l (v) and establish the induction and load-

balancing invariants so as to repeat this procedure

in Stage t+ 2.

Let us therefore analyze the total size of all the

lists stored at nodes in T. Clearly, the size of all

the full lists in T is O(n). Moreover, each such list

contributes at most I/d of its elements to the next

higher level in T, and from then on up T each lists

on a level 1 contribute at most 1/d2 of its elements

to lists on the next higher level in T. Thus, the

total size of all non-full Ut_l (v) or Ut (v) lists forms

a geometric series that sums to be O(n/d), which is

what we require. In addition, any sample Lt (v) or

Lt-l (v) that is not full can contain at most l/d of

the elements of iY(w); hence, the total space needed

for all these lists is also O(n/d). This establishes the

following:

Theorem 2.3: Given a set S of n items stored

O (n/p) per processor on a p-processor weak-CRE W

BSP computer, one can sort S in O(log n/ [og(h-t- 1))

communication steps and O (n log n/p) internal com-

putation time, where h = @(n/p).

In achieving this result we exploited the broad-

cast capability of the weak-CREW BSP model (in

Step 3). In the next section we show how to match

the asymptotic performance of Theorem 23 without

using such a capability.

3 An EREW BSP Algorithm

Suppose we are now given a set S of n items, which

are distributed evenly across the p processors of

an EREW BSP computer. Our goal is to sort S

in O (log n/ log(h + 1)) communication rcmnds and

O(n log n/p) internal computation time without us-

ing any broadcasts, for h = @(n/p). We achieve this

result using a cascading method similar to one used

by Cole [10].

Let T be a complete rooted d-way tree with each

of its leaves associated with a sublist St C: S of size

at most [n/pi, where d = max{ [(n/p) 1171, 2} (the

reason for this choice will become apparent in the

analysis). Our method proceeds in a series of stages,

as in the weak-CREW BSP algorithm, with us con-

structing the set Ut (w) in each stage, as before:

d

Ut(v) = u Lt_I(w, ),

1=1

where each Lt (v) list is defined to be a sample of
Ut (v) as in our weak-CREW algorithm.

In order to perform this construction so as to

avoid broadcasts, however, we will accomplish this
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by constructing a larger, augmented list, At(v), such

that iYt (v) ~ At(v). We also define a list Dt (v) to be

a d2-sample of At(v). For each active node v, with

parent u and children WI, wz, . . . . wd, we then define

d

At(v) = D~-I(U) U u &-l(?&),

z= 1

i.e., At(v) = D~-I (u) U ~~(v). Intuitively, the Dt

lists communicate information “down” the tree T in

a way that allows us to avoid broadcasts. Indeed,

once a copy of an element begins to traverse down

the tree, then it will never again traverse up (since

the D lists are only sent to children).

Still, even though we are assuming, without loss

of generality, that the elements of S are distinct,

this definition may create duplicate entries of an el-

ement in the same list, with some traversing down

and at most one traversing up. We resolve any am-

biguities this may create by breaking comparison

ties based upon an upward-traversing element al-

ways being greater than any downward-traversing

element, and any comparison between downward-

traversing elements being resolved based upon the

level in T where the elements first began traversing

down (where level numbers increase as one traverses

down T).

The goal of each Stage t in the computation,

then, is to construct At(v) and Ut (v), together with

their respective samples Dt (v) and Lt (v). In order to

prove that each stage of our algorithm can indeed be

performed in a constant number of communication

rounds on an EREW BSP computer we must estab-

lish the following bounds (whose proofs are included

in the full version):

Lemma 3.1: If at most k elements of At (v) are in

an interval [a, b], then at most (d + l)k + 2(d + 1)2

elements of At+l (v) are in [a, b].

This immediately implies the following:

Corollary 3.2: If at most k elements of Dt (v) are

in an interval [a, b], then at most (d+ l)(k + 1) + 3

elements of Dt+l (v) are in [a, b].

In addition, we can also show the following:

Lemma 3.3: For any two consecutive elements b

and c in At(v) let b’ and c’ respectively be the

predecessor of b and the successor of c in At(u),

where u is the parent of v in T. There are at most

(d+ l)(d2 + 1) + 2(d+ 1)2+2 elements of At(u) in

the interval [b’, c’].

Finally, we have the following:

Lemma 3.4: For any two consecutive elements b

and c in D~_I (u) there are at most (d+ 1)2(cZ4 +5)

elements of At (v) in the interval [b, c], where u is the

parent of v in T.

As will become apparent in our algorithm de-

scription, these bounds are all crucial for establishing

that our algorithm runs in the EREW BSP model

using a constant number of communication rounds

per stage. In order to perform the computation for

Stage t+ 1 using a constant number of communi-

cation rounds we assume that we maintain the fol-

lowing induction invariants for each active node v in

T:

Induction Invariant:

1. At(v) is ranked into iYt (v).

2. At(v) and Dt_l (u) are cross-ranked, where u

is the parent of v.

3. A,_ I (v) is ranked into At(v).

4. Dt(v) is ranked in Dt_l (v).

We also maintain a load-balancing invariant, sim-

ilar to the one we used in our weak-CREW BSP al-

gorithm, except that we now define a list A stored

at a node v to be full if A ~ U(v).

Load-balancing Invariant:

. If a list A is not full, then A is partitioned into

contiguous subarrays of size d6 each, with each

subarray stored on a different processor.

● If a list A is full, then A is partitioned into

contiguous subarrays of size d7 each, with each

subarray stored on a different processor.

Given that the induction and load-balancing in-

variant hold after the completion of Stage t,our

method for performing Stage t+ 1 is as follows.

Computation for Stage t+ 1:

For each child w, of v we perform the following com-
putation.

1. For each element a in At (wi) use the ranking

of At (w, ) in Ut (w,) to determine if a is also in

Lt (w,) (together with its rank in Lt (w,) if so).

No communication is necessary for this step,

given Induction Invariant 1.

2. For each such element a in Lt (w,) use the

ranking of At (w, ) in Dt–l (v) to determine the
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ranks of the predecessor, b(a), of a andsucces-

sor, c(a), ofain Dt–l(v). No communication is

necessary for this step either, given Induction

Invariant 2.

3. Foreach ain Lt(w, ),usethe ranks of the pro-

cessor(s) for b(a) and c(a) in ll~-l(v) to de-

termine the respective ranks of b(a) c(a) in

At_l(v). No communication is necessary for

this step.

4. For each a in Lt (w,), request that the pro-

cessor(s) for b(a) and c(a) in At–l (v) send(s)

the processor for a the name of predeces-

sor, b’(a), of b(a) and the name of successor,

c’(a), of b(a) in At(v), using Invariant 3. By

Lemma 3.1 and our load-balancing invariant,

each processor will receive and send at most

(d+ l)dG + 2(d + 1)2 = ~(h) messages to im-

plement this step.

5. Send a (together with its rank in Lt(w,))

to the processor(s) assigned to elements of

At(v) between b’(a) and c’(a) to be merged

with all other elements of At+l (v) that fall

in this range. As with the previous step, by

Lemma 3.1 and our load-balancing invariant,

each processor will receive at most (d+ 1) clG+

2(d + 1)2 = @(h) messages to implement this

step. More importantly, by Lemma 3.3, each

processor will send an element a to at most

[((d+ l)(d2+l)+2(d+l) ’+2)/d’] +1= o(1)
other processors. Thus, no broadcasting is

needed in order to implement this step.

At the parent u of v we assume a similar (but sim-

pler) computation is being performed. Finally, at

node v we perform the following computation:

1. For each interval [e, j) of elements of At (v) as-

signed to a single processor, merge all the ele-

ments coming from the parent u and children

W1, W2, ..., wd to form At+l (’u). Such a proces-

sor will receive at least one element from each

node adj scent to v, plus as many elements of

At+l (v) as fall in [e, ~), for a total of at most

d + 1 + (d+ l)d6 + 2(d+ 1)2 = O(h). This

mergesort computation amounts to a (d+ 1)-

way mergesort and can easily be implemented

in 0(d7 log(d + 1)) = O((n/p) log(n/p)) inter-

nal steps.

2. Likewise, for each interval [e, ~) of elements

of At(v) assigned to a single processor, merge
all the elements coming just from v‘s children

W1, W2, ..., wd to form Ut+l (v) (and At+l (v)

ranked in Ut+l (v), which gives us Induction

Invariant 1).

3.

4.

Use the rank information derived from the pre-

vious two steps to rank At+l (v) in Dt (u), giv-

ing us half of Induction Invariant 2. Also, rank

At(v) in At+l (v) giving us Invariant 3 and by

an additional calculation a ranking of Dt+l (v)

in Dt (v), which is Invariant 4. Finally, send a

message to each element a in Dt (u) reforming

it of its rank in At+l (v) so as to complete the

other half of Invariant 2. To implement this

step requires that each processor send at most

h messages and each processor receive at most

d6(d) = O(h) messages.

Finally, repartition the lists at each node v so

as to satisfy the load-balancing invariant, As-

suming that the total size of all non-full lists

is O(n/d) and the size of all full lists is O(n),

then this step can easily be implemented in

O(1) communication rounds.

Let us, therefore, analyze the space requirements

of this algorithm. The total size of all the U(v) lists

on the full level clearly is O(n). Each such list causes

at most [lU(v) \/dl elements to be sent to v’s parent,

u. Now the inclusion of these elements in u causes

at most (d + 1) [lU(v) l/d3] elements to be sent to

nodes at distance 1 from u (including v itself). But

once an element starts traversing down the tree T it

never is sent up again. We can repeat this argument

to est ablish that the existence of U(v) causes at most

(d+ 1)2 (\ U(v) l/d51 elements to be sent to nodes at

distance 2 from u, and so on. Thus, the number of

all of these elements that originate from u sum to

be a geometric series that is O(n/d). Therefore, the

total size of all the non-full lists is O(n/d). Likewise,

the total size of all the lists (and hence the lists on

the full level) is O(n). This gives us the following

theorem:

Theorem 3.5: Given a set S of n items stored

O(n/p) per processor on a p-processor ERE W BSP

computer, one can sort S in O(log n/ log(h+ 1) ) com-

munication rounds and O (n log n/p) internaJ compu-

tation time, for h = @(n/p).

This immediately implies the following:

Corollary 3.6: Given a set S of n items stored

O(n/p) per processor, one can sort S on an ERE W

BSP computer with a combined running time that

is O(W + (L+ gn/p)(log n/ log(n/p))).

This bound also applies to the LogP model.

253



4 A Lower Bound for BSP

Computations

In this section we show that our upper bounds on

the number of communication rounds needed to sort

n numbers on a p-processor BSP computer are opti-

mal. Specifically, we show that fl(log n/ log(h + 1))

communication steps are needed to compute the “or”

of n bits using an arbitrary number of processors in

a CREW BSP computer, where h is the number of

message that can be sent and received by a single

processor in a single communication round.

Let us begin by formalizing the framework for

proving our lower bound. Assume we have a set

S of n Boolean values Z1, X2, ..., G initially placed

in memory locations ml, m2, ..., mm with memory

cells m(,–l)~+l, . . . . m,h stored in the local memory

of processor pi, for z e {1, 2, . . . . [n/h]}. This, of

course, implies that we have at least rn/hl proces-

sors, but for the sake of the lower bound we allow

for an arbitrary number of processors. Moreover,

we place no upper bound on the amount of addi-

tional memory cells that each processor may store

internally. The goal of the computation is that after

some T steps the “or” of the values in S should be

stored in memory location ml.

Our lower bound proof will be an adaptation of

a lower bound proof of Cook, Dwork, and Reis-

chuk [11] for computing the “or” of n bits on a

CREW PRAM. The main difficulties in adapting

this proof come from the way the fact that each

processor in a BSP computer can send h messages

in each communication round, rather than just a

single value, complicates arguments that bound the

amount of information processors can communicate

by not sending messages.

Each processor p, is assumed initially to be in a

starting state, q;, taken from a possibly-unbounded

set of st ates. At the beginning of a round t processor

p% is assumed to be in some state q;. A round be-

gins with each processor sending up to h messages,

some of which may be (arbitrary) partial broadcasts,

and simultaneously receiving up to h messages from

other processors. Without loss of generality, each

message may be assumed to be the contents of one
of the memory cells associated with the sending pro-

cessor, since we place no constraints on the amount

of information that may be stored in a memory cell

nor on the number of memory cells that a processor

may contain. A processor then enters a new state

q~+l that depends upon its previous state q; and the
values of the messages it has received. A round com-

pletes with a processor possibly writing new values

to some of its internal memory cells based upon its

new state qj+l.

Before analyzing the most general situation, let

us first prove a lower bound for the oblivious case,

where the determination of whether a processor pa

will send a message to processor pj in round t de-

pends only upon the value of pa and t,and not on

the input. Of course, the contents of such a mes-

sage could depend upon the input. For input string

I=(Z1, Z2, ..., ~n) of Boolean values, let I(k) de-

note the input string (zl, zz,. . . . ~k,. . . . %), where

~k denotes the complement of Boolean value zk. I

is a critical input for function ~(1) if ~(l) # ~(l(k))

forallk E{l,2,..., n}. (Note that 1 = (O, O,.. ., O)

is a critical input for the “or” function.) Say that in-

put index k affects [11] processor pi in round t with

input I if the state of p, on input I after round t

differs from the state of processor p, on input I(k)

after round t. Likewise, say that input index k aj-

fects memory cell mi in round t with input I if the

contents of m, on input I after round t differs from

the contents of m, on input l(k) after round t.

Theorem 4.1: If f : {O, I}n -+ {O, 1} has a criti-

cal input, then any oblivious CREW BSP computer

that computes f requires Q(log n/ Iog(h + 1)) com-

munication rounds.

Proofi Let K(pi, t, 1) (respectively, L(m,, t,1))be

the set of input indices that affect processor p, (resp.,

memory cell ml) in round twith input 1. Further, let

Kt and Lt satisfy the following recurrence equations:

K. = O, (1)

Lo = 1, (2)

Kt+l = Kt + hLt, (3)

Lt+l = Kt+l + Lt. (4)

Note that it suffices to prove that IK(P,, t, 1) I < Kt

and [L(p,, t, I) I S Lt, for Kt and Lt are both at most
[2(h+l)]’, and if 1 is a critical input for f, then every

one of the input indices must affect memory cell ml.

That is, if ml = ~(1), then lL(ml, T, 1)[ = n, which

implies that T is fl(log n/ log(h + 1)). In the full

version we show how to establish the above bounds

on lK(pz, t, 1)1 and lL(p,, t, 1)1 by induction on ‘t.E

The main difficulty in generalizing this result
to non-oblivious computations is that in the non-

oblivious case a processor pi can receive information
from a processor pj by pj not sending a message

to pi. Still, as we show in the next theorem, this

ability cannot alter the asymptotic performance of

a CREW BSP computer by more than a constant

factor for computing the value of a function with a

critical input.
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Theorem 4.2: If $: {O, I}n + {O, 1} has a critical

input, then any CREW BSP computer that com-

putes j requires Q (log n/ log(h + 1)) communication

rounds.

Proofi Let K(p,, t,l) and L(rni,t,Q) be as in the

proof of Theorem 4.1. But now let ~t and Lt be

defined by the following recurrence relations:

K() = o, (5)

Lo = 1, (6)

Kt+l = (2h + l)K, + hLt, (7)

Lt+l = Kt+l + Lt. (8)

As in the previous proof, it suffices to show that

]K(p,, t,l)[ < K, and \L(m,, t,I)l < L,, for K, and

Lt are both at most [3(h + l)]~.

We establish these bounds on lK(pi, t, 1)1 and

lL(p,, t, 1)/ by induction on t. First, note that

K(p,, t, 1) is empty in round t = O, and L(rni, O,1) =

{2}if2E{l,2,..., n} and otherwise L(rn,, O, 1) is

empty. At the beginning of round t a processor p%

receives the contents of at most h memory locations,

and it also receives information by noting that some

processors did not send pi a message. Still, after it

incorporates this information into its new state q~+l

it optionally writes to its local memory, as in the pre-

vious proof. Thus, if we can establish Equation (7),

then Equation (8) immediately follows.

Say that input index k possibly-causes a processor

p~ to send a message to processor p, in round twith

1 if p~ sends a message to processor p, in round t on
input I(k). Using this notion we bound K(IZ, t + 1,1)

as a subset of

K(p,, t,l) u U L(TTJJ, LD u y(fbt>~)>

Jcl

for some index set Z with Ill < h, where Y(p,, t, 1)

denotes the set of all indices k that possibly-cause

some processor pj to send a message to p, with

1. Thus, we must bound T- = lY(p,, t, l)]. So, let

Y = Y(pi, t,l) = {kl, kz, . . ..k~} be the set of in-

dices IC3that possibly-cause a processor P(Ic3) to send
a message to p% with I. Note that if r < hKt, then

we have established Equation (7), so for the remain-

der of this proof let us assume that r > hK~ (we will

show that if this is the case, then r < 2hKt). Say

that a subset Y’ ~ Y is processor-dis~oint if, for any

kj and ,@ in Y’, p(kj ) # p(kj ).

Claim: If Y’ = {kJl, kj,,..., k,,,+l} is a

processor-disjoint subset of Y of size h+ 1, then there
is an index kj, in Y’ such that kj, affects processor

p(k~, ) in round twith I(kj, ), where ~jt # kj,.

Proof (of claim): If this is not the case, then on

input l(k~l )(kj, ) . . . (kJ,,+, ) there would be h + 1 dif-

ferent messages sent to processor p,, which would

violate the correctness of the BSP comput iation. ■

(of claim)

As done by Cook, Dwork, and Reischuk [11],

we employ a combinatorial graph argument to de-

rive a bound on IY 1. Consider a bipartite graph

G whose two node sets are {kl, kz, . . . . !-cr} and

{pap, . ~., p(k,) }. Let there be an edge be-

tween kj and p(kl ) if kj affects p(kl ) in round t

with I(kl ). Let e denote the number of edges in G.

The degree of any node P(Ic, ) is lK(p(kj), L ~(h))l,

which, by our induction hypothesis, is bounded by

Kt. Thus, e < rKt. We can also derive a lower

bound on e, using our claim above. Let G’ be a sub-

graph of G defined by a processor-disjoint subset of

Y of size h + 1 together with the processor nodes

associated with this subset. Then, by our claim, G’

must contain at least one edge of G. Thus, letting g

denote the number of processor-disjoint subsets (like

G’) of size h+ 1, together with the associated proces-

sor nodes, we can write g 5 e. Since placing a node

in such a G’ eliminates at most Kt other candidates,

r(r – Kt)(r – 2Kt) . . . (r - hKt)
g>

(h+ 1)! –

> r-(r – hK~)h
—

(h+ 1)! “

Therefore, r(r – hK~)h < (h + 1) !rK~, which im-

plies that r < hKt + [(h + l)!Kt]lih. By Sterling’s

approximation, then, r < 2hKf, which establishes

Equation (7) and completes the proof of the theo-

rem. ■
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