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algorithm design for coarse-to-medium-grain parallelenvironments [18, 21], where the ratio of memory toprocessors is non-constant, for such systems allow analgorithm designer to balance communication latencywith internal computation time. Indeed, this realiz-ation has given rise to a powerful algorithmic model,which Valiant [44] calls \bulk synchronous" processing(BSP). In such a model an input of size n is distributedevenly across a p-processor parallel computer, withp < n. In a single computation round (which Valiantcalls a superstep) each processor may send and receiveh messages (typically h = �(n=p)) and then performan internal computation on its internal memory cellsusing the messages it has just received. To avoid anyconicts that might be caused by asynchronies in thenetwork (whose topology is left unde�ned) the mes-sages sent out in a round t by some processor shouldnot depend upon any messages that processor receivesin round t (but, of course, they may depend upon mes-sages received in round t� 1).The running time of a BSP algorithm is character-ized by two parameters: TI , the internal computationtime, and TC , the number of communication rounds.The goal in designing a BSP algorithm, of course,is to minimize both of these parameters. Alternat-ively, by introducing additional characterizing para-meters of the BSP model, one can combine TI and TCinto a single running time parameter, called the com-bined running time. Speci�cally, if we let L denote thelatency of the network|that is, the worst-case timeneeded to send one processor-to-processor message|and we let g denote the time \gap" between consecut-ive messages received by a processor in a communica-tion round, then we can characterize the total runningtime of a BSP computation as O(TI+(L+gh)TC) [44](similarly for the related LogP model [15, 29]).The goal of this paper is to further the studyof bulk-synchronous parallel algorithms by addressingtwo fundamental problems in parallel computationalgeometry: multi-searching and convex hull construc-tion.



1.1 Previous related work in parallel com-putational geometry. There has been a signi�c-ant amount of previous work on parallel computa-tional geometry (e.g., see [2, 3, 6, 28, 41]). This workhas resulted in a number of powerful techniques forsolving computational geometry problems in parallel,with particular attention paid to convex hull construc-tion, because of its wide applicability, such as thewell-known reductions of planar Voronoi diagram andDelaunay triangulation constructions to 3-dimensionalconvex hulls. The current best �ne-grain parallel solu-tions for convex hulls in IR2 run in O(log n) time us-ing n processors in the EREW PRAM model1 [34]and in IR3 run in O(log2 n) time using n= logn pro-cessors in the EREW PRAM model [4] or, alternat-ively, in O(log n) time, with high probability, using nprocessors in the CREW PRAM model [39, 42].Perhaps counter-intuitive to the notion of PRAMalgorithms as extractors of maximum parallelism,these PRAM methods do not translate into e�cientBSP algorithms. This is because simulating a PRAMalgorithm in the BSP framework requires at least aconstant number of communication rounds for eachPRAM step (and even this is often quite di�cult toachieve), whereas there are several known BSP solu-tions [17, 18, 21, 19, 20] to a number of computa-tional geometry problems that use only O(1) commu-nication rounds in total, albeit assuming that p, thenumber of processors, is fairly small relative to n, theproblem size. The best previous BSP algorithm for3-dimensional convex hull construction is a methodby Dehne et al. [17] that completes in O(1) commu-nication rounds, with high probability, assuming thatp � n1=(3+�), for any �xed constant � > 0. Such al-gorithms are scalable [18, 21] in the sense that theyare e�cient over a range of values of p, but they arenot fully scalable, in that there is a limit placed on thisrange of values (which in the case of 3-dimensional con-vex hull construction is fairly restrictive). In fact, theonly fully-scalable BSP algorithm we are familiar withis a sorting algorithm of the author [26], which runsin O(logh n) communication rounds, for h = �(n=p).This bound is O(1), of course, when p is O(n1��)for some constant � > 0, and the author shows that
(logh n) communication rounds are in fact necessary,even for the simple problem of computing the bitwise-or of n bits distributed evenly across p processors inthe BSP model.While convex hull construction is a well-known1The PRAM is a synchronous shared-memory model, withthe EREW version not allowing for concurrent memory accesses,the CREW version allowing concurrent reads, and the CRCWallowing for concurrent reads and writes (assuming some reas-onable conict resolution protocol).

\self-contained" problem that is often studied in par-allel computational geometry, a general problem thatoften arises as a subproblem in solutions to other prob-lems is the multi-searching problem (e.g., see [7, 8, 9,11, 12, 23]). In this problem one is given a collection Sof \generic" searches that need to simultaneously ac-cess a data structure T (which in the context of thispaper will always be a binary tree) to solve the prob-lem at hand. What makes this problem interesting isthat comparing searches to each other yields no usefulinformation (so, for example, the searches cannot besorted by any \key" value). The only previous e�-cient BSP we know of for this problem is a method ofDevillers and Fabri [21] that uses O(1) communicationrounds if p � n1=2 and the communication network al-lows for segmented broadcasts to be performed in oneround, where n = jSj + jT j. We refer to this versionof the BSP model that allows for segmented broad-casts as the weak-CREW BSP model [26]); we call the(standard) version of the BSP model, which requiresthat each communication packet have a unique des-tination, the EREW BSP model. There is also somework by B�aumker et al. [11, 12] on multi-searching foranother variant of the BSP that allows for very longmessages, and methods by Gerbessiotis and Siniola-kis for multi-searching level graphs. These methodsdo not translate into communication-optimal BSP al-gorithms for any range of values of p, however. Indeed,we are not aware of any fully-scalable algorithms forthe multi-searching or 3-dimensional convex hull prob-lems.1.2 Our results. In this paper we give the�rst fully-scalable method for multi-searching in the(standard) BSP model. Our algorithm uses O(logh n)communication rounds and internal computation timeof O((n logn)=p), with high probability, for h =dn=pe+1. Thus, the number of communication roundsis O(1) any time p � n1�� for some constant � > 0.We demonstrate the utility of our multi-searching al-gorithm in the full version of this paper by applying itto several well-known parallel computational geometryproblems, including searching in arrangements, 2D-all-nearest-neighbor searching, and 3D-maxima. We alsodescribe the �rst fully-scalable BSP algorithm for 3-dimensional convex hull construction to illustrate thenatural way multi-searching arises in other problems.Our convex hull algorithm also uses O(logh n) com-munication rounds and internal computation time ofO((n logn)=p), with high probability.We begin with some preliminaries about the BSPmodel.



2 Some Preliminary Observations.There is a rich body of knowledge that exists for per-forming basic operations on �ne-grain parallel models,but the knowledge base for fully-scalable coarse-graintechniques is not as rich. Thus, before we give ourmethods for multi-searching and convex hull construc-tion, let us discuss a few basic BSP primitives. Theprimitives we discuss have been studied by others inbulk-synchronous contexts (e.g., see [24, 44]), but wedescribe them here in the fully-scalable framework forthe sake of completeness.2.1 Generalized Broadcast and Combine. LetS be a set of m items stored on a single processor. Thegeneralized broadcasting problem is to distribute theseitems to all the other processors.Lemma 2.1: The items in S can be broadcast tok other processors on an EREW BSP computer inO(logd k + dm=he) communication rounds, for d =2dh=me, where h is the maximum number of itemsthat can be sent by a processor in a communicationround.Proof: Let us consider two cases:1. m � h. The idea in this case is fairly straight-forward. Processor 1 sends the items in S to2dh=me other processors in O(1) communicationrounds, then these processors send S to 2dh=meother processors, and so on. The total num-ber of communication rounds is O(logd k), ford = 2dh=me.2. m > h. In this case we divide S into dm=hesubsets of size at most h each, and we broad-cast each of them as in the previous case in apipelined fashion. The total number of commu-nication rounds is O(log2 k + dm=he).Of course, if we can perform generalized broadcastin this many communication rounds, we can also per-form the inverse operation in this many rounds. The\inverse" problem, which we call generalized combine,involves computing the value of an associative func-tion on the items in each row of a k � m matrix, A,where each column is stored on a di�erent processor.This is actually a special case of an even more generalproblem, which we describe next.2.2 Generalized Parallel Pre�x. Suppose we aregiven a k �m array A, with each column stored on adi�erent processor, together with an associative sum-mation operator de�ned on each row. The generalized

parallel pre�x problem is to determine for each i and l,the value of the partial sum si;l =Plj=1 A[i; j], wherethe summation operator is the one de�ned for row i.Lemma 2.2: The generalized parallel pre�x problemcan be solved in computer in O(logd k + dm=he)communication rounds, for d = 2dh=me, where h isthe maximum number of items that can be sent by aprocessor in a communication round.Proof: The proof is essentially a generalized com-bine followed by a generalized broadcast, and is left tothe reader.The �nal preliminary result we discuss is that ofcomputing a random permutation bulk-synchronously.2.3 Computing a random permutation on aBSP computer. Suppose we are given a set S of nelements, distributed evenly across p processors on aBSP computer. An important primitive-level compu-tation that must often be performed in randomizedparallel algorithms is to produce a random permuta-tion of the elements of S. The method we use in thispaper is an adaptation of a strategy due to Reif [40](see also Hagerup [27]):1. For each element si in S we select a randominteger key s0i in the range [1; n2], and we sortthese random keys using the comparison-basedoptimal bulk-synchronous sorting algorithm ofthe author [26]. This takes O(logh n) commu-nication steps and O((n logn)=p) internal com-putation time.2. Sequentially, we perform a random permutationfor each group of s0i elements that are given thesame key. Assuming that the total number ofelements in any group is at most some constantc, this step can easily be implemented in O(1)communication rounds and O(n=p) internal com-putation time. If the number of elements in somegroup is more than c, we repeat the process,starting with Step 1.3. Finally, we store for each element si in S theposition of s0i in the sorted list. The mapping ofsi's to their respective s0i values de�nes a randompermutation.This algorithm produces a random permutation ofthe elements in S, and all permutations are equallylikely. Moreover, as is formalized in the followinglemma, this procedure will terminate after just oneiteration, with high probability.



Lemma 2.3: If c � 3, then the probability thatthe above random permutation algorithm will notterminate in a given iteration is at most 1=nc�2.Proof: We prove this by an application of a Cherno�bound (see [35], p. 68). Let Xi;j be an indicatorrandom variable that is 1 if processor i chooses valuej. Clearly, Pr(Xi;j = 1) = 1=n2. Then, by a slightabuse of notation, de�ne Xj to be the number ofprocessors that choose value j, so Xj =Pni=1Xi;j andE(Xj) = 1=n. Therefore, since, once j is �xed, all theXi;j 's are mutually independent,Pr(Xj > c) = Pr(Xj > (1 + (cn� 1))(1=n))� � ecn�1(cn)cn �1=n� (ec=cc) 1nc� 1nc :Thus, the probability that Xj is more than c for anyj is at most 1=nc�2.Having presented these preliminary results, letus now give our method for randomized BSP multi-searching.3 Fully-Scalable BSP Multi-Searching.Let S be a set of query items distributed evenly acrossp processors in a bulk-synchronous parallel computer.Also, let T be a binary search tree. The multi-searching problem is to determine, for each query qin S, the leaf node in T where a root-to-leaf search inT for q would result. We assume that for any elementq in S and any node v in T a comparison for q at vyields one the following results:� terminate: the node v is the leaf in T thatterminates the search for si.� child u: the search procedure for q shouldproceed to v's child u.� incomparable: the search procedure for qshould not visit node v in T .3.1 A simple partially-scalable solution. Be-fore we give our fully-scalable solution to this multi-searching problem, let us observe that there is a fairlysimple BSP method for solving this problem that scal-able but not fully-scalable. This simple method beginsby stratifying T into subtrees, which we call packettrees, by de�ning every l = (1=2) logh level in T adistinguished level. A node v on a distinguished level

in T de�nes a packet tree of O(h1=2) nodes consist-ing of descendents of v down to the next distinguishedlevel in T . We assume that these packet trees are dis-tributed evenly across the set of processors, as are thequeries for S.To solve the multi-searching problem we beginwith the packet tree t rooted at the root of T .We can apply the generalized broadcast procedureto broadcast this entire packet tree to all the otherprocessors in O(logh p) time. Then each processorj performs the comparisons for all the nodes in thispacket tree and determines for each query q at j theleaf in t where the search for q should continue. Bythen performing a generalized parallel pre�x we cancollect together all the queries that should proceed atthe same node in T . This allows us to then repeatthis procedure for all those groups in parallel. Wecan balance the broadcast costs against the queries,so that the total number of communication rounds isO(logh p logh n), for h = dn=pe+1, where n = jSj+jT j.This is O(1) if n=p � n�, for some constant � > 0, butit is not optimal for all values of p; hence, it is notfully-scalable.3.2 Our approach for fully-scalable multi-searching. Our fully-scalable method for e�cientlyanswering the queries in S for all values of p is basedupon a recursive strategy for searching T . We �rst con-centrate on routing the searches through the subtreeT 0 consisting of the top-most n1=4 nodes in T (i.e.,the nodes on the �rst (logn)=4 levels of T ), wheren = jSj+ jT j. Once we have performed all the searchesin S through T 0, we then subdivide the searches to thesubtrees rooted at the leaves of T 0 and recurse on eachone (assuming jT j > jT 0j, of course). Once we have de-termined all the search paths through T 0 we can thensubdivide the multi-search problem into subproblemsof size dn3=4e each through parallel pre�x and broad-casting steps that run in O(logh n) time. Assumingwe can route the searches in S through T 0 in an ex-pected O(logh n) number of rounds, then, with highprobability, the expected total number of communica-tion rounds, then, is bounded by the following recur-rence relation:T (n) � T (n3=4) +O(logh n);which is O(logh n).Let us therefore concentrate on how to route thesearches of S for the case when jT j = dn1=4e. Ourapproach in this case is based upon a randomized two-phase strategy for searching in such a tree T , which isin turn based upon randomized searching techniquesof Reif and Sen [39, 42, 43]. This strategy alone isnot su�cient, however, to achieve the high-probability



bound in the typical case when h � n�, for someconstant � > 0. To achieve a high probability boundfor all values of h we augment our strategy with afailure sweeping technique [25, 32].In the �rst phase we build a layered network Cfrom T and in the second phase we route the searchesin S through C using a simple BSP packet routingprotocol. For each node v in T , let n(v) denotethe number of searches in S that pass through v (orterminate at v if v is a leaf). The speci�c goal ofthe phase-one computation is to create the networkC so that the total number of nodes on each levelis O(n), the in- and out-degree of every node is atmost h, and such that, for each node v 2 T , thereare at least 
(n(v)) nodes in C associated with v(whose job it is to process the searches in S thatpass through v in T ). Intuitively, each node v in Cis to process approximately O(1) searches through acorresponding node in T , although our BSP routingstrategy will actually allow more than a constantnumber of searches to pass through v in any roundin some cases.In the beginning of the second phase the queries inS are distributed at most dn=pe per \root" node of C,each of which is associated with a distinct processor.In a generic phase-two step each element of S willbe associated with a node in C, which in turn isassociated with a distinct processor. The phase-twocomputation proceeds by then having each processorperform the comparisons for each search element itcontains. This will determine, for each element sstored at a processor i, a processor j that i needs toroute s to. We develop a protocol, then, so that wedo not violate the communication constraints of theBSP model and, with high probability, we completethe entire computation in O(logh n) communicationsteps.3.3 Phase One: Building the Search Network.In this subsection we describe a method for construct-ing the network C that will allow us to perform thesearches in T for all elements of S in O(logh n) commu-nication rounds. We begin by compressing T into anh-ary tree T̂ using the packet-tree strati�cation tech-nique described in Section 3.1, with l = logh. Thus,each node v in T̂ is associated with an h-node subtreein T , with each leaf in this subtree corresponding tothe roots of the subtrees associated with v's childrenin T̂ .We construct a circuit C that will allow us toprocess the searches in S through T̂ , then, as follows:1. We choose a random sample S0 � S of sizedn1=2e. For each node v in T̂ we then determ-

ine n0(v), the number of searches in S0 thatpass through or terminate at v, by a \bruteforce" quadratic comparison (which requires atmost O(n3=4) comparisons in total). We then letn̂(v) = n0(v)jS(v)j=jS0(v)j, which we will use asan estimate for n(v). This step takes O(logh n)communication steps and O(n=p) internal com-putation time.2. If jSj � dn1=2e, then we are done. So, let us nowassume that jSj > dn1=2e. We recursively de�nea replication parameter r(v) for each node v inT̂ . We initially de�ne r(root(T̂ )) = �(�n), where�(x) denotes the smallest power of 2 larger thanx (i.e., �(x) = 2dlog xe), and � � 4 is a constant,called the dilution parameter, which we set in theanalysis. Then, for each non-root node v in T̂ ,with parent w, we de�ner(v) = �(maxf�n̂(v); r(w)=hg):Note that � determines that there will be excesscapacity for sending elements from w to v. Thisstep can easily be implemented in O(logh n)communication rounds.3. For each non-root node v in T̂ , with parent w,we create a set C(v) of r(v) copies of v and weconnect each copy of node v to r(w)=r(v) distinctcopies of node w (in C(w)). If this ratio is notintegral, then we approximate this as best aspossible, connecting each copy of node v to eitherbr(w)=r(v)c or dr(w)=r(v)e copies of node w. Werefer to these added edges as the down edgesin C. This step takes O(logh n) communicationsteps and O(n=p) internal computation time.This completes the construction of the network C,and gives us the following:Lemma 3.1: The above computation creates alayered network C such that the in- and out-degree ofthe down edges for any node is at most h. Moreover,with probability at least 1 � 1=enc (for some �xedconstant c > 0), for each node v 2 T̂ , with par-ent w in T̂ , there are r(v) nodes in C(v), wheremaxfn(v)=2; r(w)=hg � r(v) � maxf3n(v); r(w)=hg.Proof: Let v be a node with parent w in T̂ . Thebound on the in- and out-degree of v follows immedi-ately from the recursive de�nition of the r(v)'s. Let ustherefore consider the probability that the size boundr(v) is too far o� the mark, beginning with the prob-ability that it signi�cantly exceeds the upper bound,which we quantify as r(v) > maxf3n(v); r(w)=hg.



Since we de�ned r(v) = maxfn̂(v); r(w)=hg, this canonly be the case if n̂(v) > 3n(v) and 3n(v) > r(w)=h.Thus, if we let A(v) be the event that r(v) is abovethe bound, and we let C(v) be the event that 3n(v) >r(w)=h, then, by a Cherno� bound analysis ([35],p. 72), we can show the following:Pr(A(v)) = Pr(n̂(v) > 3n(v) j C(v))= Pr(n0(v) > 3n(v)n1=2 j C(v))� c�3n(v)=n1=2� c�r(w)=n1=2h� c�n1=4 ;where c = 3=e, since r(w)=h � n3=4. Likewise,let B(v) be the event that r(v) is signi�cantly lessthan its desired amount, which we quantify as thecondition r(v) < maxfn(v)=2; r(w)=hg. Also, letD(v) be the event that n(v)=2 > r(w)=h. Then, byanother Cherno� bound ([35], p. 70), we can show thefollowing:Pr(B(v)) = Pr(n̂(v)=p < n(v)=2 j D(v))= Pr(n0(v) > n(v)=2n1=2 j D(v))� e�n(v)=8n1=2� e�r(v)=4n1=2h� e�n1=4=4:Combining these two bounds establishes the lemma.Thus, with very high probability, we correctlyconstruct the network C.3.4 The Phase Two Computation: Routingthe Searches. Let us therefore next consider theproblem of routing the searches of S through C. Fori = 1 to dlogh ne, and each v on level i of T̂ , we assignh contiguous nodes of C(v) to a separate processor (sothat at most hdlogh jT̂ je nodes are assigned to eachprocessor in total). We do not assign di�erent C(v)lists to the same processor, however. We assume that,for any node v in C, a processor i can determine inO(1) time (without communication) the processor jthat is associated with v. Moreover, since we assigneach h continuous nodes on level i to a separateprocessor, there are only O(1) processors holdingdi�erent \in" neighbors (on level i� 1) of down edgesfor a node u in a C(v). Thus, for any processor Pi, thenumber of other processors holding nodes adjacent tonodes of C stored at Pi is O(h).Initially, all the elements of S are stored at mostone per node in C(v), and every h nodes of C(v) are in

turn stored in a unique processor, where v = root(T̂ ).Before we attempt to route the searches through C we�rst apply a random permutation to the contents ofthe nodes of C(v), using the method of Section 2.3.Each processor i then performs the following transfer-step computation:1. Processor i determines which of the h nodes ofC(v) it stores actually contain search elements inS. The processor i then performs the comparisonassociated with v 2 T̂ (which is actually a searchthrough a dloghe-height subtree of T associatedwith v) for all the elements in S currently atC(v) and stored in processor i's internal memory.Each such comparison determines a child u of vin T̂ where a search in S should proceed.2. Each search at C(v) that wishes to go to u hasat most 2 processors that it needs to be routedto (storing nodes of C(u)). For each child uof v in T̂ , and each processor j storing nodesof C(u) reachable from the nodes stored at i,processor i determines ni;j(u), the number ofsearches currently at i in C(v) that need toproceed to a node of C(u) in processor j.3. Processor i sends a message to each processor jsuch that ni;j(u) > 0 informing processor j ofthe value of ni;j(u).4. Processor j receives at most h messages, andadds up all the values it receives, producing asum nj . Processor j then sends back a messageto each processor i informing it that it can thensend dni;j(u)minf1; h=njge of its searches thatneed to be routed to j. (So if nj � h, then all ofthe elements of ni;j(u) can be routed to j.)5. Processor i sends to processor j a total ofdni;j(u)minf1; h=njge of its searches that needto be routed to j.This transfer-step computation can be performedin O(1) communication rounds, as described above.We continue repeating this computation for bdlogh neiterations, where b � 1 is a constant to be determinedin the analysis. At that time all of the searchesare expected to be at the leaf-level of C (and henceT̂ ). At this point we check to make sure that allsearches have indeed reached their �nal destinationsin C and that no searches have been \left behind"anywhere. This condition can easily be tested inO(logh n) communication rounds. If we have anysuch incomplete searches, then we repeat the entirecomputation described above. Otherwise, we havecompleted all the searches of S in the tree T̂ . The



next lemma establishes the probability that all thesearches in S can be routed through C in O(logh n)communication rounds (which, of course, is what wedesire).Lemma 3.2: All the searches in S can be routedthrough C in (c + 1)dlogh ne communication roundswith probability at least 1 � 1=nch=4 log h, for anyconstant c � 2.Proof: Our proof is an adaptation of argumentsused to justify hypercube packet routing strategies [35]to our BSP protocol on the search network C. Let Ĉdenote the compression of C implicitly de�ned by theassignment of nodes in C to processors. That is, leteach node v̂ in Ĉ correspond to h nodes in a C(v) thatwere all assigned to the same processor. Note that,even with this compression, once two search pathsseparate in Ĉ they do not rejoin. Fix a particularsearch item si 2 S and let �i = (e1; e2; : : : ; ek) denotethe search path in Ĉ for si, where k = b(logh n)=4c.Let di denote the total number of rounds that si isdelayed during its routing through Ĉ. Further let Sidenote the set of all searches in S whose search pathpasses through at least one of the edges in �i. Becauseof our BSP protocol for routing searches through Ĉ,di � jSij=h. Let Hi;j denote the indicator randomvariable that is 1 if and only if the path for searchsj passes through at least one edge in �i, and is 0otherwise. Thus, jSij = Pnj=1Hi;j . For each edge elin �i, let N(el) denote the number of searches in Sithat pass through el. Of course,nXj=1Hi;j � kXl=1 N(el);hence, E24 nXj=1Hi;j35 � kXl=1 E[N(el)]:Moreover, if C was constructed correctly, thenE[N(el)] � h=� � h=4 for each el in �i, because ofour initial random permutation step in the routing al-gorithm. This implies thatE24 nXj=1Hi;j35 � kh4 :Thus, we can apply a Cherno� bound (e.g., see [35],p. 72) to derive the following bound:Pr(di > c logh n) � Pr(jSij > ch logh n)

� Pr0@ nXj=1Hi;j > 4c(kh=4)1A� 2�ckh� 2�ch(logh n)=4 = n�ch=4 log2 h;provided c � 2. This establishes the lemma.Even though this lemma implies a high probabilitybound for routing the searches in S through T̂ , it isnot su�cient to imply a high probability bound forour entire computation. Since it depends upon thesize of the problem being solved, the probability ofLemma 3.2 degrades as we recursively solve searchesusing the approach of Section 3.2. In the end it onlyimplies that the running time of routing the searchesin S is expected to be O(logh n). Fortunately, there isa simple way to boost this probability back to a highprobability bound.3.5 Improving the Success Probability viaFailure Sweeping. In the full version we show howto apply a generalized version of the failure sweepingparadigm [25, 32] to improve the probability of successfor routing all the searches in S through T in O(logh n)communication rounds to be at least 1� 1=nc for anyconstant c � 1. The main idea behind this techniqueis to terminate recursive calls that go too long, andthen replicate each of these \unlucky" subproblemsat least O(log n) times and apply our expected-timecomputation on each of these subproblems (but nowwithout any failure sweeping in the recursive calls).We can show inductively, that the number of such sub-problems is small with high probability; hence, we willhave enough resources to solve all the replicated sub-problems simultaneously. Since one of the copies ofeach subproblem returns after O(logh n) communica-tion rounds, with high probability, we can establishthe following:Theorem 3.1: Given an balanced binary search treeT , and a set S of searches de�ned for T , one cansimultaneously perform the searches in S on T in aBSP computer using O(logh n) communication rounds,with probability 1�1=nc for any constant c � 1, wheren = jSj + jT j and h = dn=pe + 1. The combinedrunning time is O((n logn)=p + (L + g(n=p)) logh n),with probability 1� 1=nc for any constant c � 1.There are a number of immediate applications ofthis problem to problems in computational geometry,such as searching in arrangements, 2D-all-nearest-neighbor searching, and 3D-maxima, which we explorein the full version of this paper. We describe here



a novel application to the 3-dimensional convex hullproblem.4 BSP Convex Hull Construction.Let S be a set of n points in IR3. The convex hullof S is the polytope de�ned by the smallest convexset containing all the points of S. The convex hullproblem, then, is to construct a representation of thispolytope. In this section we show how to construct theconvex hull of S in the BSP model.4.1 2-dimensional convex hull construction.We begin by giving a deterministic algorithm for 2-dimensional convex hulls that uses O(logh n) com-munication rounds and combined running time ofO((n logn)=p + (L + gh) logh n), for h = dn=pe + 1.Our method is a BSP adaptation of the EREW PRAMalgorithm of Miller and Stout [34].We begin by sorting the input points by theirx-coordinates. This can be done in O(logh n) com-munication rounds and combined running time ofO((n logn)=p+(L+gh) logh n), using the BSP sortingalgorithm of the author [26]. Without loss of gener-ality, we concentrate on the problem of computing anupper hull, i.e., those edges whose normals have pos-itive second components. We proceed as follows:1. If all the input points are contained on a singleprocessor, compute the upper hull using anye�cient sequential method (e.g., see [22, 36, 38]).Let us therefore assume for the remainder of thisalgorithm that n > h.2. Divide the input into O(n1=4) contiguous groupsof size O(n3=4) each, and recursively �nd theupper hull of each set.3. Atallah and Goodrich [10] and Dadoun and Kirk-patrick [16] describe CREW PRAM methods for�nding upper common tangents between two up-per hulls in O(1) time using O(n�) processors,for any constant � > 0. Let us apply a straight-forward BSP simulation of one of these meth-ods to �nd the common upper tangents betweeneach pair of upper tangents. The total numberof communication rounds is O(logh n) to imple-ment this simulation.4. For each group i compute the maximum-slopetangent line tr to groups j > i and the minimum-slope tangent line tl to groups j < i. If these twotangents cross, then no points of hull i are on theupper hull. Otherwise, all the vertices (inclusive)on the upper hull i between the tangent pointsfor tl and tr, respectively, are on the upper hull.

5. Perform a parallel pre�x computation to com-press together all the points on the upper hull.After the preprocessing sorting step this methodwill �nd the upper hull of the input set of points ina number of communication rounds bounded by therecurrence relationT (n) = T (n3=4) +O(logh n);which implies that T (n) is O(logh n). Thus, we cancompute the convex hull of n points in the plane inO(logh n) communication rounds and O((n logn)=p)internal computation time on a p-processor BSP com-puter.4.2 3-dimensional convex hull construction.Our method for 3-dimensional convex hulls is basedupon using our multi-searching method to adapt theEREW PRAM algorithm of Amato et al. [4] to theBSP model. An outline of our algorithm is as follows:1. Dualize the points in S to n planes in IR3,thereby converting the convex hull problem tothat of determining the intersection polytope Pof n halfspaces determined by these planes andthe origin.2. Select a random sample S0 � S of size n� ofthe halfspaces and construct their intersectionpolytope P 0 by \brute force," where � > 0 is asuitably-small constant.3. Triangulate the faces of P 0 and form a trian-gular \cones" for each using the origin as apex(thereby constructing a simplicial cell complexChazelle refers to as the geode [14]).4. Construct a search tree T for this geode suchthat each leaf of T identi�es for a plane h all thecells of the geode that h crosses.5. Perform the multi-search of T using all the planesdual to points in S as queries.6. For each tetrahedron � in the geode, �nd the 2-dimensional contour of the intersection betweenthe boundary of � and the �nal intersectionpolytope P using our 2-dimensional convex hullalgorithm.7. Use the \pruning" strategy of Amato et al. [4]to eliminate from each subproblem determinedby a tetrahedron � those halfspaces that cannotcontribute any vertex to P inside � , using the 2-dimensional contours on the boundary of � . Thisalso reduces the total problem size to be O(n).



8. Recurse on each tetrahedron � in the geode.In the full version we describe how to implementeach of the above steps in O(logh n) communicationrounds, with high probability. This implies that theexpected running time of the algorithm satis�es therecurrence equationT (n) � T (n1��) +O(logh n);which implies that the expected value of T (n) isO(logh n). Moreover, in the full version we show thatwe can again apply failure sweeping to this expectationto derive the following theorem:Theorem 4.1: Given a set S of n points in IR3, onecan construct the convex hull of S in O(logh n) com-munication rounds and combined expected runningtime of O((n logn)=p+(L+g(n=p)) logh n) in the BSPmodel, with probability 1�1=nc for any constant c � 1,for h = dn=pe+ 1.Incidentally, when p = n=2 this result impliesthe �rst O(log n)-time optimal-work EREW PRAMmethod for 3-dimensional convex hulls, which, withhigh probability, improves the time bounds, workbounds, or model assumptions of several previousmethods [4, 5, 39, 42].5 Conclusion.We have given a general algorithm for multi-searchingin the BSP framework and given examples of howthis method can be used to derive fully-scalable work-optimal parallel methods for several computationalgeometry problems, including 3-dimensional convexhull construction. Our framework is based uponsatisfying a set of searches de�ned for a binary searchtree T . There are a number of additional applicationsin parallel computational geometry that depend uponmulti-searching directed acyclic search graphs (e.g.,see [8, 23]). Thus, a possible direction for future workwould be to extend our results to search dags.Acknowledgements.We would like to thank MikhailAtallah for several helpful comments regarding themulti-searching problem, and we would also like tothank Sandeep Sen for several helpful e-mail commentsconcerning this problem as well.References[1] A. Aggarwal, A. K. Chandra, and M. Snir. Com-munication complexity of PRAMs. Theoretical Com-puter Science, 71:3{28, 1990.
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