Randomized Fully-Scalable BSP Techniques

for Multi-Searching and Convex Hull Construction

(Preliminary Version)

MicHAEL T. GOODRICH*

Center for Geometric Computing
Dept. of Computer Science
Johns Hopkins Univ.
Baltimore, MD 21218

goodrich.cs. jhu.edu

Abstract

We study randomized techniques for designing efficient al-
gorithms on a p-processor bulk-synchronous parallel (BSP)
computer, which is a parallel multicomputer that allows
for general processor-to-processor communication rounds
provided each processor is guaranteed to send and receive
at most h items in any round. The measure of efficiency we
use is in terms of the internal computation time of the pro-
cessors and the number of communication rounds needed
to solve the problem at hand. We present techniques that
achieve optimal efficiency in these bounds over all possible
values for p, and we call such techniques fully-scalable for
this reason. In particular, we address two fundamental
problems: multi-searching and convex hull construction.
Our methods result in algorithms that use internal time

that is O(%) and, for h = ©(n/p), a number of com-
munication rounds that is O(ﬁ:_‘—l)), with high probab-
ility. Both of these bounds are asymptotically optimal for

the BSP model.

1 Introduction.

Most of the research on parallel computational
geometry in the past decade has focused on fine-
grain massively-parallel models of computation (e.g.,
see [2, 3, 6, 28, 41]), where the ratio of memory to
processors is fairly small (typically O(1)), and this fo-
cus has been independent of whether the model of
computation was a parallel random-access machine
(PRAM) or a network model, such as the hyper-
cube. But, as more and more parallel computer sys-
tems are being built, researchers are realizing that
processor-to-processor communication is a prime bot-
tleneck in parallel computing (e.g., see Aggarwal et
al. [1], Bilardi and Preparata [13], Culler et al. [15],
Kruskal et al. [30], Mansour et al. [31], Mehlhorn
and Vishkin [33], Papadimitriou and Yannakakis [37],
and Valiant [45, 44]). The real potential of parallel
computational geometry, therefore, probably lies in

*This research supported by the NSF under Grants CCR-
9300079 and CCR-9625289, and by ARO under Grant DAAH04-
96-1-0013.

algorithm design for coarse-to-medium-grain parallel
environments [18, 21], where the ratio of memory to
processors is non-constant, for such systems allow an
algorithm designer to balance communication latency
with internal computation time. Indeed, this realiz-
ation has given rise to a powerful algorithmic model,
which Valiant [44] calls “bulk synchronous” processing
(BSP). In such a model an input of size n is distributed
evenly across a p-processor parallel computer, with
p < n. In a single computation round (which Valiant
calls a superstep) each processor may send and receive
h messages (typically h = ©(n/p)) and then perform
an internal computation on its internal memory cells
using the messages it has just received. To avoid any
conflicts that might be caused by asynchronies in the
network (whose topology is left undefined) the mes-
sages sent, out in a round ¢ by some processor should
not depend upon any messages that processor receives
in round ¢ (but, of course, they may depend upon mes-
sages received in round ¢t — 1).

The running time of a BSP algorithm is character-
ized by two parameters: T, the internal computation
time, and T¢, the number of communication rounds.
The goal in designing a BSP algorithm, of course,
is to minimize both of these parameters. Alternat-
ively, by introducing additional characterizing para-
meters of the BSP model, one can combine 77 and T
into a single running time parameter, called the com-
bined running time. Specifically, if we let L denote the
latency of the network that is, the worst-case time
needed to send one processor-to-processor message
and we let g denote the time “gap” between consecut-
ive messages received by a processor in a communica-
tion round, then we can characterize the total running
time of a BSP computation as O(T; + (L +gh)T¢) [44]
(similarly for the related LogP model [15, 29]).

The goal of this paper is to further the study
of bulk-synchronous parallel algorithms by addressing
two fundamental problems in parallel computational
geometry: multi-searching and convex hull construc-
tion.

1.1 Previous related work in parallel com-
putational geometry. There has been a signific-
ant amount of previous work on parallel computa-
tional geometry (e.g., see [2, 3, 6, 28, 41]). This work
has resulted in a number of powerful techniques for
solving computational geometry problems in parallel,
with particular attention paid to convex hull construc-
tion, because of its wide applicability, such as the
well-known reductions of planar Voronoi diagram and
Delaunay triangulation constructions to 3-dimensional
convex hulls. The current best fine-grain parallel solu-
tions for convex hulls in IR? run in O(logn) time us-
ing n processors in the EREW PRAM model' [34]
and in R? run in O(log”n) time using n/logn pro-
cessors in the EREW PRAM model [4] or, alternat-
ively, in O(logn) time, with high probability, using n
processors in the CREW PRAM model [39, 42].

Perhaps counter-intuitive to the notion of PRAM
algorithms as extractors of maximum parallelism,
these PRAM methods do not translate into efficient
BSP algorithms. This is because simulating a PRAM
algorithm in the BSP framework requires at least a
constant number of communication rounds for each
PRAM step (and even this is often quite difficult to
achieve), whereas there are several known BSP solu-
tions [17, 18, 21, 19, 20] to a number of computa-
tional geometry problems that use only O(1) commu-
nication rounds in total, albeit assuming that p, the
number of processors, is fairly small relative to n, the
problem size. The best previous BSP algorithm for
3-dimensional convex hull construction is a method
by Dehne et al. [17] that completes in O(1) commu-
nication rounds, with high probability, assuming that
p < n'/G+9 for any fixed constant € > 0. Such al-
gorithms are scalable [18, 21] in the sense that they
are efficient over a range of values of p, but they are
not fully scalable, in that there is a limit placed on this
range of values (which in the case of 3-dimensional con-
vex hull construction is fairly restrictive). In fact, the
only fully-scalable BSP algorithm we are familiar with
is a sorting algorithm of the author [26], which runs
in O(log, n) communication rounds, for h = O(n/p).
This bound is O(1), of course, when p is O(n'™¢)
for some constant € > 0, and the author shows that
Q(logy, n) communication rounds are in fact necessary,
even for the simple problem of computing the bitwise-
or of n bits distributed evenly across p processors in
the BSP model.

While convex hull construction is a well-known

IThe PRAM is a synchronous shared-memory model, with
the EREW version not allowing for concurrent memory accesses,
the CREW version allowing concurrent reads, and the CRCW
allowing for concurrent reads and writes (assuming some reas-
onable conflict resolution protocol).

“self-contained” problem that is often studied in par-
allel computational geometry, a general problem that
often arises as a subproblem in solutions to other prob-
lems is the multi-searching problem (e.g., see [7, 8, 9,
11, 12, 23]). In this problem one is given a collection S
of “generic” searches that need to simultaneously ac-
cess a data structure T' (which in the context of this
paper will always be a binary tree) to solve the prob-
lem at hand. What makes this problem interesting is
that comparing searches to each other yields no useful
information (so, for example, the searches cannot be
sorted by any “key” value). The only previous effi-
cient BSP we know of for this problem is a method of
Devillers and Fabri [21] that uses O(1) communication
rounds if p < n'/2 and the communication network al-
lows for segmented broadcasts to be performed in one
round, where n = |S| + |T|. We refer to this version
of the BSP model that allows for segmented broad-
casts as the weak-CREW BSP model [26]); we call the
(standard) version of the BSP model, which requires
that each communication packet have a unique des-
tination, the EREW BSP model. There is also some
work by Baumker et al. [11, 12] on multi-searching for
another variant of the BSP that allows for very long
messages, and methods by Gerbessiotis and Siniola-
kis for multi-searching level graphs. These methods
do not translate into communication-optimal BSP al-
gorithms for any range of values of p, however. Indeed,
we are not aware of any fully-scalable algorithms for
the multi-searching or 3-dimensional convex hull prob-
lems.

1.2 Our results. In this paper we give the
first fully-scalable method for multi-searching in the
(standard) BSP model. Our algorithm uses O(log, n)
communication rounds and internal computation time
of O((nlogn)/p), with high probability, for h =
[n/p]+1. Thus, the number of communication rounds
is O(1) any time p < n'~¢ for some constant € > 0.
We demonstrate the utility of our multi-searching al-
gorithm in the full version of this paper by applying it
to several well-known parallel computational geometry
problems, including searching in arrangements, 2D-all-
nearest-neighbor searching, and 3D-maxima. We also
describe the first fully-scalable BSP algorithm for 3-
dimensional convex hull construction to illustrate the
natural way multi-searching arises in other problems.
Our convex hull algorithm also uses O(logy, n) com-
munication rounds and internal computation time of
O((nlogn)/p), with high probability.

We begin with some preliminaries about the BSP
model.

2 Some Preliminary Observations.

There is a rich body of knowledge that exists for per-

forming basic operations on fine-grain parallel models,
but the knowledge base for fully-scalable coarse-grain
techniques is not as rich. Thus, before we give our
methods for multi-searching and convex hull construc-
tion, let us discuss a few basic BSP primitives. The
primitives we discuss have been studied by others in
bulk-synchronous contexts (e.g., see [24, 44]), but we
describe them here in the fully-scalable framework for
the sake of completeness.

2.1 Generalized Broadcast and Combine. Let
S be a set of m items stored on a single processor. The
generalized broadcasting problem is to distribute these
items to all the other processors.

Lemma 2.1: The items in S can be broadcast to
k other processors on an EREW BSP computer in
O(logy k + [m/h]) communication rounds, for d =
2[h/m], where h is the maximum number of items
that can be sent by a processor in a communication
round.

Proof: Let us consider two cases:

1. m < h. The idea in this case is fairly straight-
forward. Processor 1 sends the items in S to
27h/m] other processors in O(1) communication
rounds, then these processors send S to 2[h/m]
other processors, and so on. The total num-
ber of communication rounds is O(log, k), for
d=2[h/m].

2. m > h. In this case we divide S into [m/h]
subsets of size at most h each, and we broad-
cast each of them as in the previous case in a
pipelined fashion. The total number of commu-
nication rounds is O(log, k + [m/h]).

Of course, if we can perform generalized broadcast
in this many communication rounds, we can also per-
form the inverse operation in this many rounds. The
“inverse” problem, which we call generalized combine,
involves computing the value of an associative func-
tion on the items in each row of a k x m matrix, A,
where each column is stored on a different processor.
This is actually a special case of an even more general
problem, which we describe next.

2.2 Generalized Parallel Prefix. Suppose we are
given a k x m array A, with each column stored on a
different processor, together with an associative sum-
mation operator defined on each row. The generalized

parallel prefix problem is to determine for each i and [,
the value of the partial sum s;; = Zli:] Ali, j], where
the summation operator is the one defined for row i.

Lemma 2.2: The generalized parallel prefix problem
can be solved in computer in O(log,k + [m/h])
communication rounds, for d = 2[h/m], where h is
the maximum number of items that can be sent by a
processor in a communication round.

Proof: The proof is essentially a generalized com-
bine followed by a generalized broadcast, and is left to
the reader. B

The final preliminary result we discuss is that of
computing a random permutation bulk-synchronously.

2.3 Computing a random permutation on a
BSP computer. Suppose we are given a set S of n
elements, distributed evenly across p processors on a
BSP computer. An important primitive-level compu-
tation that must often be performed in randomized
parallel algorithms is to produce a random permuta-
tion of the elements of S. The method we use in this
paper is an adaptation of a strategy due to Reif [40]
(see also Hagerup [27]):

1. For each element s; in S we select a random
integer key s’ in the range [1,n2], and we sort
these random keys using the comparison-based
optimal bulk-synchronous sorting algorithm of
the author [26]. This takes O(log,n) commu-
nication steps and O((nlogn)/p) internal com-
putation time.

2. Sequentially, we perform a random permutation
for each group of s} elements that are given the
same key. Assuming that the total number of
elements in any group is at most some constant
¢, this step can easily be implemented in O(1)
communication rounds and O(n/p) internal com-
putation time. If the number of elements in some
group is more than ¢, we repeat the process,
starting with Step 1.

3. Finally, we store for each element s; in S the
position of s} in the sorted list. The mapping of
si’s to their respective s} values defines a random
permutation.

This algorithm produces a random permutation of
the elements in S, and all permutations are equally
likely. Moreover, as is formalized in the following
lemma, this procedure will terminate after just one
iteration, with high probability.

Lemma 2.3: If ¢ > 3, then the probability that
the above random permutation algorithm will not
terminate in a given iteration is at most 1/n°"2.

Proof: We prove this by an application of a Chernoff
bound (see [35], p. 68). Let X;; be an indicator
random variable that is 1 if processor ¢ chooses value
j. Clearly, Pr(X;; = 1) = 1/n% Then, by a slight
abuse of notation, define X; to be the number of
processors that choose value j, so X; = Z?:] X;,; and
E(X;) = 1/n. Therefore, since, once j is fixed, all the
X ;’s are mutually independent,

Pr(X; >c¢) = Pr(X;> 1+ (ecn—1))(1/n))

ecnfl 1/n
< -
< e

< (e)e)

1

< —.
= ne

Thus, the probability that X; is more than c for any
j is at most 1/n°"2. W

Having presented these preliminary results, let
us now give our method for randomized BSP multi-
searching.

3 Fully-Scalable BSP Multi-Searching.

Let S be a set of query items distributed evenly across

p processors in a bulk-synchronous parallel computer.
Also, let T be a binary search tree. The multi-
searching problem is to determine, for each query ¢
in S, the leaf node in T where a root-to-leaf search in
T for ¢ would result. We assume that for any element
g in S and any node v in T a comparison for q at v
yields one the following results:

e terminate: the node v is the leaf in T that
terminates the search for s;.

e child u: the search procedure for ¢ should
proceed to v’s child wu.

e incomparable: the search procedure for g
should not visit node v in T'.

3.1 A simple partially-scalable solution. Be-
fore we give our fully-scalable solution to this multi-
searching problem, let us observe that there is a fairly
simple BSP method for solving this problem that scal-
able but not fully-scalable. This simple method begins
by stratifying T into subtrees, which we call packet
trees, by defining every | = (1/2)logh level in T a
distinguished level. A node v on a distinguished level

in T defines a packet tree of O(h'/?) nodes consist-
ing of descendents of v down to the next distinguished
level in T'. We assume that these packet trees are dis-
tributed evenly across the set of processors, as are the
queries for S.

To solve the multi-searching problem we begin
with the packet tree ¢ rooted at the root of T.
We can apply the generalized broadcast procedure
to broadcast this entire packet tree to all the other
processors in O(log, p) time. Then each processor
j performs the comparisons for all the nodes in this
packet tree and determines for each query ¢ at j the
leaf in ¢ where the search for ¢ should continue. By
then performing a generalized parallel prefix we can
collect together all the queries that should proceed at
the same node in T'. This allows us to then repeat
this procedure for all those groups in parallel. We
can balance the broadcast costs against the queries,
so that the total number of communication rounds is
O(logy, plogy, n), for h = [n/p] +1, where n = |S|+]|T.
This is O(1) if n/p > n¢, for some constant € > 0, but
it is not optimal for all values of p; hence, it is not
fully-scalable.

3.2 Owur approach for fully-scalable multi-
searching. Our fully-scalable method for efficiently
answering the queries in S for all values of p is based
upon a recursive strategy for searching 7'. We first con-
centrate on routing the searches through the subtree
T' consisting of the top-most n'/* nodes in T (i.e.,
the nodes on the first (logn)/4 levels of T'), where
n = |S|+|T|. Once we have performed all the searches
in S through 7", we then subdivide the searches to the
subtrees rooted at the leaves of 7' and recurse on each
one (assuming |T'| > |T"|, of course). Once we have de-
termined all the search paths through 7" we can then
subdivide the multi-search problem into subproblems
of size [n?/*] each through parallel prefix and broad-
casting steps that run in O(log, n) time. Assuming
we can route the searches in S through 7" in an ex-
pected O(log, n) number of rounds, then, with high
probability, the expected total number of communica-
tion rounds, then, is bounded by the following recur-
rence relation:

T(n) < T(n*"*) + O(logy, n),

which is O(log, n).

Let us therefore concentrate on how to route the
searches of S for the case when |T| = [n'/*]. Our
approach in this case is based upon a randomized two-
phase strategy for searching in such a tree 7', which is
in turn based upon randomized searching techniques
of Reif and Sen [39, 42, 43]. This strategy alone is
not sufficient, however, to achieve the high-probability

bound in the typical case when h > n®, for some
constant € > 0. To achieve a high probability bound
for all values of h we augment our strategy with a
failure sweeping technique [25, 32].

In the first phase we build a layered network C
from T and in the second phase we route the searches
in S through C using a simple BSP packet routing
protocol. For each node v in T, let n(v) denote
the number of searches in S that pass through v (or
terminate at v if v is a leaf). The specific goal of
the phase-one computation is to create the network
C so that the total number of nodes on each level
is O(n), the in- and out-degree of every node is at
most h, and such that, for each node v € T, there
are at least Q(n(v)) nodes in C associated with v
(whose job it is to process the searches in S that
pass through v in T'). Intuitively, each node v in C
is to process approximately O(1) searches through a
corresponding node in T', although our BSP routing
strategy will actually allow more than a constant
number of searches to pass through v in any round
in some cases.

In the beginning of the second phase the queries in
S are distributed at most [n/p] per “root” node of C,
each of which is associated with a distinct processor.
In a generic phase-two step each element of S will
be associated with a node in C, which in turn is
associated with a distinct processor. The phase-two
computation proceeds by then having each processor
perform the comparisons for each search element it
contains. This will determine, for each element s
stored at a processor i, a processor j that i needs to
route s to. We develop a protocol, then, so that we
do not violate the communication constraints of the
BSP model and, with high probability, we complete
the entire computation in O(log, n) communication
steps.

3.3 Phase One: Building the Search Network.
In this subsection we describe a method for construct-
ing the network C that will allow us to perform the
searches in T for all elements of S in O(log, n) commu-
nication rounds. We begin by compressing T into an
h-ary tree T using the packet-tree stratification tech-
nique described in Section 3.1, with [= logh. Thus,
each node v in T is associated with an h-node subtree
in T, with each leaf in this subtree corresponding to
the roots of the subtrees associated with »’s children
in 7.

We construct a circuit C' that will allow us to
process the searches in S through T, then, as follows:

1. We choose a random sample S C S of size
[n'/?]. For each node v in T' we then determ-

ine n/(v), the number of searches in S’ that
pass through or terminate at v, by a “brute
force” quadratic comparison (which requires at
most O(n?/*) comparisons in total). We then let
n(v) = n'(v)|S(v)|/|S'(v)], which we will use as
an estimate for n(v). This step takes O(log, n)
communication steps and O(n/p) internal com-
putation time.

2. If |S| < [n'/?], then we are done. So, let us now
assume that |S| > [n'/2]. We recursively define
a replication parameter r(v) for each node v in
T. We initially define r(root(T')) = 7(an), where
7(x) denotes the smallest power of 2 larger than
z (ie., 7(x) = 2M"821) and a > 4 is a constant,
called the dilution parameter, which we set in the
analysis. Then, for each non-root node v in T,
with parent w, we define

r(v) = T(max{an(v),r(w)/h}).

Note that o determines that there will be excess
capacity for sending elements from w to v. This
step can easily be implemented in O(log, n)
communication rounds.

3. For each non-root node v in T, with parent w,
we create a set C(v) of r(v) copies of v and we
connect each copy of node v to r(w)/r(v) distinct
copies of node w (in C(w)). If this ratio is not
integral, then we approximate this as best as
possible, connecting each copy of node v to either
|r(w)/r(v)| or [r(w)/r(v)] copies of node w. We
refer to these added edges as the down edges
in C. This step takes O(log, n) communication
steps and O(n/p) internal computation time.

This completes the construction of the network C,
and gives us the following:

Lemma 3.1: The above computation creates a
layered network C' such that the in- and out-degree of
the down edges for any node is at most h. Moreover,
with probability at least 1 — 1/e™ (for some fixed
constant ¢ > (), for each node v € T, with par-
ent w in T, there are r(v) nodes in C(v), where
max{n(v)/2,r(w)/h} < r(v) < max{3n(v),r(w)/h}.

Proof: Let v be a node with parent w in T. The
bound on the in- and out-degree of v follows immedi-
ately from the recursive definition of the r(v)’s. Let us
therefore consider the probability that the size bound
r(v) is too far off the mark, beginning with the prob-
ability that it significantly exceeds the upper bound,
which we quantify as r(v) > max{3n(v),r(w)/h}.

Since we defined r(v) = max{n(v),r(w)/h}, this can
only be the case if n(v) > 3n(v) and 3n(v) > r(w)/h.
Thus, if we let A(v) be the event that r(v) is above
the bound, and we let C'(v) be the event that 3n(v) >
r(w)/h, then, by a Chernoff bound analysis ([35],
p. 72), we can show the following:

Pr(A(v)) = Pr(a(v) > 3n(v) | C(v))
3n(v)
= Pr(n'(v) > i | C(v))
< 073n(v)/n1/2
< cfr(w)/nUQh
; 't
where ¢ = 3/e, since r(w)/h > n®/*. Likewise,

let B(v) be the event that r(v) is significantly less
than its desired amount, which we quantify as the
condition r(v) < max{n(v)/2,r(w)/h}. Also, let
D(v) be the event that n(v)/2 > r(w)/h. Then, by
another Chernoff bound ([35], p. 70), we can show the
following:

Pr(B(v)) = Pr(n(w)/p<n(v)/2]| D(v))
Pr(n'(v) > n(v)/2n'/? | D(v))

—n(v)/8n'/?

< e
< efr(v)/élnl/zh
< et

Combining these two bounds establishes the lemma. B

Thus, with very high probability, we correctly
construct the network C'.

3.4 The Phase Two Computation: Routing
the Searches. Let us therefore next consider the
problem of routing the searches of S through C. For
i =1 to [logy, n], and each v on level i of T', we assign
h contiguous nodes of C'(v) to a separate processor (so
that at most h[log, |T|] nodes are assigned to each
processor in total). We do not assign different C(v)
lists to the same processor, however. We assume that,
for any node v in C, a processor i can determine in
O(1) time (without communication) the processor j
that is associated with v. Moreover, since we assign
each h continuous nodes on level ¢ to a separate
processor, there are only O(1) processors holding
different “in” neighbors (on level i — 1) of down edges
for a node w in a C'(v). Thus, for any processor P;, the
number of other processors holding nodes adjacent to
nodes of C stored at P; is O(h).

Initially, all the elements of S are stored at most
one per node in C(v), and every h nodes of C(v) are in

turn stored in a unique processor, where v = root(T).
Before we attempt to route the searches through C' we
first apply a random permutation to the contents of
the nodes of C(v), using the method of Section 2.3.
Each processor i then performs the following transfer-
step computation:

1. Processor i determines which of the h nodes of
C'(v) it stores actually contain search elements in
S. The processor i then performs the comparison
associated with v € T (which is actually a search
through a [log h]-height subtree of T' associated
with v) for all the elements in S currently at
C'(v) and stored in processor i’s internal memory.
Each such comparison determines a child u of v
in 7" where a search in S should proceed.

2. Each search at C(v) that wishes to go to u has
at most 2 processors that it needs to be routed
to (storing nodes of C(u)). For each child u
of v in T, and each processor j storing nodes
of C(u) reachable from the nodes stored at i,
processor i determines n; j(u), the number of
searches currently at i in C(v) that need to
proceed to a node of C(u) in processor j.

3. Processor ¢ sends a message to each processor j
such that n, j(u) > 0 informing processor j of
the value of n; ;(u).

4. Processor j receives at most h messages, and
adds up all the values it receives, producing a
sum n;. Processor j then sends back a message
to each processor i informing it that it can then
send [n; ;(u) min{l,h/n;}] of its searches that
need to be routed to j. (So if n; < h, then all of
the elements of n; ;(u) can be routed to j.)

5. Processor i sends to processor j a total of
[n;,;(u) min{l, h/n;}] of its searches that need
to be routed to j.

This transfer-step computation can be performed
in O(1) communication rounds, as described above.
We continue repeating this computation for b[log, n]
iterations, where b > 1 is a constant to be determined
in the analysis. At that time all of the searches
are expected to be at the leaf-level of C' (and hence
T) At this point we check to make sure that all
searches have indeed reached their final destinations
in C and that no searches have been “left behind”
anywhere. This condition can easily be tested in
O(log, n) communication rounds. If we have any
such incomplete searches, then we repeat the entire
computation described above. Otherwise, we have
completed all the searches of S in the tree T. The

next lemma establishes the probability that all the
searches in S can be routed through C in O(log, n)
communication rounds (which, of course, is what we
desire).

Lemma 3.2: All the searches in S can be routed
through C in (¢ + 1)[log, n] communication rounds
with probability at least 1 — 1/n/*1°8h for any
constant ¢ > 2.

Proof: Our proof is an adaptation of arguments
used to justify hypercube packet routing strategies [35]
to our BSP protocol on the search network C. Let C
denote the compression of C' implicitly defined by the
assignment, of nodes in C' to processors. That is, let
each node in C correspond to h nodes in a C(v) that
were all assigned to the same processor. Note that,
even with this compression, once two search paths
separate in C they do not rejoin. Fix a particular
search item s; € S and let p; = (e1,ea,...,e;) denote
the search path in C for s;, where k = | (logy, n)/4].
Let d; denote the total number of rounds that s; is
delayed during its routing through C. Further let S;
denote the set of all searches in S whose search path
passes through at least one of the edges in p;. Because
of our BSP protocol for routing searches through C,
d; < |Si|/h. Let H;; denote the indicator random
variable that is 1 if and only if the path for search
s; passes through at least one edge in p;, and is 0
otherwise. Thus, |S;| = >_7_, H; ;. For each edge e
in p;, let N(e;) denote the number of searches in S;
that pass through e;. Of course,

n k
ZHi,j < Z Ne);
j=1 =1

hence,

E[N(e)].

k
=1

n
E H;;i <
=
Moreover, if C' was constructed correctly, then
E[N(e))] < h/a < h/4 for each e in p;, because of
our initial random permutation step in the routing al-
gorithm. This implies that

kh

E {Z HZ,} <
Jj=1
Thus, we can apply a Chernoff bound (e.g., see [35],

p. 72) to derive the following bound:

Pr(d; > clog,n) < Pr(|S;| > chlog,n)

Pr ZH” > 4c(kh/4)

J=1

IN

2fckh

INIA

—ch(log, n)/4 _ ., —ch/4logs h
2 h =n 2

provided ¢ > 2. This establishes the lemma. R

Even though this lemma implies a high probability
bound for routing the searches in S through T, it is
not sufficient to imply a high probability bound for
our entire computation. Since it depends upon the
size of the problem being solved, the probability of
Lemma 3.2 degrades as we recursively solve searches
using the approach of Section 3.2. In the end it only
implies that the running time of routing the searches
in S is ezpected to be O(log, n). Fortunately, there is
a simple way to boost this probability back to a high
probability bound.

3.5 Improving the Success Probability via
Failure Sweeping. In the full version we show how
to apply a generalized version of the failure sweeping
paradigm [25, 32] to improve the probability of success
for routing all the searches in S through T in O(log, n)
communication rounds to be at least 1 — 1/n¢ for any
constant ¢ > 1. The main idea behind this technique
is to terminate recursive calls that go too long, and
then replicate each of these “unlucky” subproblems
at least O(logn) times and apply our expected-time
computation on each of these subproblems (but now
without any failure sweeping in the recursive calls).
We can show inductively, that the number of such sub-
problems is small with high probability; hence, we will
have enough resources to solve all the replicated sub-
problems simultaneously. Since one of the copies of
each subproblem returns after O(logj, n) communica-
tion rounds, with high probability, we can establish
the following;:

Theorem 3.1: Given an balanced binary search tree
T, and a set S of searches defined for T, one can
simultaneously perform the searches in S on T in a
BSP computer using O(log,, n) communication rounds,
with probability 1—1/n¢ for any constant ¢ > 1, where
n = |S| + |T| and h = [n/p] + 1. The combined
running time is O((nlogn)/p + (L + g(n/p))log, n),
with probability 1 — 1/n® for any constant ¢ > 1.

There are a number of immediate applications of
this problem to problems in computational geometry,
such as searching in arrangements, 2D-all-nearest-
neighbor searching, and 3D-maxima, which we explore
in the full version of this paper. We describe here

a novel application to the 3-dimensional convex hull
problem.

4 BSP Convex Hull Construction.

Let S be a set of n points in R*. The convex hull
of S is the polytope defined by the smallest convex
set containing all the points of S. The convex hull
problem, then, is to construct a representation of this
polytope. In this section we show how to construct the
convex hull of S in the BSP model.

4.1 2-dimensional convex hull construction.
We begin by giving a deterministic algorithm for 2-
dimensional convex hulls that uses O(log, n) com-
munication rounds and combined running time of
O((nlogn)/p + (L + gh)log, n), for h = [n/p] + 1.
Our method is a BSP adaptation of the EREW PRAM
algorithm of Miller and Stout [34].

We begin by sorting the input points by their
z-coordinates. This can be done in O(log, n) com-
munication rounds and combined running time of
O((nlogn)/p+ (L+ gh)log, n), using the BSP sorting
algorithm of the author [26]. Without loss of gener-
ality, we concentrate on the problem of computing an
upper hull, i.e.; those edges whose normals have pos-
itive second components. We proceed as follows:

1. If all the input points are contained on a single
processor, compute the upper hull using any
efficient sequential method (e.g., see [22, 36, 38]).
Let us therefore assume for the remainder of this
algorithm that n > h.

2. Divide the input into O(n'/*) contiguous groups
of size O(n?/*) each, and recursively find the
upper hull of each set.

3. Atallah and Goodrich [10] and Dadoun and Kirk-
patrick [16] describe CREW PRAM methods for
finding upper common tangents between two up-
per hulls in O(1) time using O(n®) processors,
for any constant € > 0. Let us apply a straight-
forward BSP simulation of one of these meth-
ods to find the common upper tangents between
each pair of upper tangents. The total number
of communication rounds is O(log, n) to imple-
ment this simulation.

4. For each group ¢ compute the maximum-slope
tangent line t,. to groups j > ¢ and the minimum-
slope tangent line ¢; to groups j < 4. If these two
tangents cross, then no points of hull ¢ are on the
upper hull. Otherwise, all the vertices (inclusive)
on the upper hull ¢ between the tangent points
for ¢; and t,., respectively, are on the upper hull.

5. Perform a parallel prefix computation to com-
press together all the points on the upper hull.

After the preprocessing sorting step this method
will find the upper hull of the input set of points in
a number of communication rounds bounded by the
recurrence relation

T(n) = T(n*/*) + O(logy n),

which implies that 7 (n) is O(log, n). Thus, we can
compute the convex hull of n points in the plane in
O(logj, n) communication rounds and O((nlogn)/p)
internal computation time on a p-processor BSP com-
puter.

4.2 3-dimensional convex hull construction.
Our method for 3-dimensional convex hulls is based
upon using our multi-searching method to adapt the
EREW PRAM algorithm of Amato et al. [4] to the
BSP model. An outline of our algorithm is as follows:

1. Dualize the points in S to n planes in IR?
thereby converting the convex hull problem to
that of determining the intersection polytope P
of n halfspaces determined by these planes and
the origin.

2. Select a random sample S’ C S of size n¢ of
the halfspaces and construct their intersection
polytope P’ by “brute force,” where ¢ > 0 is a
suitably-small constant.

3. Triangulate the faces of P' and form a trian-
gular “cones” for each using the origin as apex
(thereby constructing a simplicial cell complex
Chazelle refers to as the geode [14]).

4. Construct a search tree T' for this geode such
that each leaf of T identifies for a plane h all the
cells of the geode that h crosses.

5. Perform the multi-search of T" using all the planes
dual to points in S as queries.

6. For each tetrahedron 7 in the geode, find the 2-
dimensional contour of the intersection between
the boundary of 7 and the final intersection
polytope P using our 2-dimensional convex hull
algorithm.

7. Use the “pruning” strategy of Amato et al. [4]
to eliminate from each subproblem determined
by a tetrahedron 7 those halfspaces that cannot
contribute any vertex to P inside 7, using the 2-
dimensional contours on the boundary of 7. This
also reduces the total problem size to be O(n).

8. Recurse on each tetrahedron 7 in the geode.

In the full version we describe how to implement
each of the above steps in O(log, n) communication
rounds, with high probability. This implies that the
expected running time of the algorithm satisfies the
recurrence equation

T(n) < T(n'~) + O(log, n),

which implies that the expected value of T (n) is
O(log, n). Moreover, in the full version we show that
we can again apply failure sweeping to this expectation
to derive the following theorem:

Theorem 4.1: Given a set S of n points in R®, one
can construct the convex hull of S in O(log, n) com-
munication rounds and combined expected running
time of O((nlogn)/p+(L+g(n/p))log, n) in the BSP
model, with probability 1—1/n° for any constant ¢ > 1,
for h = [n/p] + L.

Incidentally, when p = n/2 this result implies
the first O(logn)-time optimal-work EREW PRAM
method for 3-dimensional convex hulls, which, with
high probability, improves the time bounds, work
bounds, or model assumptions of several previous

methods [4, 5, 39, 42].

5 Conclusion.

We have given a general algorithm for multi-searching
in the BSP framework and given examples of how
this method can be used to derive fully-scalable work-
optimal parallel methods for several computational
geometry problems, including 3-dimensional convex
hull construction. Qur framework is based upon
satisfying a set of searches defined for a binary search
tree T'. There are a number of additional applications
in parallel computational geometry that depend upon
multi-searching directed acyclic search graphs (e.g.,
see [8, 23]). Thus, a possible direction for future work
would be to extend our results to search dags.

Acknowledgements. We would like to thank Mikhail
Atallah for several helpful comments regarding the
multi-searching problem, and we would also like to
thank Sandeep Sen for several helpful e-mail comments
concerning this problem as well.

References

[1] A. Aggarwal, A. K. Chandra, and M. Snir. Com-
munication complexity of PRAMs. Theoretical Com-
puter Science, 71:3 28, 1990.

[2] A. Aggarwal, B. Chazelle, L. Guibas, C. O’Dinlaing,
and C. Yap. Parallel computational geometry. Al-
gorithmica, 3:293-327, 1988.

[3] S. G. Akl and K. A. Lyons. Parallel Computational
Geometry. Prentice-Hall, 1993.

[4] N. M. Amato, M. T. Goodrich, and E. A. Ramos.
Parallel algorithms for higher-dimensional convex
hulls. In Proc. 35th Annu. IEEE Sympos. Found.
Comput. Sci., pages 683694, 1994.

[6] N. M. Amato and F. P. Preparata. The parallel 3D
convex hull problem revisited. Internat. J. Comput.
Geom. Appl., 2(2):163 173, 1992.

[6] M. J. Atallah. Parallel techniques for computational
geometry. Proc. IEEE, 80(9):1435-1448, Sept. 1992.

[7] M. J. Atallah, R. Cole, and M. T. Goodrich. Cas-
cading divide-and-conquer: A technique for designing
parallel algorithms. SIAM J. Comput., 18:499 532,
1989.

[8] M. J. Atallah, F. Dehne, R. Miller, A. Rau-Chaplin,
and J.-J. Tsay. Multisearch techniques for imple-
menting data structures on a mesh-connected com-
puter. In Proc. ACM Sympos. Parallel Algorithms
Architect. (SPAA), pages 204-214, 1991.

[9] M. J. Atallah and A. Fabri. On the multisearching
problem for hypercubes. Research Report 1990,
INRIA, BP93, 06902 Sophia-Antipolis, France, June
1993.

[10] M. J. Atallah and M. T. Goodrich. Parallel al-
gorithms for some functions of two convex polygons.
Algorithmica, 3:535 548, 1988.

[11] A. Baumker, W. Dittrich, and F. Meyer auf der
Heide. Truly efficient parallel algorithms: 1-optimal
multisearch for an extension of the BSP model. In
Proc. 3rd European Symposium on Algorithms (ESA),
pages 17 30, 1995.

[12] A. Baumker, W. Dittrich, and A. Pietracaprina. The
deterministic complexity of parallel multisearch. In
Proc. 1996 Scadanavian Workshop on Algorithmic
Theory, page to appear, 1996.

[13] G. Bilardi and F. P. Preparata. Lower bounds to
processor-time tradeoffs under bounded-speed mes-
sage propagation. In Proc. 4th International Work-
shop on Algorithms and Data Structures (WADS),
LNCS 955, pages 1-12. Springer-Verlag, 1995.

[14] B. Chazelle. An optimal convex hull algorithm in any
fixed dimension. Discrete Comput. Geom., 10:377
409, 1993.

[15] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay,
K. E. Schauser, E. Santos, R. Subramonian, and
T. von Eicken. LogP: Towards a realistic model of
parallel computation. In Proc. 4th ACM SIGPLAN
Symp. on Princ. and Practice of Parallel Program-
ming, pages 1-12, 1993.

[16] N. Dadoun and D. G. Kirkpatrick. Optimal parallel
algorithms for convex polygon separation. Technical
Report 89-21, Dept. of Computer Science, Univ. of
British Columbia, 1989.

[17] F. Dehne, X. Deng, P. Dymond, A. Fabri, and A. A.

18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Khokhar. A randomized parallel 3D convex hull
algorithm for course grained multicomputers. In
Proc. 7th ACM Symp. on Parallel Algorithms and
Architectures, pages 27-33, 1995.

F. Dehne, A. Fabri, and A. Rau-Chaplin. Scalable
parallel geometric algorithms for coarse grained mul-
ticomputers. In Proc. 9th Annu. ACM Sympos. Com-
put. Geom., pages 298-307, 1993.

F. Dehne, C. Kenyon, and A. Fabri. Scalable and ar-
chitecture independent parallel geometric algorithms
with high probability optimal time. In Proc. 6th
IEEE Symp. on Parallel and Distributed Processing
(SPDP), pages 586-593, 1994.

X. Deng. A convex hull algorithm on course-grained
multicomputer. In Proc. 5th Annu. Internat. Sympos.
Algorithms Comput. (ISAAC 94), pages 634 642,
1994.

O. Devillers and A. Fabri. Scalable algorithms for
bichromatic line segment intersection problems on
coarse grained multicomputers. In Proc. 8rd Work-
shop Algorithms Data Struct., volume 709 of Lecture
Notes in Computer Science, pages 277 288, 1993.

H. Edelsbrunner. Algorithms in Combinatorial Geo-
metry, volume 10 of EATCS Monographs on Theoret-
ical Computer Science. Springer-Verlag, Heidelberg,
West Germany, 1987.

A. Gerbessiotis and C. Siniolakis. Communication
efficient data structures on the bsp model with ap-
plications in computational geometry. In Proceedings
of EUROPAR’96, August 1996.

A. V. Gerbessiotis and L. G. Valiant. Direct bulk-
synchronous parallel algorithms. J. of Parallel and
Distributed Computing, 22:251-267, 1994.

M. Ghouse and M. T. Goodrich. In-place techniques
for parallel convex hull algorithms. In Proc. 8rd ACM
Sympos. Parallel Algorithms Architect., pages 192
203, 1991.

M. T. Goodrich. Communication-efficient parallel
sorting. Technical Report, Dept. of Computer Sci-
ence, Johns Hopkins Univeristy, 1995.

T. Hagerup. Fast parallel generation of random
permutations. In Annual International Colloguium
on Automata, Languages and Programming, LNCS
510, pages 405-416. Springer-Verlag, 1991.

J. JAJa. An Introduction to Parallel Algorithms.
Addison-Wesley, Reading, Mass., 1992.

R. M. Karp, A. Sahay, E. Santos, and K. E. Schauser.
Optimal broadcast and summation in the LogP
model. In Proc. 5th ACM Symp. on Parallel Al-
gorithms and Architectures, pages 142 153, 1993.

C. Kruskal, L. Rudolph, and M. Snir. A complexity
theory of efficient parallel algorithms. Theoretical
Computer Science, 71:95-132, 1990.

Y. Mansour, N. Nisan, and U. Vishkin. Trade-
offs between communication throughput and parallel
time. In Proc. 26th ACM Symposium on Theory of
Computing (STOC), pages 372-381, 1994.

Y. Matias and U. Vishkin. Converting high probab-

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

ility into nearly-constant time with applications to
parallel hashing. In 23rd ACM Symp. on Theory of
Computing, pages 307-316, 1991.

K. Mehlhorn and U. Vishkin. Randomized and de-
terministic simulations of PRAMs by parallel ma-
chines with restricted granularity of parallel memor-
ies. Acta Informatica, 9(1):29 59, 1984.

R. Miller and Q. F. Stout. Efficient parallel con-
vex hull algorithms. IEEE Trans. Comput., C-
37(12):1605-1618, 1988.

R. Motwani and P. Raghavan. Randomized Al-
gorithms. Cambridge University Press, New York,
1995.

J. O’'Rourke. Computational Geometry in C. Cam-
bridge University Press, 1994.

C. Papadimitriou and M. Yannakakis. Towards
an architecture-independent analysis of parallel al-
gorithms. Proc. 20th ACM Symp. Theory Comp.
(STOC), pages 510-513, 1988.

F. P. Preparata and M. I. Shamos. Computational
Geometry: An Introduction. Springer-Verlag, New
York, NY, 1985.

J. Reif and S. Sen. Optimal parallel randomized
algorithms for three-dimensional convex hulls and
related problems. SIAM J. Comput., 21(3):466 485,
1992.

J. H. Reif. An optimal parallel algorithm for integer
sorting. In Proc. 26th Annu. IEEE Sympos. Found.
Comput. Sci., pages 496-504, 1985.

J. H. Reif. Synthesis of Parallel Algorithms. Morgan
Kaufmann Publishers, Inc., San Mateo, CA, 1993.

J. H. Reif and S. Sen. Erratum: Optimal parallel
randomized algorithms for three-dimensional convex
hulls and related problems. SIAM J. Computing,
23(2):447 448, 1994.

J. H. Reif and S. Sen. Randomized algorithms for
binary search and load balancing on fixed connection
networks with geometric applications. STAM J. Com-
puting, 23(3):633-651, 1994.

L. G. Valiant. A bridging model for parallel compu-
tation. Comm. ACM, 33:103 111, 1990.

L. G. Valiant. General purpose parallel architectures.
In J. van Leeuwen, editor, Handbook of Theoretical
Computer Science, pages 943-972. Elsevier/The MIT
Press, Amsterdam, 1990.

