
Snap Rounding Line Segments E�cientlyin Two and Three DimensionsMichael T. Goodrich� Leonidas J. GuibasyCent. for Geometric Computing Dept. of Computer ScienceJohns Hopkins University Stanford UniversityBaltimore, MD 21218 Stanford, CA 94305goodrich&jhu.edu guibas@cs.stanford.eduJohn Hershberger Paul J. TanenbaumMentor Graphics Corp. U.S. Army Research Lab.1001 Ridder Park Drive ATTN: AMSRL-SL-BVSan Jose, CA 95131 Ab. Prv. Gnd., MD 21005-5068john hershberger@mentorg.com pjt@arl.milAbstractWe study the problem of robustly rounding aset S of n line segments in R2 using the snaprounding paradigm. In this paradigm each pixelcontaining an endpoint or intersection point iscalled \hot," and all segments intersecting a hotpixel are re-routed to pass through its center.We show that a snap-rounded approximation tothe arrangement de�ned by S can be built inan output-sensitive fashion, and that this can bedone without �rst determining all the intersect-ing pairs of segments in S. Speci�cally, we givea deterministic plane-sweep algorithm running intime O(n logn+Ph2H jhj log n), where H is theset of hot pixels and jhj is the number of seg-ments intersecting a hot pixel h 2 H. We alsogive a simple randomized incremental construc-tion whose expected running time matches thatof our deterministic algorithm. The complexityof these algorithms is optimal up to polylogar-ithmic factors.�This research is supported by NSF grant CCR-9625289 and by U.S. ARO grant DAAH04-96-1-0013.yThis research is supported by NSF grant CCR-9623851 and US Army MURI grant 5-23542-A.

We also show how to extend the snap round-ing paradigm to a collection S of line segments inR3 by de�ning hot voxels in terms of \close en-counters" between segments in S, and we give anoutput-sensitive (though probably sub-optimal)method for �nding all close encounters determ-ined by the segments in S.Key words. Robustness, �nite precision,geometric rounding, line segments, arrange-ments.1 IntroductionGeometric objects typically live in a continuousgeometric space such as R2 or R3. Yet com-puter representations of such objects are neces-sarily discrete, both because of the digital natureof computers themselves, and of the raster natureof the computer displays currently in use. Thusthe need arises to represent geometric objects ina �nite, prespeci�ed resolution. Even if variableresolution is allowed, repeated geometric opera-tions can rapidly increase the required precision.These considerations give rise to the fundamentalproblem of rounding geometric objects to a pre-speci�ed resolution. Though individually round-ing the numerical attributes of the representa-tion of a geometric object is usually straightfor-ward, such rounding may violate various struc-tural properties which the geometric object issupposed to satisfy, such as convexity, simplicity,

etc. In this paper we are interested in roundingcollections of line segments so as to guarantee cer-tain topological consistency properties betweenthe ideal collection and its rounded counterpart.Failure to guarantee this consistency can lead toerroneous results and algorithmic failures in fur-ther processing. We are interested in roundingsthat perturb and fragment the original input aslittle as possible, and which can be computed ef-�ciently.1.1 Some Approaches to RoundingThe problem of dealing with �nite precisionand robustness in geometric algorithms is fun-damental, and there has been considerable workdone on developing good approaches to this prob-lem (e.g., see [2, 8, 9, 10, 11, 13, 15, 16, 17, 19,22, 23]). Of particular relevance to this paperis the previous work done on producing roundedversions of arrangements of line segments. At ahigh level, of course, the goal of such a methodis to round the given set of line segments so thateach rounded version of a segment is \close" tothe original segment and the important topolo-gical properties of the original con�guration arepreserved as much as possible. It is of prime im-portance in performing such a computation thatthe rounding be done e�ciently, both in terms ofthe combinatorial size of the representation andin terms of the running time of the algorithmthat performs this rounding.Greene and Yao [10] introduced the frame-work of rounding line segments to a pixel grid.They gave a method that preserves the topo-logy of a segment arrangement su�ciently, butat the expense of converting each individual linesegment into a polygonal chain containing manysubsegments. In addition, the running time oftheir method depends on both the combinator-ial complexity of the output (the number of sub-segments needed to represent rounded segments)and also on the number of actual intersectionsamong the original segments. Subsequent to thisearly work on segment rounding, there have beenseveral papers that have examined the arithmeticcomplexity (in terms of bits of accuracy) neededto construct arrangements [9, 16, 19]. The gen-

eral framework of these approaches still involvesthe computation of all segment intersections, al-though possibly at a reduced bit complexity thana naive method might use.One approach to the segment rounding prob-lem that has been shown to be very promising,from the standpoint of the combinatorial com-plexity of the rounded representation, is the snaprounding paradigm introduced by Greene andHobby [15] and studied in more detail by Guibasand Marimont [11]. Given a set S of n line seg-ments in the plane and a regular pixel grid G,this approach involves de�ning pixels in G as be-ing \hot" if they contain segment endpoints orsegment intersection points (the point featuresof the arrangement). Guibas and Marimont showthat if one \snap rounds" each segment passingthrough a hot pixel to the center of that pixel,then one is guaranteed not to introduce any newcrossings (although one may, of course, introducenew incidences). (See Figure 1.) This has thebene�t of being combinatorially e�cient, gener-ating a minimal fragmentation of the input seg-ments consistent with topological consistency. Inaddition, the size of the rounded arrangementwill be almost always smaller than that of theideal arrangement (though counterexamples arepossible), and much more so with coarse pixelsizes.In addition, Guibas and Marimont give analgorithm for constructing such a snap-roundedarrangement of S, including its vertical decom-position (i.e., its trapezoidal decomposition), inexpected time O(n log n+A+Ph2H jhj log jhj+Pw2W jwj), where A is the total number of pairsof intersecting segments in S, H is the set ofhot pixels, jhj denotes the number segments in-tersecting a hot pixel h 2 H, W is the setof all pixels containing a vertical attachment(de�ned in the vertical decomposition), and jwjis the number of segments intersecting a pixelw 2 W . Their algorithm is dynamic, allow-ing also for e�cient segment insertions and dele-tions. Alternatively, Hobby [15] describes a de-terministic batch algorithm that �rst constructsthe actual segment arrangement and then snaprounds it, resulting in an algorithm that runsin O((n + A) log n + Ph2H jhj) time. Ideally,

Figure 1: Left, an arrangement of 50 segments; right, the snap-rounded form of the arrangement.however, one would desire an algorithm whoserunning time does not depend so heavily on A,reecting the total number of intersecting pairsof segments in the ideal arrangement. In addi-tion, one would like to eliminate any dependenceupon other factors that do not contribute to theoutput size, such as the termPw2W jwj. A moredesirable time bound would, for example, justdepend upon n and the complexities of the hotpixels inH. This would give a method for round-ing line segments that is e�cient in terms of bothits combinatorial and computational complexity.1.2 Our ResultsIn this paper we give two output-sensitive al-gorithms for e�ciently performing snap roundingof line segments in the plane. The �rst methodis deterministic and runs in time O(n logn +Ph2H jhj log n). It is based upon a plane-sweepstrategy; it avoids computing the full arrange-ment of S by erasing segments of S inside hotpixels. We also give a simple randomized in-

cremental method whose expected running timematches that of our deterministic method.In addition to providing e�cient methods for2-dimensional snap rounding, we also develop aframework for 3-dimensional snap rounding. Inthis context the n line segments in S are em-bedded in R3 and we wish to round them to aregular 3-dimensional voxel grid. Unlike the 2-dimensional case, however, these segments willtypically not intersect at all. Thus, we charac-terize of the combinatorial complexity of a 3-dimensional set of segments in terms of n andthe number of close encounters (or \near mis-ses") between pairs of segments in S. We thenpropose a \hot" voxels de�nition in terms ofthose voxels containing segment endpoints andclose encounters, and we propose a 3-dimensionalrounded set of segments to be de�ned by takingall segments that intersect a hot voxel and snap-rounding them to the center of each such voxel.This retains the proximity of snap-rounded seg-ments with original segments, but can be rep-resented in the �nite representation imposed by

an integer-grid discretization of space. We alsodescribe an output-sensitive method for �ndingall close encounters between the segments in S,which can then be used immediately to identifyall the hot voxels determined by the segments inS. We outline the main ideas behind our resultsin the sections that follow.2 2-Dimensional Snap Round-ingLet S be a collection of n line segments in theplane, and let there be a regular grid G de�ningpixels in R2. In this section we describe two ef-�cient methods for performing two-dimensionalsnap rounding of S, one deterministic and theother randomized. Both of these methods pro-duce a vertical trapezoidal decomposition S ofthe snap-rounded arrangement of the segments inS, based upon the same strategy: �rst intersectsegments with hot pixels and then collapse hotpixels to single points. This contrasts with themethod of Guibas and Marimont [11], which isbased upon a randomized incremental construc-tion of S directly.We say that a point in R2 is critical if it isthe endpoint of a segment in S, or is the inter-section point of two segments in S; we say thata pixel in G is hot if it contains a critical point.To snap round a segment s in S, then, we con-vert s into a polygonal chain (or polyline) thatconnects the centers of all the hot pixels that sintersects (in order of their intersection along s).Let H denote the set of all hot pixels, and let Hdenote the regions in R2 covered by hot pixelsin H. In addition, let int(H) denote the interiorsof all the hot pixels in H and let �(H) denotethe set of all line segments that bound hot pixelsin H (so that, when viewed as sets of points,H = int(H) [�(H)). For each segment s in S,de�ne the external fragments of s to be the set ofsegments in snint(H). That is, the fragments ofs are determined by \slicing" away all the por-tions of s that intersect hot pixel interiors. If asegment s in S has a non-empty fragment, thenwe form the polyline for s by moving the two en-

dpoints of each fragment f of s to the centers ofthe two hot pixels that f is incident upon (if afragment consists of just a single point, then weexpand this to the segment joining the centersof the two abutting hot pixels upon which thispoint is simultaneously incident).Let �S denote the set of external fragmentsfor the segments in S. The method we use toimplement the above strategy is to construct arepresentation of S 0, the vertical decompositionof �S[�(H) (using, say, the quad-edge data struc-ture of Guibas and Stol� [14]). We call S 0 thepixel-clipped arrangement of the segments in S.Note that none of segments in �S [�(H) cross(although there will be intersections de�ned byfragment endpoints and hot pixel boundaries).Moreover, the combinatorial complexity of S 0 isproportional to the snap-rounded representationS of the arrangement of the segments in S. Sinceconverting S 0 to S is a straightforward linear-time computation, we concentrate on the prob-lem of constructing the pixel-clipped arrange-ment S 0 from the set of segments S.2.1 Deterministic Snap RoundingWe present a deterministic plane-sweep methodfor constructing S 0, as described above. In whatfollows we refer to the original, unrounded seg-ments as ursegments, to distinguish them fromother segments used by the algorithm.Our approach is based on the plane sweepingalgorithm of Bentley and Ottmann [3] for con-structing (unrounded) segment arrangements.We sweep over the ursegments from left to right,processing events, some of which are criticalpoints. However, we dynamically modify the setof segments so that the sweepline processes onlythe leftmost critical point in each hot pixel. Thesweepline is also used to detect all intersectionsbetween ursegments and hot pixel boundaries.The key idea is the following: when we detecta critical point in a pixel, we erase all the urseg-ment portions that intersect the (now known tobe hot) pixel's interior. Simultaneously, we intro-duce the pixel's top/bottom boundaries into thesweep structure as horizontal line segments. Thiseliminates all ursegment intersections inside the

pixel except the leftmost, and adds some urseg-ment/pixel boundary intersection events.Our algorithm uses three data structures,which we describe in a syntax based loosely onC. First is a Bentley-Ottmann sweepline, whichconsists of a current x position xpos, a search-able list1 storing the segments that intersect thevertical line x = xpos in their y order, and anx-ordered priority queue of segment insertions,deletions, and intersections to the right of xpos|intersection events in the priority queue involveonly adjacent segments on the sweepline [3, 4].We denote the sweepline by SL. Second, each hotpixel pix with a critical point left of xpos has twosearchable x-ordered lists of the ursegments thatintersect its top and bottom left of xpos; theselists are pix.toplist and pix.botlist. Third isa searchable y-ordered list of the hot pixels thatintersect x = xpos and have a critical point leftof xpos|call this list Hcur.The output of the algorithm is an x-orderedlist of hot pixels H, and for each hot pixel pix aset of ursegments pix:segs that intersect pix.The pseudocode below uses two subroutines:pixel(Point p) rounds point p to its contain-ing pixel, and heat(Pixel pix) makes pix hot.In particular, heat(pix) �nds all the ursegmentsthat intersect pix left of the current xpos, erasesthe portion of these segments inside pix, initial-izes pix.toplist and pix.botlist, and intro-duces horizontal segments into SL at the top andbottom boundaries of pix. Whenever heat(pix)is called, there are no critical points betweenxpos and the left side of pix.The algorithm processes �ve di�erent kindsof events:1. Ursegment endpoints. N.B. Right end-points sort before left endpoints at thesame x.2. Ursegment intersections.3. Ursegment/pixel boundary intersections.1A searchable list is any data structure that stores anordered list and supports logarithmic-time insertions, de-letions, and searches, and constant (amortized) time suc-cessor/predecessor queries. Balanced binary trees andskip lists are standard examples.

4. Ursegment re-insertions. (These occurwhen an ursegment exits a hot pixel.)5. Right ends of hot pixel boundaries. N.B.Type (5) events sort before type (4) eventsat the same x.The algorithm begins by initializing thesweepline SL with events of types (1) and (2).No events of types (3), (4), and (5) exist yet. Weprocess events in left-to-right order, as follows:1. Urseg endpt(Point p, Urseg u)if (pixel(p) =2 Hcur) heat(pixel(p)).if (p is the left end of u)Insert u into SL.Proceed as in case (3), beginning at (*).elseRemove u from SL.2. Urseg intersection(Point p)heat(pixel(p)).3. Urseg pixbdy intersection(Point p,Pixel pix, Urseg u)if (p is on the top of pix)append u to pix.toplist;elseappend u to pix.botlist.(*) Add u to pix.segs, if not already there.Remove u from SL, as if u ended at p.if (u intersects the boundary ofpix right of p at pp)Insert the eventUrseg reinsertion(pp, pix, u)into the priority queue.4. Urseg reinsertion(Point p, Pixel pix,Urseg u)Insert u into SL at p.if (p is on the top of pix)append u to pix.toplist;else if (p is on the bottom of pix)append u to pix.botlist.Let ppix be the pixel adjacent to pix withp on their common boundary.if (ppix 2 Hcur)Process an eventUrseg pixbdy intersection(p, ppix, u).(A careful implementation|making pixelboundaries lie in�nitesimally inside their

pixels|could avoid this test.)5. Pixbdy end(Pixbdy bdy, Point p)Remove bdy from SL at p.Append all pixels in Hcur to H, leaving Hcurempty.The implementation of pixel(Point p) istrivial, so we focus on heat(Pixel pix). Weneed the following lemma.Lemma 1: Given a pixel pix =2 Hcur that in-tersects x = xpos, let pixup and pixdown bethe pixels in Hcur above and below it, if any. Letrect be the (possibly in�nite) rectangle boundedby pixup, pixdown, xpos, and the x coordin-ate of the left side of pix. All the ursegmentsthat intersect rect belong to pixup.botlist,pixdown.toplist, or the y-ordered list of seg-ments on the sweepline SL. In each of theselists, the segments that intersect pix form acontiguous subsequence, which can be found inO(log n + k) time, where k is the length of thesubsequence.Proof: By the de�nition of Hcur, no ursegmentintersections or endpoints lie in rect. Any urseg-ment that intersects pix also intersects rect,and must intersect its top, bottom, or right side.Each of the three lists stores ursegments that in-tersect a particular line segment. If two urseg-ments s, s0 in the list for a segment e intersectpix, then there is a line segment e0 inside pixjoining them. The four segments s, s0, e, ande0 form a quadrilateral. Any ursegment betweens and s0 in the list intersects e and enters thequadrilateral; it does not intersect s or s0, so itmust intersect e0, and hence pix. We can �ndthe subsequence of each list that intersects pixby searching in the list: for each segment s inthe list that does not intersect pix, we can tellin constant time whether the portion of the listthat intersects pix lies before or after s. 2We are now ready to present the implement-ation of heat(pix).heat(Pixel pix)Insert pix into Hcur.Find the ursegments that intersectpix left of xpos, using Lemma 1.

For each ursegment u that intersectspix left of xposAdd u to pix.segs.if (u intersects pix right of xpos)Remove u from SL.if (u intersects the boundary of pixright of xpos at a point p)Schedule an eventUrseg reinsertion(p, pix, u).Build pix.toplist and pix.botlistby sorting pix.segs.Insert horizontal segments into SL atthe top and bottom boundaries ofpix, extending from xpos to the rightend of pix. For each pixel boundarybdy inserted, with right endpoint p,schedule an event Pixbdy end(bdy,p).Theorem 2: Given a set S of n line segmentsin the plane and a regular pixel grid G, onecan snap-round the segments in S to G in timeO(n log n +Ph2H jhj log n), where H is the setof hot pixels and jhj is the number of segmentsintersecting a hot pixel h 2 H.Proof: A pixel is hot i� it contains an ursegmentendpoint or intersection. The algorithm detectsthese events in cases (1) and (2). Ursegments areerased from SL only inside pixels already knownto be hot, so all hot pixels are detected.Ursegment/hot pixel incidences are found incase (3) and in heat(pix) (called from cases (1)and (2)). This �nds all the incidences, becauseany ursegment that intersects a pixel pix withoutstarting or ending there must intersect either thetop of pix, the bottom of pix, or all verticalsegments connecting top and bottom. The sub-routine heat(pix) �nds all incidences with thetop and bottom of pix left of xpos, as well asall incidences with the vertical segment spanningpix at xpos. Case (3) �nds all incidences withtop and bottom to the right of the xpos whereheat(pix) was called.Let m = Ph2H jhj. It is not hard to seethat the running time of heat(pix) is O(k log n),where k is the number of segments added topix.segs. This sums to O(m log n) over all in-vocations of heat(). The rest of the algorithm

requires only O(log n) time per event. The num-ber of events of type (1) is 2n = O(m); the num-ber of events of types (2) and (5) is O(h), whereh is the number of hot pixels, which is O(m);and the number of events of types (3) and (4) isO(m).Once all the ursegment/hot pixel incidencesare known, the order in which the segments in-tersect the pixel boundary can be obtained inO(m log n) time by sorting. (The order is alreadyknown for the intersections on the top and bot-tom of each hot pixel.) Given this information, itis straightforward to compute the snap-roundedarrangement S. 2In the next subsection we describe a simplerandomized algorithm whose expected runningtime matches this bound.2.2 Randomized Snap Rounding in R2In this section we give a randomized incre-mental construction (RIC) for building the pixel-clipped arrangement S 0 of the segments in S.The basic approach is similar to that of previ-ous RIC's for constructing segment arrangements(e.g., see [5, 6, 18, 20, 21]). We again maintaina trapezoidal decomposition of S 0, except thathere we dynamically \clip" the current subdivi-sion each time we discover a new hot pixel.In the usual RIC of line segment arrange-ments, two di�erent operations need to be ad-dressed. One is the point location of (typicallythe left) endpoint of a new segment s in the ver-tical trapezoidal decomposition of the arrange-ment of the segments inserted so far. The otheris the propagation of s through the trapezoidaldecomposition, in order to discover the intersec-tions of s with existing segments, and to up-date the trapezoidal decomposition in the pro-cess. The point location step is normally handledby maintaining a conict graph between (unin-serted) segments and trapezoids [5], or by the\history-dag" technique of [12].Like these methods, we also build thetrapezoidal decomposition of the pixel-clippedarrangement S 0 in an incremental manner, byinserting all the segments in S into this arrange-

ment one after the other, in a random sequence.But we di�er from these schemes for ideal linesegments in several important ways. Fist of all,because we are dealing with a �xed pixel grid,we can completely �nesse the point location is-sue. We simply initialize our vertical decompos-ition of the pixel-clipped arrangement to be thevertical decomposition of all the hot pixels con-taining segment endpoints. We can easily com-pute this decomposition by a line sweep in timeO(n log n). We also initialize each of these hotpixels with a dynamic \by-pass" structure thatallows us to trace other segments though them ef-�ciently. Secondly, during the propagation stagein the insertion of a new segment s, we may dis-cover new intersections between s and other ex-isting segments that lie outside of the currentlyknown hot pixels. Whenever that happens, weneed to create a new hot pixel h correspondingto the new intersection, clip out from S 0 the por-tion corresponding to h, and initialize a new by-pass structure for h containing all the currentsegments intersecting h. We illustrate the inser-tion of a random segment in S 0 in Figure 2.Let us now be more precise about these oper-ations; call s the next segment in S to be added.We locate the (existing) hot pixel h containingthe left endpoint of s through a simple indexingoperation. This can be done in time O(log n) bykeeping on the side a binary tree of all the pixelgrid columns containing hot pixels (due to en-dpoints) in the initial S 0, and for each node ofthat tree another binary tree of all the hot pixelsin that column. In practice, of course, we wouldsimply index into the pixel array using the en-dpoint coordinates. Starting now from where sexits the boundary of h, we trace s into the pixel-clipped decomposition S 0. The segment s mayhave to be propagated through a trapezoid of thedecomposition or through an existing hot pixel,and in the process it may cross a vertical attach-ment, another segment, or a hot pixel boundary.For every hot pixel h, we will maintain anordered list of the intersections of the boundaryof h by the current segment as a dynamic binarysearch tree (such as a red-black tree). By tra-versing this tree we are able to propagate a newsegment, such as s, through h in O(log n) time;

Figure 2: An illustration of the insertion of a random segment in S 0.we can also update the representation to includes in O(log n) time. Thus the traversal by s ofa standard trapezoid in S 0 takes as usual con-stant time, while the traversal of a hot pixel usesthe above by-pass structure. If s exits a standardtrapezoid by crossing a vertical attachment, thenthat attachment has to be shortened to end at s.The most interesting situation arises when sexits a standard trapezoid by crossing an existingsegment r at a point P . In this case we have dis-covered a new hot pixel h, and there is more workto do. In order to clip out from S 0 the part corres-ponding to h, we walk in S 0 from P to the (say)north-east corner of h (in a straight-line fash-ion), and then counterclockwise around the entireboundary of h. In this process we will discoverall the current segments crossing h (each at mosttwo or three times)2. Notice that in this traversalof S 0 we will not encounter any other hot pixels(obviously), and that the number of vertical at-tachments we can meet is at most four. Thusthe work involved is proportional to the num-ber of segments currently intersecting h. We can2Some tiny segments may be entirely inside h, butthese contract to a point after snap-rounding.

now excise h from S 0 and replace it by a by-passstructure reecting the segment crossings with itsboundary. We also add any necessary new ver-tical attachments emanating from the corners ofh in O(1) time.This �nishes the description of our RIC al-gorithm for the pixel-clipped arrangement. Theanalysis is very straightforward. Clearly thepoint-location cost isO(log n) per segment. Also,the cost of detecting the new hot pixels, of form-ing the hot pixel by-pass structures, and of tra-cing segments through them and then addingthese segment to the by-pass structure is allaccounted for by the term O(Ph2H jhj log n)).Note also that these are both worst-case bounds.The remaining cost of our algorithm is thatof propagating segments through trapezoids bycrossing vertical attachments. Each such step\clips," or shortens, such an attachment. Be-cause the segments are added in a random se-quence, any speci�c vertical attachment will beclipped in this way an expected O(log n) times(this is just the left-to-right minima in a ran-dom permutation problem). Note that a verticalattachment can also be clipped by the creationof a new hot pixel, but we can charge this clip-

ping to the hot pixel responsible for it. Thisadditional clipping can only help the expectedO(log n) bound above. Thus we have:Theorem 3: Given a set S of n line segmentsin the plane and a regular pixel grid G, one cansnap-round the segments in S to G in expectedtime O(n log n+Ph2H jhj log n) by a randomizedincremental construction.3 3-Dimensional Snap Round-ingLet us now consider the problem of snap round-ing a set S of n line segments in R3. In thiscase we assume a bounding box in R3 contain-ing S has been partitioned into unit-cube voxelscentered on the points with integer coordinates.We propse a notion of 3-dimensional snap round-ing that is de�ned as follows. For distinct inputsegments r and s, consider the distance betweenthem and de�ne their connector to be the seg-ment rs between their points of closest approach.We assume that no two input segments are paral-lel, so these points of closest approach are unique.A connector will be called short if its lengthin the L1 metric is 1 or less. In this case, thereis said to exist a close encounter between the twoinput segments. We de�ne a voxel to be hot if itcontains any endpoints either of input segmentsor of short connectors.The rounding process proceeds analogouslyto the two-dimensional case described above.Every input segment s is transformed into a poly-line � such that the endpoints of � are the centersof the hot voxels containing the correspondingendpoints of s and the bends in �, correspondingto transits of s across hot voxels between its end-points, are the centers of those hot voxels. Let us,then, address the computational issues involvedwith snap-rounding a set of n line segments inR3 using this notion of rounding.3.1 Determining all close encountersSuppose we are given a set S of n segments inR3.In this section we describe an e�cient output-sensitive method for determining all pairs (s; t)

of segments in S that are within an L1 distanceof 1 from each other (which are all segments thatdetermine a close encounter). From each seg-ment s let us form the tube �(s), which is theMinkowski sum of s with an axis-oriented unitcube centered at the origin. The following factsare immediate:1. each tube �(s) is a zonotope; it has at mosttwelve facets which are parallelograms;2. segments s and t are within an L1 distanceof 1 from each other if and only if theirtubes �(s) and �(t) intersect.We assume that no two segments are parallel;symbolic perturbation techniques can be used toguarantee that this is so [7]. It follows that twotubes �(s) and �(t) will intersect if and only ifan edge of one of the tubes pierces (or touches) aface of the other. Therefore, let us form two setsfrom the collection of tubes for all the segmentsin S: the set E of all edges of the tubes, andthe set F of all faces of the tubes. Each of thesehas clearly size O(n). Note also that any inter-section or contact between an edge e in E and aparallelogram f in F implies an intersection orcontact between two tubes (except if e and f be-long to the same tube), and any pairwise tubeintersection will be captured this way.We now use the range searching techniquesfor semi-algebraic varieties of Agarwal andMatou�sek [1] to develop an e�cient algorithm forreporting all the edge/face intersections. Con-sider a particular edge e and face f ; orient thefour edges of f consistently around f . Then thecondition that e intersects f can be expressedby asserting that the line supporting e has posit-ive orientation with respect to the four lines sup-porting the edges of f , and that that the planesupporting f separates the endpoints of v. Byusing the techniques of [1] we now preprocessall the faces in F so that, given a query edgee, we can quickly report all the faces that e in-tersects. This requires a six-level partition tree:four levels for the four sides of a face and twofor the two endpoints of the query edge. Assum-ing that we want to use only linear space, thedominant query cost of this structure comes from

the levels of the tree dealing with the line ori-entation conditions. By using Pl�ucker coordin-ates, Agarwal and Matou�sek [1] show how sucha structure can be developed whose query timewill be O(n=s1=4 + k), where k is the numberof reported faces intersecting e, using space andpreprocessing of O(s1+�, for any � > 0. Byquerying with all the edges in E and balancingthe preprocessing and query costs, we can ob-tain all the edge/face intersections in total timeO(n8=5+� +K) and space O(n8=5+�), where hereK denotes the number of intersecting tubes. Fur-ther details will be given in the full paper.4 ConclusionWe have given output-sensitive methods for two-dimensional segment snap-rounding, in both de-terministic and randomized settings. In bothcases our methods have a running time that issensitive to both the number of input line seg-ments and also to the number of segments ina snap-rounded representation. We have alsogiven an extension of the snap-rounding notion tothree-dimensional segments and we have given anoutput-sensitive method for snap-rounding seg-ments in R3 as well. We feel that an interestingdirection for future work is to explore the varietyof topological properties that are preserved bythis notion of three-dimensional snap rounding.AcknowledgementWe would like to thank Pankaj Agarwal for help-ful discussions involving three-dimensional rangesearching.References[1] P. K. Agarwal and J. Matou�sek. On rangesearching with semialgebraic sets. Discrete Com-put. Geom., 11:393{418, 1994.[2] F. Avnaim, J.-D. Boissonnat, O. Devillers,F. Preparata, and M. Yvinec. Evaluation ofa new method to compute signs of determin-ants. In Proc. 11th Annu. ACM Sympos. Com-put. Geom., pages C16{C17, 1995.[3] J. L. Bentley and T. A. Ottmann. Algorithms forreporting and counting geometric intersections.IEEE Trans. Comput., C-28:643{647, 1979.

[4] K. Q. Brown. Comments on \Algorithms forreporting and counting geometric intersections".IEEE Trans. Comput., C-30:147{148, 1981.[5] K. L. Clarkson. Randomized geometric al-gorithms. In D.-Z. Du and F. K. Hwang, editors,Computing in Euclidean Geometry, volume 1 ofLecture Notes Series on Computing, pages 117{162. World Scienti�c, Singapore, 1992.[6] K. L. Clarkson, K. Mehlhorn, and R. Seidel. Fourresults on randomized incremental constructions.Comput. Geom. Theory Appl., 3(4):185{212,1993.[7] H. Edelsbrunner and E. P. M�ucke. Simulationof simplicity: a technique to cope with degener-ate cases in geometric algorithms. ACM Trans.Graph., 9:66{104, 1990.[8] S. Fortune. Numerical stability of algorithms for2-d Delaunay triangulations. Internat. J. Com-put. Geom. Appl., 5(1):193{213, 1995.[9] S. Fortune and V. Milenkovic. Numerical stabil-ity of algorithms for line arrangements. In Proc.7th Annu. ACM Sympos. Comput. Geom., pages334{341, 1991.[10] D. H. Greene and F. F. Yao. Finite-resolutioncomputational geometry. In Proc. 27th Annu.IEEE Sympos. Found. Comput. Sci., pages 143{152, 1986.[11] L. Guibas and D. Marimont. Rounding arrange-ments dynamically. In Proc. 11th Annu. ACMSympos. Comput. Geom., pages 190{199, 1995.[12] L. J. Guibas, D. E. Knuth, and M. Sharir. Ran-domized incremental construction of Delaunayand Voronoi diagrams. Algorithmica, 7:381{413,1992.[13] L. J. Guibas, D. Salesin, and J. Stol�. Epsilongeometry: building robust algorithms from im-precise computations. In Proc. 5th Annu. ACMSympos. Comput. Geom., pages 208{217, 1989.[14] L. J. Guibas and J. Stol�. Primitives for themanipulation of general subdivisions and thecomputation of Voronoi diagrams. ACM Trans.Graph., 4:74{123, 1985.[15] J. Hobby. Practical segment intersection with �-nite precision output. Technical Report 93/2-27,Bell Laboratories (Lucent Technologies), 1993.[16] C. M. Ho�mann, J. E. Hopcroft, and M. S.Karasick. Towards implementing robust geomet-ric computations. In Proc. 4th Annu. ACM Sym-pos. Comput. Geom., pages 106{117, 1988.[17] G. Liotta, F. P. Preparata, and R. Tamassia.Robust proximity queries in implicit Voronoidiagrams. Technical Report CS-96-16, Centerfor Geometric Computing, Comput. Sci. Dept.,Brown Univ., Providence, RI, 1996.

[18] J. Matou�sek and R. Seidel. A tail estimatefor Mulmuley's segment intersection algorithm.In 19th International Colloquium on Automata,Languages, and Programming, volume 623 ofLecture Notes in Computer Science, pages 427{438. Springer-Verlag, 1992.[19] V. Milenkovic. Double precision geometry: ageneral technique for calculating line and seg-ment intersections using rounded arithmetic. InProc. 30th Annu. IEEE Sympos. Found. Com-put. Sci., pages 500{505, 1989.[20] K. Mulmuley. A fast planar partition algorithm:part I. Technical Report 88-007, Dept. Comput.Sci., Univ. Chicago, Chicago, IL, 1988.[21] R. Seidel. Backwards analysis of randomizedgeometric algorithms. In J. Pach, editor, NewTrends in Discrete and Computational Geo-metry, volume 10 of Algorithms and Combinat-orics, pages 37{68. Springer-Verlag, 1993.[22] K. Sugihara and M. Iri. Geometric algorithms in�nite-precision arithmetic. Technical Report 88-10, Math. Eng. and Physics Dept., U. of Tokyo,Japan, Sept. 1988.[23] K. Sugihara and M. Iri. Two design principlesof geometric algorithms in �nite-precision arith-metic. Appl. Math. Lett., 2(2):203{206, 1989.

