Offset-Polygon Annulus Placement Problems*

Gill Barequet!, Amy J. Briggs?, Matthew T. Dickerson?, and Michael T.
Goodrich!

! Center for Geometric Computing, Dept. of Computer Science, Johns Hopkins
University, Baltimore, MD 21218. E-mail: [barequet|goodrich]@cs. jhu.edu
? Department of Mathematics and Computer Science, Middlebury College,
Middlebury, VT 05753. E-mail: [briggs|dickerso]l@middlebury.edu

Abstract. In this paper we address several variants of the polygon an-
nulus placement problem: given an input polygon P and a set S of points,
find an optimal placement of P that maximizes the number of points in
S that fall in a certain annulus region defined by P and some offset
distance § > 0. We address the following variants of the problem: place-
ment of a convex polygon as well as a simple polygon; placement by
translation only, or by a translation and a rotation; off-line and on-line
versions of the corresponding decision problems; and decision as well as
optimization versions of the problems. We present efficient algorithms in
each case.

Keywords: optimal polygon placement, tolerancing, robot localization,
offsetting.

1 Introduction

1.1 Background and Applications

In this paper we address several variants of the problem of placing an annulus
defined by a given polygon such that it covers all (or a maximum number of)
points of a given set of points. This problem is motivated by several applications.
For example, in the robot localization problem (see, e.g., [GMR]), a robot should
determine its current location in some environment map from a set of points
obtained by a distance range sensor. Due to the inherent errors in range find-
ing, the points usually do not define an exact match. Most points, however, fall
within some distance 6 > 0 of the environment boundary. Thus the localization
problem can be viewed as finding some optimal placement of the environment
model (typically a polygon) with respect to the set of points and a distance
6 > 0. A second application is a pattern matching problem arising in computer
vision (see, e.g., [HU]), where the input consists of a set of points taken from
some image and a pattern (polygon) that one would like to locate in this image.
A good match can be found by determining a placement of the polygon that
maximizes the number of points within some distance § > 0 of the image points.
Yet another application arises in geometric tolerancing. Chang and Yap [CY]

* Work on this paper by the first and the fourth authors has been supported in part by
the U.S. ARO under Grant DAAH04-96-1-0013. Work by the third author has been
supported in part by the National Science Foundation under Grant CCR-93-1714.
Work by the fourth author has been supported also by NSF grant CCR-96-25289.

describe geometric tolerancing as being concerned with the specification of geo-
metric shapes for use in manufacturing of mechanical parts, and they note that,
since manufacturing processes are inherently imprecise, it is imperative that such
geometric designs be accompanied by tolerance specifications. An instance of the
tolerancing problem is to take a set of points representing an actual measure-
ment of a manufactured object (using a coordinate-measuring machine, laser
range-finder, or scanning electron microscope [DMSS]) and determine whether
the manufactured object matches a polygon (the design) within some tolerance
6 > 0. This corresponds, for example, to the tolerance zone semantics described
by Requicha [Re], Srinivasan [Sr], and Yap [Ya].

1.2 Previous Related Work

The notion of polygon annulus placement relative to a set of points appears to
be new in the computational geometry literature. There are nevertheless several
related problems that have been studied before, including variants directed at
placing an entire polygon (not an annulus) to cover a set or subset of points (see,
e.g., [ESZ, EE, BDP, DS]). These problems do not model important aspects for
optimizing polygon placement (as mentioned in the applications above). Previ-
ous work directed at annulus problems, on the other hand, have dealt exclusively
with circular annuli (see, e.g. [HT, LL, AST, AS, SJ, SLW, DGR]). These char-
acterizations capture well the notion of “roundness” present in a set of points,
but they do not easily extend to polygonal shape matching.

1.3 Definitions and Problems

We start with definitions for convex polygons to simplify the presentation. Ex-
tensions to simple polygons are made in Section 5.

Definition 1 (Offset Annulus) The §-annulus of a convez polygon P is the
closed region defined by all points in the plane at distance at most § from the
boundary of P.

Definition 2 (Offset Polygons) Given a convez polygon P and a distance § >
0, the d-offset polygons are defined as follows: The inner §-offset polygon Ips
is the boundary portions of the §-annulus of P that are properly contained by
P. Similarly, the outer d-offset polygon Op; is the boundary portions of the
0-annulus of P outside of (i.e., properly containing) P.

Note that Ips is made up of edges that are parallel to edges of P (although
there may be some edges of P that are not parallel to any in Ips). The offset
polygon Ops, on the other hand, is made up of alternating line segments and
circular arcs, and every edge of P is parallel to some edge of Op;s. One can
also imagine a fully linearized version of the outer offset polygon, where one
extends each of the linear edges until they meet the extensions of neighboring
linear edges. (For simplicity, we will first discuss algorithms for solving polygon-
annulus problems adopting this linearized view, and we will then show how to

(a) Linearized inner and outer offset polygons (b) The §-annulus region.

Fig. 1. Offsetting a polygon

extend these to the more-natural standard notion of a §-offset without affecting
the running times by more than a constant factor.)

Figure 1(a) shows a convex polygon P (with solid edges) and its inner and
linearized outer offset polygons Ips and Ops (with dashed and dotted edges,
respectively) for some value of §. Note that for any convex polygon P and for any
value of § the outer offset polygon Op ;s always has the same number of edges as
P, but the inner offset polygon Ips may have fewer edges. In this example the
edge e € P does not have a counterpart in Ip ;. More specifically, the point A,
edge e, and point B, all in P, collapse into a single point A’ in Ips. Also, unless
P is a regular polygon, the offset polygons Ips; and Ops are not scaled versions
of P. The §-annulus region of a polygon is shown shaded in Figure 1(b). Note
that the annulus region is defined to include the boundary edges. Although these
definitions are stated for convex polygons, we show that in many cases they can
easily be extended to simple polygons (see Section 5). In any case, the definition
of §-annulus regions naturally gives rise to the following problems:

— Offset-Polygon Max Cover: Given a set S of n points in the plane, a
convex polygon P, and a distance ¢, find a placement 7 of P that maximizes
the number of points of S contained in the d-annulus region of 7(P). Report
the placement 7 and the set of contained points.

— Offset-Polygon Containment (Decision Version): Given a set S of n
points in the plane, a convex polygon P, and a distance §, determine if there
exists a placement 7 of P such that all n points of S are contained in the
d-annulus region of 7(P). Report such a placement 7 if one exists.

— Offset-Polygon Containment (Optimization Version): Given a set S
of n points in the plane, and a convex polygon P, find the smallest value of
6 > 0 such that there exists a placement 7 of P with all n points of S being
contained in the §-annulus region of 7(P). Report such a placement 7 if one
exists, together with this optimal value of § > 0.

Note that we can use an algorithm for either the offset-polygon max-cover
problem or for the width-optimization problem to solve the offset-polygon con-

tainment decision problem. In particular, the answer for the decision problem is
“yes” if and only if for the former problem the value of k—the maximum number
of points contained in the d-annulus for P—is n, or for the latter problem the
value of §'—the minimum width of an annulus that contains all the points—is

J.

1.4 Outline and Summary of Results

Let n be the number of input points and let m be the number of edges (and
vertices) of the given polygon P. In this paper we give several results for solving
the offset-polygon max-cover and containment problems. We show that if we
restrict the offset-polygon containment decision problem to convex polygons un-
der translations only, then we can determine a containing placement of P, if one
exists, in O(nlognlogm +m) time. Our method involves a non-trivial extension
of the roundness method of Duncan et al. [DGR] to offset polygons using the
polygon-offset nearest-neighbor and furthest-neighbor diagrams [BDG]. More-
over, we show how to solve the optimization version of this problem in the same
time bound, by using the simplest (and most practical) version of parametric
searching.

We also study the offset-polygon max-cover problem for convex polygons
under translations, showing that this more-general problem can be solved in
O(n?log(nm) + m) time and O(n + m) space. Our methods involve a non-
trivial extension of the techniques of Barequet et al. [BDP]. In addition, we
show how to solve this problem under translations and rotations by combining
this approach with extensions of the rotation-diagram techniques of Dickerson
and Scharstein [DS]. The resulting time bound in this case is O(n? log(nm) +m)
using O(n + m) space in the worst case. Under some very reasonable “fatness”
conditions (which we make precise in Section 5), we show that our techniques can
be generalized for simple polygons under translations to result in an algorithm
running in O(n?m?log(nm)) time and O(nm?) space.

In addition to the off-line results discussed above, we also describe a method,
based upon an interesting dynamic data structure, that solves an on-line version
of the offset-polygon containment decision problem under translations. The algo-
rithm reads points one at a time, halting and answering “no” when a placement
containing all points read so far is no longer possible, or, alternatively, running
to completion on n points and answering “yes.” In the worst case, this on-line al-
gorithm runs in O(n?m?2 log(nm)) time and O(n?m?) space for simple polygons.
For many distributions of points, however, it performs significantly better. In
particular, for convex polygons our on-line algorithm runs in O(nhlog(nm)+m)
time and requires only O(nh + m) space, where h depends on the distribution
(see Section 4.3). (In the worst case h = ©(n), but for many distributions h is
substantially smaller.)

The outline of the paper is as follows. We begin in Section 2 with some
important geometric properties and primitives. In Section 3 we present the al-
gorithms for convex polygons, and in Section 4 we give our on-line solution to
the offset-polygon max-cover problem. In Section 5 we extend our solutions to

the offset-polygon max-cover problem to simple polygons. We conclude with
Section 6.

2 Key Geometric Properties

An important step of our algorithms is the computation of the intersections be-
tween translated copies of offset polygons. For simplicity of expression, let us
assume we are dealing with linearized offset polygons; we show later how to
remove this restriction to deal with the more-standard definition of d-annulus
region with only a constant-factor increase in the running times of our algo-
rithms. Let us therefore consider an upper bound on the number of intersections
between translated copies of linearized offset polygons, and a description of how
to compute them. It is well-known that two translated homothetic copies of the
same convex polygon can intersect at most twice (where in the degenerate case
an intersection may be a segment rather than a point). The following theorem
states that translations of an inner and outer offset convex polygon can also
intersect at most twice.

Theorem 1. Given a polygon P, a distance 6, and a translation T, the offset
polygons 7(Ips) and Op,s intersect at most twice, where each intersection may
be a point or (in the degenerate case) a segment.

Proof Omitted in this version of the paper. O
The technique used in this proof also provides the necessary framework for

the proof of the following lemma (using the tentative prune-and-search technique
of Kirkpatrick and Snoeyink [KS]).

Lemma 2. The intersections between offset polygons 7(Ips) and Ops can be
found in worst case O(logm) time, where m is the number of vertices of P.

We compute these intersections because they correspond to placements of
the annulus region such that two (or more) points of S are in contact with the
boundary of the annulus region.

The following lemmas are generalizations of lemmas from [BDP, DS] that
deal with intersections between two copies of the same polygon.

Lemma3. Let P be a convex polygon, qi,q> points, and 1 and 1 the trans-
lations mapping the origin to points q1 and g2, respectively. For any point x,
let 7, = q2 — x be the translation that maps x to q». Then both g1 and q» are
contained in the d-annulus region of 1,(m1(P)) if and only if x is contained in
the intersection of the §-annulus regions of 71 (P) and m2(P).

Lemmad4. Let P be a convez polygon and S be a non-empty set of points con-
tained in the d-annulus of P. Then there exists a translation T such that S is
contained in the d-annulus of T(P) and at least one point of S is on the boundary
of the annulus region.

3 Algorithms for Convex Polygons

3.1 Offset-Polygon Containment under Translation

We first briefly describe a deterministic O(n logn logm + m)-time algorithm for
solving the annulus-width optimization problem: Given a set S of n points and
a convex polygon P with m vertices, find the minimum-width annulus of P
that covers S. For this purpose we define the convex polygon-offset distance-
function Dp that corresponds to P and compute the nearest- and furthest-site
Voronoi diagrams of S with respect to Dp (see [BDG]). This can be performed
in O(n(logn + logm) + m) time. Next we use the method of [DGR] (where the
authors minimize the width of a circular annulus) and consider the overlay of
the two diagrams. As is well-known, the center of the minimum-width annulus
that contains S is either a vertex of one of the two diagrams (possibly a vertex at
infinity in the furthest-site diagram) or a point of intersection between the two
diagrams. Given a specific value of §, we place d-annuli centered at all the points
of S and observe (like in [DGR]) the overlay for determining whether the inter-
section of all annuli is nonempty. (The intersection contains the loci of all feasible
placements of the annulus so that it covers S.) This step takes O(nlogm) time.
Finally, a parametric-searching algorithm is applied for optimizing (minimizing)
the value of & for which the intersection of all the annuli is nonempty. Over all,
the whole procedure requires O(nlognlogm + m) time.

3.2 Offset-Polygon Max-Cover under Translation

In this section we consider offset-polygon max-cover under translation. Our
algorithm extends the techniques of Barequet et al. [BDP] to allow for contain-
ment within the annulus region rather than containment by the entire polygon.
The idea is to do an anchored sweep of both the inner and outer offset polygons
around each point of S. The critical events of the sweep occur when some point
of S either enters or exits the §-annulus. The full algorithm is given in Figure 2.
The correctness of this algorithm follows from Lemmas 3 and 4. There exists at
least one optimal placement with a point in contact with the annulus boundary,
and this placement will be found by the sweep. The only additional detail re-
gards the processing of degenerate intersections, where the intersection between
two offset polygons is a segment (along a connected portion of an edge) rather
than a discrete point. In this case only one of the two endpoints of the segment
corresponds to an event. If the point ¢; is currently marked “in” then it is at
the second endpoint of the intersection segment where it changes to “not in.”
Conversely for points marked “not in,” it is at the first endpoint of the segment
where it changes to “in.” This follows from the fact that the entire segment
corresponds to a translation in which both points g; and g; are on the boundary
of the translated polygon and so points that are “in” remain so until the end of
the segment, whereas points that are “not in” become “in” at the start of the
segment.

We measure the complexity of our max-cover algorithm under translations as
a function of two variables: m, the number of vertices of P, and n, the number

1. Preprocessing:

1. Preprocess offset polygons I = Ips and O = Op for intersection computation.

2. Initialize a priority queue) which will store points in clockwise order around
the boundaries of the offset polygons I and O.

II. Iteration:
1. Set max := 0. {# of points so far}
2. FOR each point ¢; € S DO BEGIN {Anchored sweep around ¢;}
3. Let P’ be I. {First sweep I}
4. Set ¢c:=1. {Points contained}
5. FOR each j #i and ¢; € S DO BEGIN {Examine nearby points}
6. Set X := {z|z € O (I) N I7;(P")} U{z|z € 8r:(O) N d7; (P')}.
7. FOR all z € X DO
8. Add (=, j) to Q. {Add intersections to queue}
END FOR
9. IF g; is contained in the d-annulus of 7;(P) THEN
10. Mark g; ‘In’; Set ¢ :=c+ 1; {Mark and count points}
ELSE
11. Mark g; ‘Not In’.
END IF
END FOR
12. WHILE Q # § DO BEGIN {Sweep with intersections}
13. Delete (z, j) from front of Q. {Update structures}
14. IF g; is ‘Not I’ THEN {See comments in text}
15. Set ¢ := ¢+ 1; Mark g; ‘In’.
ELSE
16. Set ¢ := ¢ — 1; Mark ¢g; ‘Not In’.
END IF
17. IF ¢ > max THEN
18. Set max := ¢; Store translation.
END IF

END WHILE
19. REPEAT steps 4 through 18 with P’ = 0. {Now sweep O}
END FOR

Fig. 2. Max-cover algorithm under translations, for convex polygons

of points in the set S. The preprocessing step requires O(m) time and space
for computing and storing the offset polygons I = Ip; and O = Op,;. The off-
set polygons are stored such that later intersection tests can be performed in
O(logm) time and space (see [KS] and Section 2). The steps inside the inner
nested loop execute O(n?) times. Since each pair of points has two offset poly-
gons, each of which has at most two intersections with the polygon being swept,
the total size of the queue is O(n) and queue operations can be performed in
O(logn) time. Polygon intersections in Step 6 can be computed in O(logm) time
(by Lemma 3). The total running time is therefore O(n?log(nm) + m) in the
worst case. The algorithm requires O(n + m) space. (In the full version of the
paper we show how to significantly improve the running time of the algorithm
in many instances by the use of bucketing.)

3.3 Offset-Polygon Max-Cover under Translation and Rotation

We now describe how the offset-polygon max-cover problem can be solved for
convex polygons when we allow for translations and rotations. To solve this
problem we extend the results of Dickerson and Scharstein [DS] and make use
of their rotation diagram technique. We refer the reader to [DS] for details on
this method; here we describe only the necessary modifications in the approach
and in the complexity analysis. This method creates a rotation diagram R, for
each point g;. The diagram R,, is a description of the configuration space of all
placements of the polygon P that keep the boundary of P in contact with ¢;. The
horizontal axis of this diagram represents the angle of rotation (from 0 to 27).
The vertical axis represents the arclength along OP (from 0 to the circumference
of P). For each other point g;, the rotation diagram for ¢; includes the region
of all such placements that contain g;. It is shown in [DS] that this containing
region for ¢; can be decomposed into O(m?) subregions of constant complexity.
The left and right boundaries of these subregions are certain critical angles of
rotation, where vertices of one polygon pass through edges of another. The upper
and lower boundaries are shown to be sine curves. To solve the optimal placement
problem, the algorithm performs a plane sweep of each rotation diagram R, to
find the region of greatest depth. This gives the optimal placement of P that is in
contact with ¢;. The main difference for the annulus placement problem is that
we need two rotation diagrams for each point g;: one for the inner offset polygon
Ips and one for the outer offset polygon Ops. Furthermore, each of these two
rotation diagrams for ¢; has regions for each g; # ¢; that represent containment
in the annulus region rather than in the entire polygon. The following lemma
states that these modified rotation diagrams have the same complexities.

Lemmab’. For convex polygons, the polygon annulus containing regions for a
given point is decomposed into O(m?) subregions each of which have constant
complexity: vertical left and right boundaries and a sine curve for the top and
bottom boundaries.

The proofs of [DS] suffice to show that the upper and lower boundaries are
still sine curves. The O(m?) is a trivial upper bound which is attainable. There
is however a constant factor increase in the complexity of the diagrams. The
number of critical angles are doubled because we now count intersections of
both the inner and outer polygon placed at point ¢; and either the inner or
outer polygon at ¢; (depending on which rotation diagram we are computing).
Therefore, since the number of subregions can double, the number of intersection
points can increase by a factor of four. To solve the offset-polygon max-cover
problem we use the same idea of the rotation diagram and perform plane sweeps
of each of the 2n diagrams. Lemma 4 tells us that this suffices because even with
a restriction to translation only there is at least one optimal placement that has
a point on an inner or an outer boundary of the annulus region. Thus we can
state the following theorem:

Theorem 6. The convex offset-polygon mazximum-cover problem can be solved
in O(n®log(nm) +m) time and O(n+m) space in the worst case for translation
and rotation.

3.4 True §-Tolerancing

As mentioned earlier, our algorithms assume a linearized outer polygon bound-
ary. For adapting the linearized versions of the offset-polygon max-cover and
offset-polygon containment problems to their (standard) non-linear forms, we
need only show that the framework for the offset-annulus translation variant
works also for the true d-tolerancing case. The key to this adaptation lies in
the fact that for every convex polygon P, tolerance §, and a translation 7, the
number of intersections of 7(Ip,s) and the true outer boundary Op; is still at
most two. The proof of this claim is almost identical to that of Theorem 1 (see
Section 2). Indeed, the weak monotonicity of the curves is preserved (we do
not need the curves to be piecewise-linear). Furthermore, we can still apply the
prune-and-search technique, since the simplicity of the pieces of the curves is
also maintained: it takes a constant amount of time to evaluate the intersection
of a circular arc with a line segment or with another circular arc. Therefore we
are able to apply the same algorithm (for the translation-only variant) as in
Section 3.2 and obtain the same asymptotic running time and space. In the full
version of the paper we explain how to extend also the translation and rotation
version of the problem for the true §-Tolerancing case.

4 An On-Line Decision of the Containment Problem

In the previous section we provided solutions to several variants of the offset-
polygon max-cover and containment problems, under various rigid transforma-
tions. In this section we present an alternate “on-line” approach to offset-polygon
containment decision problems for the translation-only case. As before, we as-
sume convex polygons and deal with simple polygons in a later section. The idea
of this on-line approach is that instead of being given the entire set S at once,
the points are read one at a time, and for each new point we decide whether
there is a placement of the annulus region of P that contains all the points seen
so far. There are several motivations for the on-line approach. One is that for
the decision problem we need not necessarily process the entire point set; if after
a certain number of points there is no longer a placement containing them all
then we can halt immediately and answer ‘No’ (thus offering some savings in
running time over unnecessarily processing all the points). This may be partic-
ularly useful for the tolerancing problem. A second advantage is the ability to
process incoming points as they arrive while simultaneously reading subsequent
points (a form of pipelining). This is an advantage in the cases of the proposed
applications where the points are not stored in a file but are read one-at-a-time
by an external device. A third possible advantage is that as more points are read
we can slowly refine the space of possible placements of P. This can be helpful
for both the robot localization and geometric tolerancing problems where we
might direct the input device for further measurements. Finally, the on-line ap-
proach allows for the pruning of the data structures providing a more efficient
approach for most practical applications.

4.1 Basic Algorithm Approach

We begin with the basic ideas of the on-line approach. We want to read input
points one at a time. For each point ¢; we construct and store a data structure
(similar to that of Algorithm 1) that maintains optimal placements of the an-
nulus region around P in contact with ¢;. We also update the data structures
for the existing points ¢; for j < i. That is, for each j < i we: (1) Compute the
translations that keep the annulus region of P in contact with ¢; and contain
¢; and add this information to the new data structure of ¢;; and (2) Compute
translations that keep the annulus region in contact with ¢; and contain ¢; and
update the data structure of g;. Remember that for each point g; these trans-
lations are computed from the intersections of the translated offset polygons in
O(logm) time by Lemma 2. However our use of data structures for the on-line
algorithm differs in two ways from Algorithm 1. The first difference is that (un-
fortunately) we need to store several data structures simultaneously, rather than
computing the optimal placement for one and then discarding it. This is because
each data structure is continually being updated as new points are added. The
second difference is more advantageous: since we are concerned only with the
decision problem of whether there is a placement containing all n points, we
need keep track of only those placements containing all points seen so far. Any
placement that does not contain all points can be discarded. That is, we want the
intersections of all the pairwise containing regions, where each region is given by
a pair of segments (possibly empty) on the inner offset polygon and another pair
of segments (also possibly empty) on the outer offset polygon. If at any point
in the algorithm there are no such remaining placements, then we can halt and
output ‘No’.

4.2 Analysis and Details of Data Structure

How do we store the set of placements containing all points? Recall that the
region of placements containing g; and with g; on the boundary corresponds to
a pair of segments along the inner and outer boundaries of the annulus region.
For each point, we store these placements in two balanced binary search trees
(one for the inner polygon and one for the outer polygon) ordered clockwise
around the boundary of the polygon. Unfortunately, it is possible to construct a
case where the complexity of the set of placements containing all points is ©(n).
(Each new pair of segments increases the complexity of the arrangement by 2.)
Thus the space required per point may be as high as ©(n) for a total of @(n?)
space. The searches, inserts, and deletes can all be performed in O(logn) time. In
particular, for each new point g; added to the structure of point g;, there are at
most two segments to be added to both the inner and outer offset polygons. Since
we want only placements containing all points, we store the intersections of these
two new segments with all existing segments. We find the endpoints in O(logm)
time and delete all regions not inside the endpoints. Deleting one segment and
rebalancing the tree requires O(logm) time. The total number of insertions and
deletions to each tree is O(n). Hence we need a total of O(n?logn) time for
updating all the trees and O(n?logm) time for computing all the intersections.

The overall complexity is thus O(n? log(nm) +m) time and O(n? 4+ m) space in
the worst case (when no pruning is done). The algorithm may terminate early
with a ‘No’ answer.

4.3 Improvement by Pruning

Both the space and time complexity of the algorithm can be improved consider-
ably by an on-line pruning. Recall from the previous section that for each point
q; we need to store only the placements containing all the points: that is, the
intersections of all ¢ — 1 intersection regions. We can discard the data structure
of a point g; when this intersection region becomes empty. This happens when
there are no longer any placements containing all other points with ¢; on the
boundary. We define Hy = {p1} and H; (for 2 < i < n) to contain all the
points € H;_; U {p;} such that there exists a placement 7(P) which contains
H; 1 U {p;} with z on the boundary of 7(P). Let h; = |H;|. (In case h; = 0
for some i the algorithm terminates with a ‘No’ answer.) Also, let h be the
maximum value of h; for 1 < i < n. Then the total number of data structures
after the ith step of the algorithm is h; and the total at any time is O(h). The
total time required to update existing data structures for a new point g;y1 is
O(h;logn) = O(hlogn). The pruning step can be implemented efficiently. The
main idea, which we explore in the full version of the paper, is marking points
for deletion (and temporarily ignoring them), but using them at a later stage
of the algorithm. We omit in this version of the paper the full analysis of the
pruning version of the algorithm. The total running time of the algorithm is
O(nhlog(nm) + m) time. The algorithm requires only O(nh + m) space in the
worst case.

5 Simple Polygons

In this section we extend our results to the case of simple polygons.> We re-
strict the class of simple polygons to a natural set of “fat” polygons, which are
more-natural candidates for offset-polygon placement problems. Specifically, we
disallow polygons with narrow corridors, as specified in the following definition.

Definition 3 (J-wide Polygons) A §-wide polygon P is a simple polygon with
the property that if p,q € OP with dist(p,q) < 25 then there is a path connecting
p and q along the boundary of P such that every point on the path is at most 20
away from p or every point is at most 20 away from q.

This restriction is reasonable for the proposed applications since the offset
polygons are meant to capture measurements that are close to the input poly-
gon and in actual production the allowed tolerance has to be twice the minimum
feature-size. It eliminates cases in which the inner and outer d-offsets of P be-
come disconnected or non-simply-connected. Figure 3(a) shows a simple polygon

3 See [AAAG] for a discussion of the straight skeleton of a simple polygon which is
closely related to the notion of the inner offset polygon. This discussion is however
not in the context of the problems discussed in this paper.

(a) Non-simple inner and outer offsets (b) Intersecting offsets of narrow spikes

Fig. 3. Simple polygons with non-simple offsets

(with solid edges) whose outer offset is perforated: it contains a boundary (dotted
densely) and a hole (dotted sparsely). The inner offset of the same polygon con-
sists of three distinct polygons (with dashed edges). Figure 3(b) shows another
simple polygon whose outer offset is perforated.

We can solve simple-polygon variants of the offset-polygon max-cover prob-
lem for d-wide simple polygons with a slightly modified version of the algorithm
given in Figure 2. Let us use Op s to denote the true (non-linear) outer d-offset
of P. Similarly, we call the inner curve formed by straight segments and circular
arcs at distance § the true inner d-offset of P and denote it by Ips. Note that
Ips and Opgs are each of complexity O(m) for a §-wide simple polygon P of
size m. Instead of having at most two intersections between 7(Ips) and Opg,
we can have @(m?) pairwise intersections in the worst case requiring ©(m?)
time to compute. Each pair of points has two offset polygons, each of which has
O(m?) intersections with the polygon being swept. So the size of the queue is
O(nm?) and queue operations can be performed in O(log(nm)) time. The overall
complexity of the algorithm becomes O(n?m? log(nm)) time and O(nm?) space.
The above running times also hold for linearized versions of the offset-polygon
max-cover problem if we disallow polygons with narrow features that cause the
outer or inner offset polygon to intersect itself. Note that for a general simple
polygon P, both linearized outer and inner boundaries, Ops and Ips, can con-
tain some points further than § from OP. As a result, Ips and Op;s can each
be of complexity ©(m?) for a polygon P with m vertices. Figure 3(b) gives an
illustration of this. Thus there can be ©(m?) intersections between 7(Ip;s) and
Op;s. The simple polygons to which our algorithm applies must therefore be
d-wide without narrow spikes (as shown in Figure 3(b)).

The on-line algorithm can also be modified for simple polygons. If we make
the assumption that the features of the polygon are such that the annulus re-
gion has O(m) complexity, then in the worst case the number of intersections
between two translated copies of the annulus is O(m?) and the complexity of

the arrangement of containing regions for a given point is O(nm?). The on-line
algorithm therefore requires O(n?m?log(nm)) time and O(n?m?) space.

6 Conclusion

In this paper we provide efficient algorithms for polygon offset placement prob-
lems. We handle the convex and non-convex cases, the translation-only variant
as well as the translation and rotation variant, the static and dynamic modes of
input points, and decision and optimization versions of the problems. There are
several possible further research directions, which include the following:

1. Minimizing ¢ such that the placement of the given polygon annulus contains
some given value k < n of them (offset-polygon partial containment).

2. Generalizing from a polygon to a collection of polygonal chains. (This variant
often occurs in applications to robot localization.)

. Generalizing from polygons to smooth shapes.

. Computing approximate solutions to all of these problems.

. Proving lower bounds for the problems.

. Solving similar problems in higher dimensions.

. Analizing the ezpected value of h in the pruning version of the on-line algo-
rithm (Section 4.3).

N OO W

Acknowledgement. We would like to thank Vincent Mirelli for several stim-
ulating conversations related to the topics of this paper.

References

[AAAG] O. AICHHOLZER, D. ALBERTS, F. AURENHAMMER, AND B. GARTNER, A
novel type of skeleton for polygons, J. of Universal Computer Science (an
electronic journal), 1 (1995), 752-761

[AS] P.K. AGARWAL AND M. SHARIR, Efficient randomized algorithms for some
geometric optimization problems, Proc. 11th Ann. ACM Symp. on Computa-
tional Geometry, Vancouver, Canada, 1995, 326-335.

[AST] P.K. AGARWAL, M. SHARIR, AND S. TOLEDO, Applications of parametric
searching in geometric optimization, J. Algorithms, 17 (1994), 292-318.

[BDG] G. BAREQUET, M. DICKERSON, AND M.T. GOODRICH, Voronoi diagrams for
medial-axis distance functions, these proceedings, 1997.

[BDP] G. BAREQUET, M. DICKERSON, AND P. PAu, Translating a convex polygon
to contain a maximum number of points, Proc. 7th Canadian Conf. on Com-
putational Geometry, Québec City, Québec, Canada, 1995, 61-66; full version
to appear in: Computational Geometry: Theory and Applications.

[Ch] B. CHAZELLE, The polygon placement problem, Advances in Computing Re-
search: volume 1 (F. Preparata, ed.), JAI Press, 1983, 1-34.

[CK] I.J. Cox AND J.B. KRUSKAL, Determining the 2- or 3-dimensional similarity
transformation between a point set and a model made of lines and arcs, Proc.
28th Conf. on Decision and Control, 1989, 1167-1172.

[CY]

[DGR]

[DS]

[DMSS]

[EE]

[ESZ]

[GMR]
(HT]
(HU]

[KS]

[LL]

[LS]

[Re]

E.-C. CHANG AND C.-K. YAP, Issues in the Metrology of Geometric Tol-
erancing, Courant Institute of Mathematical Sciences, New York University,
Unpublished manuscript.

C.A. DuncaN, M.T. GooODRICH, AND E.A. RAmMOS, Efficient approxima-
tion and optimization algorithms for computational metrology, Proc. 8th Ann.
ACM-SIAM Symp. on Discrete Algorithms, New Orleans, LA, 1997, to appear.
M. DICKERSON AND D. SCHARSTEIN, Optimal placement of convex polygons
to maximize point containment, Proc. 7th Ann. ACM-SIAM Symp. on Dis-
crete Algorithms, Atlanta, GA, 1996, 114-121.

W.P. DonG, E. MAINsAH, P.F. SuLLIVAN, AND K.F. STouT, Instruments
and Measurement Techniques of 3-Dimensional Surface Topography, Three-
Dimensional Surface Topography: Measurement, Interpretation and Applica-
tions (K.F. Stout, Ed.), Penton Press, Bristol, PA, 1994.

D. EPPSTEIN AND J. ERICKSON, Iterated nearest neighbors and finding min-
imal polytopes, Discrete & Computational Geometry, 11 (1994) 321-350.

A. EFRAT, M. SHARIR, AND A. Z1v, Computing the smallest k-enclosing circle
and related problems, Computational Geometry: Theory and Applications, 4
(1994), 119-136.

L. GuiBAS, R. MOTWANI, AND P. RAGHAVAN, The robot localization problem,
in: Algorithmic Foundations of Robotics, A K Peters, Ltd., 1995, 269-282.
M.E. HOULE AND G.T. ToussAINT, Computing the width of a set, Proc. 1st
Ann. ACM Symp. on Computational Geometry, 1985, 1-7.

D.P. HUTTENLOCHER AND S. ULLMAN, Recognizing solid objects by align-
ment with an image, Int. J. of Computer Vision, 5 (1990), 195-212.

D. KIRKPATRICK AND J. SNOEYINK, Tentative prune-and-search for comput-
ing fixed-points with applications to geometric computation, Fundamental In-
formatice, 22 (1995), 353-370.

V.B. LE AnD D.T. LEE, Out-of-roundness problem revisited, IEEE Trans. on
Pattern Analysis and Machine Intelligence, 13 (1991), 217-223.

H.P. LENHOF AND M. SMID, Sequential and parallel algorithms for the k
closest pairs problem, Int. J. Computational Geometry and Applications, 5
(1995), 273-288.

A.A.G. REQUICHA, Mathematical meaning and computational representation
of tolerance specifications, Proc. Int. Forum on Dimensional Tolerancing and
Metrology, 1993, 61-68.

M. SMmID AND R. JANARDAN, On the width and roundness of a set of points
in the plane, Proc. 7th Canadian Conf. on Computational Geometry, Québec
City, Québec, Canada, 1995, 193-198.

V. SRINIVASAN, Role of sweeps in tolerance semantics, Proc. Int. Forum on
Dimensional Tolerancing and Metrology, 1993, 69-78.

K. SwaNsON, D.T. LEE, AND V.L. Wu, An optimal algorithm for roundness
determination on convex polygons, Computational Geometry: Theory and Ap-
plications, 5 (1995), 225-235.

C.-K. YAp, Exact computational geometry and tolerancing metrology, in:
Snapshots of Computational and Discrete Geometry, Vol. 3, Technical Report
SOCS-94.50 (D. Avis and J. Bose, Eds.), McGill School of Computer Science,
1995.

