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Abstract In this paper we present an ‘approach 
for teaching the Freshman-Sophomore ilitroduction 
to data stru&ures course (CS2) in a way that pro- 
vides an introduction to object-oriented softtiare.en- 
gineering’ patterns in addition to the theory of data 
structur& We survey in this paper se&al design 
patterns and describe how they can be naturally in- 
tegrated in the CS2 curricuhim. 

1 Introduction 
One of the main advantages of objkct-oriented de- 
sign is to encourage well-organized code development 
for building software that is reusablb, robust, and 
adaptable (e.g., see [2,3,6]). Designing quality object- 
oriented code takes more than simply understanding 
the object-oriented design methodologies, however. 
It requires the effective use of these and other object- 
oriented techniques in powerful and~elegant ways. 

Design Patterns Software engineering researchers 
and practitioners are devel?ping sets of organiza- 
tional concepts for designing. qu+ity ,object-qrientqd 
software. ,These concepts, called design patterns J$J, 
are frameworks that one might follow fo,r producmg 
object-oriented software that is concise, correct, an+ 
reusable. Such patterns are-important, b$ probably 
neglecte! by most instructors in the i$roduction to 
data structures course (CS2) and usually not taught 
until the software engineering course. We briefly sur- 
vey several object-oriented design paradigms in this 
paper, and describe how these paradigms can be con- 
sistently integrated into the curriculum of CS2, teach- 
ing students how to design quality impleme?taiiohs 
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of data structures. The design patterns we discuss in- 
clude the following: adapters, template method, com- 
parators, decorators, itemtors and enumerations, po- 
sitions, and locators. Incorporating these patterns 
doesn’t zequire any major revisions to the CS2 cur- 
riculum, for,, as we describe below, they fit in nat- 
urally with ,the discussions of several components of 
CS2. ,These patterns apply to a cburse taught in any 
object-oriented language, .we will give our examples 
in Java. . 

Relat-yd Work Software engineers have used de- 
sign paradigms, or patterns, for some time now. Even 
so, it wasn’t until the recent, yet seminal, cata- 
loging effort of the fso-called “gang of four,” Gamma 
et al. [4], that the subject .of design patterns be- 
came a topic of study in its own right. The ef- 
forts of these four, and other software engineering re- 
searchers, have shown that design patterns can save 
development time and result in software that’is ro- 
bust and reusable: 

At Brown University design pattern? have been 
taught as early’ as the in+roductory computer sci- 
ence course (CSl) [7]. The patterns presented in- 
cluded &ate, proxy, chain of responsibility, and fac- 
tory. Most of the patterns we ;d&cribe in this pa- 
per are also described in the book by Gamma et 
al., including adapters, itemtors, template methods, 
and decorators. Other patterns we describe here, in- 
cluding positions, locators, and comparators, and the 
way that they can be integrated in the CS2 curricu- 
lum, are included in the recent bdok by Goodrich and 
Tamassia [5]. 

In the remainder of this paper we describe these 
patterns and boy $ey can naturally be included in 
the CS2 curriculum. We break the patte:ns into two 
groups: those that primarily act on classes aid those 
that primarily act on objects. 

/ 

2 Class Patterns ,, 
Many patterns act on classes. That is, they provide 
extra capabilities for a class of objects, which the 
designer of that class need not be directly aware of. 
We describe some of these patterns in this section. 

. 
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Adapter The adapter pattern adjusts methods 
from one class so they can be used to implement 
methods of another class. The adaptation is expected 
to be a simple one, involving what are essentially one- 
line method calls to implement each method. This 
sometimes also involves not using several of the meth- 
ods from a more ‘general class. This adaptation is 
commonly done in design of data structures when we 
want to implement a new data structure in terms of 
another data structure that has a similar functional- 
ity, but different interface. A natural place to intro- 
duce this pattern is in the discussion of implementa- 
tion of stacks, queues, and double-ended queues (or 
deques). s 

The adapter pattern can naturally be included 
early in the CS2 curriculum, in the implementation 
of DequeStack class shown in Code Fragment 1. This 
class demonstrates how to adapt a deque class so that 
it can be used to implement the stack, abstract data 
type (ADT). That is, if we have an implementation 
MyDeque of the deque ADT, then we can, easily im- 
plement the Stack interface with the class Dequ$tack 
shown in Code Fragment 1. All the methods of De- 
q&tack are essentially one-line calls to methods of 
the. Deque interface, with the slight added complica- 
tion of converting deque exceptions into stack excep- 
tions.’ f,‘:. 
public class DequeStack implements Stack ( 1 

Deque D; //. holds the elements of the stack I 
public DequeStack() { D = new MyDeque(); ) 
public int $ze() { return ,D.size(); ) / 
public ,boolean isEmpty { return D.isEmpty(); ) 
public v&d push(Obj&t obj) { D.insertLast(obj); ) 
public Obj&t top0 ‘throivs StackEmptyException { 

try (. return D.la$Element(); ) ” 
catch (Dec$eEmptyException err) 

t ) .* (‘h row new StackEmptyException(); ) 
‘3 ,I , 

public Object pop0 throws StackEmptyException { 
try { return D.removeLast(); 3 

$1 catch (DequeEmptyException err) 
( throw new StackEmptyException(); ) 

3 ‘I I 
J I 1 

: 

C$e Fragmkht 1: ‘Implementation of the Stack inter- 
face by ‘me&is of $ deque. ‘ ‘, ,I/ . I’ 

Another useful application of the adapter,pattern 
in design of data structures is to specialize the types 
of objects that are used by a general class. This allows 
us to design general data structures which can store 
objects of any type. We can then make the data 
structure type-safe by writing an adapter that only 
accepts objects of a certain type and then forward 
all calls to the generic class. We can use this-kind of 

adapter, for example, to define an IntegerArrayStack 
class that adapts an array-based ArrayStack class so 
that the stack only stores Integer objects. Such a 
class can then be used to to avoid the extra typing 
and possible confusion associated with casting. 

Template Method Often several algorithms have 
the same overall structure but differ in the actions 
they take at specific steps. For example, many al- 
gorithms have as a base a simple tree traversal, but 
differ in the actions they perform at the nodes of a 
tree. In such cases it is desirable to implement the 
algorithm only once and then specialize it for the dif- 
ferent applications. 

. The design pattern that can be used in such situa- 
tions is called tempZate method. This pattern provides 
a class which implements a skeleton of an algorithm, 
and delegates the steps that will vary in different im- 
plementations to its subclasses. 

Template methods can be introduced in CS2 dur- 
ing the discussion of tree and graph traversals. We 
can generalize different tree ,traversals, such as pre- 
order and postorder visit, to one generic visit of the 
tree, called Euler tour, where we start by going from 
the root, towards the left child viewing the edges of 
the tree as being walls that, we always keep to our 
left. Each node, therefore, will be encountered three 
times by the Euler tour: from the left, from below, 
and from the, right. Since all algorithms using an Eu- 
ler tour will have the same general structure, we can 
define an abstract class Binar);TreeTraversal, shown 
in Code Fragment 2, which executes the traversal, but 
does not take any specific action when it encounters 
a node. Instead, it’ calls auxiliary methods which are 
left empty in the abstract class, but are defined in the 
subclasses of the traversal ‘to perform’ some actions. 
For example,’ we can produce preorder and postorder 
traversals of the tree by performing an action when a 
node is encountered from t$ left and from the right 
respectively. 

An alternative approach to ‘the problem of gen- 
eralized algorithms is to defer the specific actions to 
se&ate objects instead of the, subclasses of the ab- 
stract class and use the itrategy pattern [4] instead 
of the template method pattern. 

Comparator Another useful pattern that acts 
upon a class is the comparator pattern, which is an 
instance of a more general strategy pattern. This pat- 
tern provides a class of objects that are used for com- 
paring pairs of objects in a totally-ordered container. 
An alternative approach is to require that objects be 
able to compare themselves to one another, but there 
are contexts in which this solution is not applicable. 
Often objects do not need toPknow” how they ought 

I 
i 
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public abstract class BinaryTreeTraversal ( 
public void traverseNode(Position p) { : 

left(p); r 

traverseNode(tree.leftChild(p)); 
below(p); 

I 
, I 

traverseNode(tree.rightChild(p)); . l., 
right(p); 

’ 

I 
// specific actions to take will be defined here 
prptected void lefi(Position p) {} ’ 
protected ‘void below(Positioti p) {} 

I 

protected,void right(Position p) {}’ I’ l -j 

: I 
Code Fragment 2: Generalized,Euler tour of a binary 
tree 

to be compared, or there may be &$tiple compari- 
son methods that will add unnecessary compl@ty to’ 
the intefface of those objects. For example, for two- 
dimensional data, it is not clear whether ,we should 
use the first coordinate or the second B, t,\e primary 
comparison value (or some other rule altogether). In- 
deed, there are several contexts in gednietric, algq- 
rithms yhere WC might, want to dynamically switch 
between different cbmparison Tunctions. Fhus, the 
data structqres that need to compare +je@ should 
not expect &he objects to pro>vidvidk thei! ,0&n compar- 
ison rules, but instead delegate this task to a co@- 
parato~ object. . . 

Compar+tors are most naturally ihtioduced in 
CS2 during ,$he discussion ,of comparison-based d$a 
structures, such as priority queues and dictionaries. 
For example, a priqrity queue Q that is designed with 
comparators in mind is initialized with a given ,com- 
parator, which is then yed by Q to compare two 
objects. We can even imagine th” ability for a pri- 
ority queue to be given a new comparatoi if the ,old 
one even becomes Uoutrof date”. Thus,, a program- 
mer can write a general priority queue irnplementa- 
tion that can work correctly in a wide variety of con- 
texts (including some the programmer has probably 
not even thought about). Formally, a comparator in- 
terface provides methods, isless, isLessOrEqual, areE- 
qua], isGreater, and isGreater0rEqual. .We provide an 
example implementation of the Comparator interface 
in Code Fragment 3. 

Decorator The final c&s pattern we discuss in 
this section is the deco&or pattern..This pattern is 
used to add extra attributes or “decorations” to OK 
jects with a certain interface (one pos&ble interface 
is shown in Code Fragment 4). The use of decora- 
tors is motivated by the qeed of some ?lgorith& and 
data structures to add extra variables or temp?;ary 
scratch data to the objects that will not ‘normally 
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public class Lexicographic implements Comparator ( 
// Assumes Point2D objects have getX() an4 
// getY() methods for coordinates. 
public boolean isLess(Point2D a, Point2D b) ‘( 

if (a+etX() ==, b.getX()) 
return (a.getY() < b.getY()); ‘ ‘_ 

return (a.gety!) < b.$etX()); 

:/ h ot er methods are implemented in a similar fashion 
I 1’ 

Code Fragment 3: An implementation of the Compara- 
tor interface for Z-dimensional points. 

: 
need to have such variables. , : : 

public inteiace Decorable { ’ 
‘public void create (Object key, Object value); 
public Object d&troy(Obj&t key); 
public boolean has(Object key); 
public’void set (Object key, Object value); 
public Object get(Object key); 
public Enumeration attributes& 

I 
,! 

Code,fiagment 4: An interface for objects that support 
adding decorations. Here key is a refyrence to the new 
decoration. _ , 

if (v.get(VlSITED) == Bbole&kALSE) { 
.vset(VISITED, Bbolean.TRUE); 
visit(v); 

I ’ 
/ 

Code Fragment 5: An example of vertex visit in depth- 
first search using a decoration to store whether the vertex 
has been exp)ored. 

Decorators can be introduced in the CS2 curricu- 
lum in the discussion of b&lanced binary search trees 
and graph algorithins. In ,implementing balanced bi- 
nary search trees we’can use a binary search tree class 
to implement a bal&cec$ tree. However, the nodes of 
a binary search tree will have to store extra informa- 
tion such as a balance factor (for AVL trees) or a color 
bit (for red-black trees). Since the nodes of a generic 
binary search tree do not have such variables, they 
can be provided in’ the Iform of decorations. In the 
implementation of graph traversal algorithms, such 
as depth-first search and breadth-first search, we can 
use the decorator pattern to store temporary infor- 
mation about whether a certain vertex of a graph has 
been visited (see Code Fragment 5). The decorator 
pattern can be used in conjunction with the position 
patter?, describ’ed in Section 3. 

/, 
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3 Object (Patterns 1 I 
Other patt’&ns &ct primarily on objects. We describe 
some of them in this sectioq. 

Iterator Often we are interested in accessing the el- 
ements of a collection in certain order, one at a tim-e, 
without changing the cont&ts of the collection, e.g. 
to, lqok, for a specific elem,ent or to sum the values 
of all its elements. An iterator is an object-oriented 
design pattern that abstracts the process of scanning 
through a ,collection of elements, one element at a 
time, without exposing the underlying implementa- 
tion of the collection. A typical interface of au it- 
erator will include methods isDone(), firstElementt), 
nextElement(), and currentElement(). This ADT al- 
lows us to visit each element in a coliection in order, 
keeping‘track of the “curreqt” element. 

Iterators can be discussed.in the CS2 curriculum 
as soon as: -elementary data structures introduced. 
Java provides the simplified “streamlined” version of 
the iterator pattern in its Enumeration interface. Any 
time several objects need to be examined by some 
class, they can be given to that class in an enumer- 
ation. It is often tiseful to be ‘able to run through 
or enume+atb ‘all the objects in a particdar diet- 
tion, so it can be useful to require all collections to 
support a method for returning their elements in an 
enumeration. Some collections, s&h as trees, are not 
linearly ordered, and there ‘may be’ several different 
ways to enumerate their. elements (e.g. preorder and 
postorder traversal). Using enumerations to traverse 
collections does hot require knowledge of the internal 
details‘df how the collection is implemented. For ex- 
ample, one may wish to write a generic printCollectidn 
method, shown in Code Fragment 6, that can print 
out ,the contents of a cqllection of objects. ,_ 

plrblic pri~tCollection(ColI&ion c) { ’ . 
Enumerkion erium = c.ele&nts(); 
whi,le (enum.hasMoreElements()) { .’ 

Sys~m.out’.println(enum.nextElement()); 

,I 
}‘,, “2, ](’ ,, .’ 

Code Fragment 6: An example ot,using an enumera- 
tion. L _I 
0 When itis created,: an Itdrator or Enumeration ob- 
ject may or may not be a “snapshot’? of the collection 
at that time, so it is not a’ good idea to use iterator 
objects while msdifying the contents of a collection. 

/ ,/’ 
@ositioi” 1; order to i&tract and unify the differ- 
ent mechanisms for storing elements ih various im- 
plementations of data structures, we introduce the 
concept of position in the data structure, which for- 

malizes the intuitive notion of ‘place” of an element 
in a collection. A collection, then, store’s its elements 
in positions and keeps the positions arranged in some 
specific order. The Position interface provides meth- 
ods for accessing the element stored at that position 
and the collection that the position belongs to. 

Some examples of positions are nodes in such data 
structures a+ sequences and trees. Usually, the nodes 
are a part of the implementation of these data struc- 
tures and therefore are not visible to the user. In an 
array-based implementations of sequences, there are 
no nodes, so positions are represented by the array 
indices. The position pattern provides a uniform in- 
terface for different implementations of positions in 
various data structures and makes the positions part 
of the interface of a data strudture. For example, we 
can provide a method insertAftkr(Position p, Object el- 
ement) in the interface of a sequence that allows us to 
insert a new element into the’ sequence, immediately 
after a given position (node). 

A big advantage of being able to refer to individ- 
ual,positio& is that it illows us to perform several 
operation$‘on collections more efficiently. For exam- 
ple, given,an implementation df a doubly linked list 
with nodes that have next and P;rev pointers, we can 
insert’ an arbitrary node v in O(1) time, @ovided we 
are given a reference to the node preceding (or follow- 
ing) v. We can just “link in” the node new by updat- 
ing its next and prev references, as well as those of 
its neighbors. Some possibie places in the CS2 where 
positions can be introdubed inlclude the discussions of 
sequences tid binary trees, where positions abstract 
the cdncept of nodes, and discuision ‘of graphs where 
positions represent ve&+s aqd edges. Positions can 
be used in conjunction with ‘the decorator pattern 
discussed, in Section 2, since positions are the objects . 
to wh& decorations can be added (in fact Position 
interface can extend Decorabk). Not all data struc- 
tures support & natural hotion of position, however, 
and for those structur& we Tn use the pattern we 
discuss next. 

I 
Locator The Position interface, described above, 
allow& us to identify a specific “place” that can 
store an element. The element at ‘some position 
can change, but the position ‘stays the same. How- 
ever, just having positions is not enough. When dis- 
cussing iri CS2 priority queues: dictionaries, and (in a 
fast-paced course) Dijkstra’s shortest path algorithm, 
there are applic+ons where dne ‘needs to keep track 
of elements as thky are being Loved !from p’osition to 
position inside a collection. Iii order’ to keep track of 
the location of each such objebt in an object-oriented 
manner, we need & abstraction of “location” that fol- 
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lows an element around, rather than being associated 
with a fixed position. This need is particularly impor- 
tant for data structures where there is no real concept 
of “positions” in the structure (e.g., key-based struc- 
tures). A simple design pattern that fulfills this need 
is the locator. 

The Locator interface is a simple ADT that ab 
stracts the location of a specific element in a collec- 
tion. A locator “sticks” with its associated*element 
as long as that element remains in the collection, 
i.e., a locator remains valid until its associated ele- 
ment is removed or replaced. Like the Position ADT, 
the Locator ADT supports a method for returning 
its element. Even though they both support such a 
method, the Locator and Position interfaces are ac- 
tually complements of each other: a Locator object 

s stays with a specific element, even if it changes from 
position to position, and a Position object stays with 
a specific position, even if it changes the elements it 
holds. A locator, therefore, is lie a’coat’check: we 
can give our coat to a coat room attendant, and we 
receive back a coat check, which is a “lo&to? for 

. our coat. The position of our coat relative to the 
other coats can change, as other coats are added and 
removed, but our coat check can always be used to 
retrieve our coat. Lie a coat check; then, we can 
now imagine getting something back when we insert 
an element into a collection: we can get back a loca- 
tor to that element. This in turn can then be used to 
provide quick access to the position of this element in 
the collection to, say, remove this element or replace 
it with another element. 

We can use locators in a very natural way in 
the context of a priority queue. A- locator in such 
a scenario stays attached to an element inserted in 
the priority queue and allows us to refer to’the ele- 
ment and its key in a generic manner that is’indepen- 
dent from the specific implementation of the’ priority 
‘queue. This ability is important for a priority queue 
implementation, for there are no positions per se in 
a priority queue, since we do not refer to elements or 
keys by any notions of ‘%ank,” “index,” or “node.” 
By using locators, we can define methods for a prior- 
ity queue Q that refer to elements stored in Q in a way 
that abstracts from the specific implementation of Q. 
Such methods include remove(Q which removes the 
element with locator 1, and replaceKey(e,k), which 
changes to k the priority of the element with loca- 
tor 1. For example, Code Fragment 7, shows two 
fragments from an implementation of Dijkstra’s al- 
gorithm in Java. The first fragment inserts a vertex 
u into a priority queue Q, using u’s distance as its 
key, and associates with u the locator returned by Q 
(e.g., storing the locator as a decoration of u). The 

second fragment shows the relaxation of edge (u, z), 
and the update of the priority of vertex z in Q, which 
is performed with operation replaceKey. 

Locator u-lot = Q.insert(new Integer(u-dist), u); 
setLocator(u, u-lot); 
. . . 
if ( u-dist + e-weight < z-dist ) // relaxation 

Q.replaceKey(z-loc, new Integer(u-dist + e-weight)); 

Code Fragment 7: Fragments from the implementation 
of Dijkstra’s aIgorithm 

4 Conclusion 
In this paper we survey a number of useful object- 
oriented software design patterns and describe natu- 
ral places ‘where they can’ be introduced in the stan- 
dard curriculum for the Freshman-Sophomore data 
structures course (CS2). We summarize our sugges- 
tions in Table 1. We feel that introducing such design 
principles early in the computer science curriculum 
helps students form a framework for engineering soft- 
ware that will complement the theoretical foundation 
they receive in CS2,, 

1 Design Pattern 1 

I adanters I 
CS2 Topic 

stacks and oueues I 
template methods 

comparators 
tree and graph traversals 

priority queues 
decorators 1 1 balanced trees, graphs 

’ iterators I sequences, trees, graphs 
positions 
locators 

1 sequences, binary trees, graphs 
1 priority queues, dictionaries 

Table 1: Some design patterns and natural places in the 
CS2 .curricuhnn where they can be introduced: I 
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