
Teaching Data Structure Design Patterns

Natasha Gelfand* Michael T. Goodricht Roberto Tamassia*

Dept. of Comp. Sci. Dept. of Comp. Sci. Dept. of Comp. Sci.
Brown Univ. Johns Hopkins Univ. Brown ‘Univ.

Providence, RI 02912 Baltimore, MD 21218 Providence! RI 02912
ng?cs.bro+n.edu goodrichQcs . jhu. edu rt0cs.broun.edu

Abstract In this paper we present an ‘approach
for teaching the Freshman-Sophomore ilitroduction
to data stru&ures course (CS2) in a way that pro-
vides an introduction to object-oriented softtiare.en-
gineering’ patterns in addition to the theory of data
structur& We survey in this paper se&al design
patterns and describe how they can be naturally in-
tegrated in the CS2 curricuhim.

1 Introduction
One of the main advantages of objkct-oriented de-
sign is to encourage well-organized code development
for building software that is reusablb, robust, and
adaptable (e.g., see [2,3,6]). Designing quality object-
oriented code takes more than simply understanding
the object-oriented design methodologies, however.
It requires the effective use of these and other object-
oriented techniques in powerful and~elegant ways.

Design Patterns Software engineering researchers
and practitioners are devel?ping sets of organiza-
tional concepts for designing. qu+ity ,object-qrientqd
software. ,These concepts, called design patterns J$J,
are frameworks that one might follow fo,r producmg
object-oriented software that is concise, correct, an+
reusable. Such patterns are-important, b$ probably
neglecte! by most instructors in the i$roduction to
data structures course (CS2) and usually not taught
until the software engineering course. We briefly sur-
vey several object-oriented design paradigms in this
paper, and describe how these paradigms can be con-
sistently integrated into the curriculum of CS2, teach-
ing students how to design quality impleme?taiiohs

*The work of this author is supported by the U.S. Army,
Research Office under grant DAAH04-96-l-0013, and by the
National Science Foundation under grant CCR-9423847.

tThe work of this author is supported byf the U.S. Army
Research Office under grant DAAHO&96-I-0013, and by the
National Science Foundation under grant CCR-9625289.

,,

Permission to make digitaL/hard copies of all or part of tbis material for
personal or classroom use is granted without fee provided that tbe copies
are not ma& or distributed for profit or commercial advantage, the copy-
right notice, the title ofthe publication and its date appear, and notice is
given that copyright is by permission oftbe ACM, Inc: To copy otherwise,
to republish, to post on serverS or to redistribute to lists, requires specific
permission and/or fee.
SIGSCE 98 AtlantaGA USA
Copy+bt 1998 0-89791-994-7/98/2..$5.00

of data structures. The design patterns we discuss in-
clude the following: adapters, template method, com-
parators, decorators, itemtors and enumerations, po-
sitions, and locators. Incorporating these patterns
doesn’t zequire any major revisions to the CS2 cur-
riculum, for,, as we describe below, they fit in nat-
urally with ,the discussions of several components of
CS2. ,These patterns apply to a cburse taught in any
object-oriented language, .we will give our examples
in Java. .

Relat-yd Work Software engineers have used de-
sign paradigms, or patterns, for some time now. Even
so, it wasn’t until the recent, yet seminal, cata-
loging effort of the fso-called “gang of four,” Gamma
et al. [4], that the subject .of design patterns be-
came a topic of study in its own right. The ef-
forts of these four, and other software engineering re-
searchers, have shown that design patterns can save
development time and result in software that’is ro-
bust and reusable:

At Brown University design pattern? have been
taught as early’ as the in+roductory computer sci-
ence course (CSl) [7]. The patterns presented in-
cluded &ate, proxy, chain of responsibility, and fac-
tory. Most of the patterns we ;d&cribe in this pa-
per are also described in the book by Gamma et
al., including adapters, itemtors, template methods,
and decorators. Other patterns we describe here, in-
cluding positions, locators, and comparators, and the
way that they can be integrated in the CS2 curricu-
lum, are included in the recent bdok by Goodrich and
Tamassia [5].

In the remainder of this paper we describe these
patterns and boy $ey can naturally be included in
the CS2 curriculum. We break the patte:ns into two
groups: those that primarily act on classes aid those
that primarily act on objects.

/

2 Class Patterns ,,
Many patterns act on classes. That is, they provide
extra capabilities for a class of objects, which the
designer of that class need not be directly aware of.
We describe some of these patterns in this section.

.

331

Adapter The adapter pattern adjusts methods
from one class so they can be used to implement
methods of another class. The adaptation is expected
to be a simple one, involving what are essentially one-
line method calls to implement each method. This
sometimes also involves not using several of the meth-
ods from a more ‘general class. This adaptation is
commonly done in design of data structures when we
want to implement a new data structure in terms of
another data structure that has a similar functional-
ity, but different interface. A natural place to intro-
duce this pattern is in the discussion of implementa-
tion of stacks, queues, and double-ended queues (or
deques). s

The adapter pattern can naturally be included
early in the CS2 curriculum, in the implementation
of DequeStack class shown in Code Fragment 1. This
class demonstrates how to adapt a deque class so that
it can be used to implement the stack, abstract data
type (ADT). That is, if we have an implementation
MyDeque of the deque ADT, then we can, easily im-
plement the Stack interface with the class Dequ$tack
shown in Code Fragment 1. All the methods of De-
q&tack are essentially one-line calls to methods of
the. Deque interface, with the slight added complica-
tion of converting deque exceptions into stack excep-
tions.’ f,‘:.
public class DequeStack implements Stack (1

Deque D; //. holds the elements of the stack I
public DequeStack() { D = new MyDeque();)
public int $ze() { return ,D.size();) /
public ,boolean isEmpty { return D.isEmpty();)
public v&d push(Obj&t obj) { D.insertLast(obj);)
public Obj&t top0 ‘throivs StackEmptyException {

try (. return D.la$Element();) ”
catch (Dec$eEmptyException err)

t) .* (‘h row new StackEmptyException();)
‘3 ,I ,

public Object pop0 throws StackEmptyException {
try { return D.removeLast(); 3

$1 catch (DequeEmptyException err)
(throw new StackEmptyException();)

3 ‘I I
J I 1

:

C$e Fragmkht 1: ‘Implementation of the Stack inter-
face by ‘me&is of $ deque. ‘ ‘, ,I/ . I’

Another useful application of the adapter,pattern
in design of data structures is to specialize the types
of objects that are used by a general class. This allows
us to design general data structures which can store
objects of any type. We can then make the data
structure type-safe by writing an adapter that only
accepts objects of a certain type and then forward
all calls to the generic class. We can use this-kind of

adapter, for example, to define an IntegerArrayStack
class that adapts an array-based ArrayStack class so
that the stack only stores Integer objects. Such a
class can then be used to to avoid the extra typing
and possible confusion associated with casting.

Template Method Often several algorithms have
the same overall structure but differ in the actions
they take at specific steps. For example, many al-
gorithms have as a base a simple tree traversal, but
differ in the actions they perform at the nodes of a
tree. In such cases it is desirable to implement the
algorithm only once and then specialize it for the dif-
ferent applications.

. The design pattern that can be used in such situa-
tions is called tempZate method. This pattern provides
a class which implements a skeleton of an algorithm,
and delegates the steps that will vary in different im-
plementations to its subclasses.

Template methods can be introduced in CS2 dur-
ing the discussion of tree and graph traversals. We
can generalize different tree ,traversals, such as pre-
order and postorder visit, to one generic visit of the
tree, called Euler tour, where we start by going from
the root, towards the left child viewing the edges of
the tree as being walls that, we always keep to our
left. Each node, therefore, will be encountered three
times by the Euler tour: from the left, from below,
and from the, right. Since all algorithms using an Eu-
ler tour will have the same general structure, we can
define an abstract class Binar);TreeTraversal, shown
in Code Fragment 2, which executes the traversal, but
does not take any specific action when it encounters
a node. Instead, it’ calls auxiliary methods which are
left empty in the abstract class, but are defined in the
subclasses of the traversal ‘to perform’ some actions.
For example,’ we can produce preorder and postorder
traversals of the tree by performing an action when a
node is encountered from t$ left and from the right
respectively.

An alternative approach to ‘the problem of gen-
eralized algorithms is to defer the specific actions to
se&ate objects instead of the, subclasses of the ab-
stract class and use the itrategy pattern [4] instead
of the template method pattern.

Comparator Another useful pattern that acts
upon a class is the comparator pattern, which is an
instance of a more general strategy pattern. This pat-
tern provides a class of objects that are used for com-
paring pairs of objects in a totally-ordered container.
An alternative approach is to require that objects be
able to compare themselves to one another, but there
are contexts in which this solution is not applicable.
Often objects do not need toPknow” how they ought

I
i

332

public abstract class BinaryTreeTraversal (
public void traverseNode(Position p) { :

left(p); r

traverseNode(tree.leftChild(p));
below(p);

I
, I

traverseNode(tree.rightChild(p)); . l.,
right(p);

’

I
// specific actions to take will be defined here
prptected void lefi(Position p) {} ’
protected ‘void below(Positioti p) {}

I

protected,void right(Position p) {}’ I’ l -j

: I
Code Fragment 2: Generalized,Euler tour of a binary
tree

to be compared, or there may be &$tiple compari-
son methods that will add unnecessary compl@ty to’
the intefface of those objects. For example, for two-
dimensional data, it is not clear whether ,we should
use the first coordinate or the second B, t,\e primary
comparison value (or some other rule altogether). In-
deed, there are several contexts in gednietric, algq-
rithms yhere WC might, want to dynamically switch
between different cbmparison Tunctions. Fhus, the
data structqres that need to compare +je@ should
not expect &he objects to pro>vidvidk thei! ,0&n compar-
ison rules, but instead delegate this task to a co@-
parato~ object. . .

Compar+tors are most naturally ihtioduced in
CS2 during ,$he discussion ,of comparison-based d$a
structures, such as priority queues and dictionaries.
For example, a priqrity queue Q that is designed with
comparators in mind is initialized with a given ,com-
parator, which is then yed by Q to compare two
objects. We can even imagine th” ability for a pri-
ority queue to be given a new comparatoi if the ,old
one even becomes Uoutrof date”. Thus,, a program-
mer can write a general priority queue irnplementa-
tion that can work correctly in a wide variety of con-
texts (including some the programmer has probably
not even thought about). Formally, a comparator in-
terface provides methods, isless, isLessOrEqual, areE-
qua], isGreater, and isGreater0rEqual. .We provide an
example implementation of the Comparator interface
in Code Fragment 3.

Decorator The final c&s pattern we discuss in
this section is the deco&or pattern..This pattern is
used to add extra attributes or “decorations” to OK
jects with a certain interface (one pos&ble interface
is shown in Code Fragment 4). The use of decora-
tors is motivated by the qeed of some ?lgorith& and
data structures to add extra variables or temp?;ary
scratch data to the objects that will not ‘normally

333

public class Lexicographic implements Comparator (
// Assumes Point2D objects have getX() an4
// getY() methods for coordinates.
public boolean isLess(Point2D a, Point2D b) ‘(

if (a+etX() ==, b.getX())
return (a.getY() < b.getY()); ‘ ‘_

return (a.gety!) < b.$etX());

:/ h ot er methods are implemented in a similar fashion
I 1’

Code Fragment 3: An implementation of the Compara-
tor interface for Z-dimensional points.

:
need to have such variables. , : :

public inteiace Decorable { ’
‘public void create (Object key, Object value);
public Object d&troy(Obj&t key);
public boolean has(Object key);
public’void set (Object key, Object value);
public Object get(Object key);
public Enumeration attributes&

I
,!

Code,fiagment 4: An interface for objects that support
adding decorations. Here key is a refyrence to the new
decoration. _ ,

if (v.get(VlSITED) == Bbole&kALSE) {
.vset(VISITED, Bbolean.TRUE);
visit(v);

I ’
/

Code Fragment 5: An example of vertex visit in depth-
first search using a decoration to store whether the vertex
has been exp)ored.

Decorators can be introduced in the CS2 curricu-
lum in the discussion of b&lanced binary search trees
and graph algorithins. In ,implementing balanced bi-
nary search trees we’can use a binary search tree class
to implement a bal&cec$ tree. However, the nodes of
a binary search tree will have to store extra informa-
tion such as a balance factor (for AVL trees) or a color
bit (for red-black trees). Since the nodes of a generic
binary search tree do not have such variables, they
can be provided in’ the Iform of decorations. In the
implementation of graph traversal algorithms, such
as depth-first search and breadth-first search, we can
use the decorator pattern to store temporary infor-
mation about whether a certain vertex of a graph has
been visited (see Code Fragment 5). The decorator
pattern can be used in conjunction with the position
patter?, describ’ed in Section 3.

/,
I ,_ ‘7 t I

‘I I’ ” ,, ,I /

.

.

-.

q

. . ,.I. .L _- _ ,- ,... -

3 Object (Patterns 1 I
Other patt’&ns &ct primarily on objects. We describe
some of them in this sectioq.

Iterator Often we are interested in accessing the el-
ements of a collection in certain order, one at a tim-e,
without changing the cont&ts of the collection, e.g.
to, lqok, for a specific elem,ent or to sum the values
of all its elements. An iterator is an object-oriented
design pattern that abstracts the process of scanning
through a ,collection of elements, one element at a
time, without exposing the underlying implementa-
tion of the collection. A typical interface of au it-
erator will include methods isDone(), firstElementt),
nextElement(), and currentElement(). This ADT al-
lows us to visit each element in a coliection in order,
keeping‘track of the “curreqt” element.

Iterators can be discussed.in the CS2 curriculum
as soon as: -elementary data structures introduced.
Java provides the simplified “streamlined” version of
the iterator pattern in its Enumeration interface. Any
time several objects need to be examined by some
class, they can be given to that class in an enumer-
ation. It is often tiseful to be ‘able to run through
or enume+atb ‘all the objects in a particdar diet-
tion, so it can be useful to require all collections to
support a method for returning their elements in an
enumeration. Some collections, s&h as trees, are not
linearly ordered, and there ‘may be’ several different
ways to enumerate their. elements (e.g. preorder and
postorder traversal). Using enumerations to traverse
collections does hot require knowledge of the internal
details‘df how the collection is implemented. For ex-
ample, one may wish to write a generic printCollectidn
method, shown in Code Fragment 6, that can print
out ,the contents of a cqllection of objects. ,_

plrblic pri~tCollection(ColI&ion c) { ’ .
Enumerkion erium = c.ele&nts();
whi,le (enum.hasMoreElements()) { .’

Sys~m.out’.println(enum.nextElement());

,I
}‘,, “2,](’ ,, .’

Code Fragment 6: An example ot,using an enumera-
tion. L _I
0 When itis created,: an Itdrator or Enumeration ob-
ject may or may not be a “snapshot’? of the collection
at that time, so it is not a’ good idea to use iterator
objects while msdifying the contents of a collection.

/ ,/’
@ositioi” 1; order to i&tract and unify the differ-
ent mechanisms for storing elements ih various im-
plementations of data structures, we introduce the
concept of position in the data structure, which for-

malizes the intuitive notion of ‘place” of an element
in a collection. A collection, then, store’s its elements
in positions and keeps the positions arranged in some
specific order. The Position interface provides meth-
ods for accessing the element stored at that position
and the collection that the position belongs to.

Some examples of positions are nodes in such data
structures a+ sequences and trees. Usually, the nodes
are a part of the implementation of these data struc-
tures and therefore are not visible to the user. In an
array-based implementations of sequences, there are
no nodes, so positions are represented by the array
indices. The position pattern provides a uniform in-
terface for different implementations of positions in
various data structures and makes the positions part
of the interface of a data strudture. For example, we
can provide a method insertAftkr(Position p, Object el-
ement) in the interface of a sequence that allows us to
insert a new element into the’ sequence, immediately
after a given position (node).

A big advantage of being able to refer to individ-
ual,positio& is that it illows us to perform several
operation$‘on collections more efficiently. For exam-
ple, given,an implementation df a doubly linked list
with nodes that have next and P;rev pointers, we can
insert’ an arbitrary node v in O(1) time, @ovided we
are given a reference to the node preceding (or follow-
ing) v. We can just “link in” the node new by updat-
ing its next and prev references, as well as those of
its neighbors. Some possibie places in the CS2 where
positions can be introdubed inlclude the discussions of
sequences tid binary trees, where positions abstract
the cdncept of nodes, and discuision ‘of graphs where
positions represent ve&+s aqd edges. Positions can
be used in conjunction with ‘the decorator pattern
discussed, in Section 2, since positions are the objects .
to wh& decorations can be added (in fact Position
interface can extend Decorabk). Not all data struc-
tures support & natural hotion of position, however,
and for those structur& we Tn use the pattern we
discuss next.

I
Locator The Position interface, described above,
allow& us to identify a specific “place” that can
store an element. The element at ‘some position
can change, but the position ‘stays the same. How-
ever, just having positions is not enough. When dis-
cussing iri CS2 priority queues: dictionaries, and (in a
fast-paced course) Dijkstra’s shortest path algorithm,
there are applic+ons where dne ‘needs to keep track
of elements as thky are being Loved !from p’osition to
position inside a collection. Iii order’ to keep track of
the location of each such objebt in an object-oriented
manner, we need & abstraction of “location” that fol-

334

lows an element around, rather than being associated
with a fixed position. This need is particularly impor-
tant for data structures where there is no real concept
of “positions” in the structure (e.g., key-based struc-
tures). A simple design pattern that fulfills this need
is the locator.

The Locator interface is a simple ADT that ab
stracts the location of a specific element in a collec-
tion. A locator “sticks” with its associated*element
as long as that element remains in the collection,
i.e., a locator remains valid until its associated ele-
ment is removed or replaced. Like the Position ADT,
the Locator ADT supports a method for returning
its element. Even though they both support such a
method, the Locator and Position interfaces are ac-
tually complements of each other: a Locator object

s stays with a specific element, even if it changes from
position to position, and a Position object stays with
a specific position, even if it changes the elements it
holds. A locator, therefore, is lie a’coat’check: we
can give our coat to a coat room attendant, and we
receive back a coat check, which is a “lo&to? for

. our coat. The position of our coat relative to the
other coats can change, as other coats are added and
removed, but our coat check can always be used to
retrieve our coat. Lie a coat check; then, we can
now imagine getting something back when we insert
an element into a collection: we can get back a loca-
tor to that element. This in turn can then be used to
provide quick access to the position of this element in
the collection to, say, remove this element or replace
it with another element.

We can use locators in a very natural way in
the context of a priority queue. A- locator in such
a scenario stays attached to an element inserted in
the priority queue and allows us to refer to’the ele-
ment and its key in a generic manner that is’indepen-
dent from the specific implementation of the’ priority
‘queue. This ability is important for a priority queue
implementation, for there are no positions per se in
a priority queue, since we do not refer to elements or
keys by any notions of ‘%ank,” “index,” or “node.”
By using locators, we can define methods for a prior-
ity queue Q that refer to elements stored in Q in a way
that abstracts from the specific implementation of Q.
Such methods include remove(Q which removes the
element with locator 1, and replaceKey(e,k), which
changes to k the priority of the element with loca-
tor 1. For example, Code Fragment 7, shows two
fragments from an implementation of Dijkstra’s al-
gorithm in Java. The first fragment inserts a vertex
u into a priority queue Q, using u’s distance as its
key, and associates with u the locator returned by Q
(e.g., storing the locator as a decoration of u). The

second fragment shows the relaxation of edge (u, z),
and the update of the priority of vertex z in Q, which
is performed with operation replaceKey.

Locator u-lot = Q.insert(new Integer(u-dist), u);
setLocator(u, u-lot);
. . .
if (u-dist + e-weight < z-dist) // relaxation

Q.replaceKey(z-loc, new Integer(u-dist + e-weight));

Code Fragment 7: Fragments from the implementation
of Dijkstra’s aIgorithm

4 Conclusion
In this paper we survey a number of useful object-
oriented software design patterns and describe natu-
ral places ‘where they can’ be introduced in the stan-
dard curriculum for the Freshman-Sophomore data
structures course (CS2). We summarize our sugges-
tions in Table 1. We feel that introducing such design
principles early in the computer science curriculum
helps students form a framework for engineering soft-
ware that will complement the theoretical foundation
they receive in CS2,,

1 Design Pattern 1

I adanters I
CS2 Topic

stacks and oueues I
template methods

comparators
tree and graph traversals

priority queues
decorators 1 1 balanced trees, graphs

’ iterators I sequences, trees, graphs
positions
locators

1 sequences, binary trees, graphs
1 priority queues, dictionaries

Table 1: Some design patterns and natural places in the
CS2 .curricuhnn where they can be introduced: I
References
[l] A. V. Aho, J. E. Hopcroft, and J. D. Ulhnan. Data

Structures and Algorithms. Addison-Wesley, 1983.
[2] G. Booth. Object-Oriented &alysis and Design with

Applications. Be+nnin/Cummings, 1994.
[3] T. Budd. An Introducfion to Object-Oriented Pro- .

gramming. Addison-Wesley, 1991.
[4] E. Gamma, R. Helm, R. Johnson, and J. Vlis- ,

sides. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1995.

[5] M. T. Goodrich and R., Tamassia. Data Structures
and Algorithms in Java. John Wiley and Sons, 1998.

[6] B. Liskov and J. Guttag. Abstraction and Specification
in Program Development. The MIT Press/McGraw-
Hill, 1986. ’ .

[7] Computer Science 15 Homepage, Brown University.
http://www.cs.brown.edu/courses/cs015

?I :

