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Abstract 

We describe an approach for visualiy teaching important 
proofs in the Junior-Senior level course on the design and 
analysis of data structures and algorithms (CS7/DS&A). 
The main idea of this educational paradigm is to justify 
important claims about data structures and algorithms 
by using pictures that visualize proofs so clearly that the 
pictures can qualify as proofs themselves. The advan- 
tage of using this approach for DE&A is that it augments 
or even replacesinductive arguments that many students 
find difficult. Moreover, this paradigm communicates im- 
portant algorithmic facts in a compelling way for students 
who are more visually-oriented. We illustrate this tech- 
nique by giving examples of visual proofs of several key 
concepts in DS&A. ~ 

, 

1 Introduction 

In this era of real-time video games and MTV, students 
these days. seem more visually-oriented than ever. They 
learn most naturally by seeing a concept described with 
a picture, and they remember that concept by recalling 
the picture that goes with it. This visual orientation is 
actually quite natural, for we humans devote an immense 
amount of brain power to the processing of visual,infor- 
mation. We feel that we can realize great educational 
benefits by finding visual ways of presenting the key ideas 
of important computer science concepts. 

In this paper we address the commnnication of key 
concepts in the’design and analysisof data structures and 
algorithms, which are topics tanght in a course known 
by the acronyms CS7 and DS&A (we will use DE&A). 
This course is full of powerful ideas that have many ap- 
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plications, yet key concepts in DS&A are not fully com- 
prehended by many students. We feel that this lack of 
comprehension is due to the fact that these concepts are 
often presented and justified by invoking sophisticated 
mathematical arguments. We argue in this paper that 
this mathematical sophistication is often unnecessary, be- 
cause key ideas of DS&A can be presented visually. 

As a justification of the potential of the visual alterna- 
tive to teaching DE&A, we describe simple visual proofs 
of several core topics in DS&A, including the following: 

0 summing linear terms, 
a counting nodes in a binary tree, 
l analyzing binary tree traversal, 
l analyzing bottom-up-heap construction, 
l rebalancing AVL trees via rotations. 

Some of the visual proofs we present are new, to the best 
of our-knowledge, while others are known but possibly 
under-utilized. - 

1.1 ,Related Work 
The trend towards visual ways to presenting important 
topics of DS&A finds’its inspiration in the work of Brown 
and Sedgwick on algorithm animation and visualization [4, 
5,11,12], as well as that of Stasko [13] and others [2,3]. 
This work illustrates the power of visualization for corn- 
municating how algorithms work and how they transform 
their inputs. In addition, the authors include several ad- 
ditional visual ways of presenting ideas in DS&A in their 
recent book [7]. 

Many of the visual proofs we present in this paper 
augment proofs that ,use mathematical induction (e.g., 
see Manber [lo]). We feel that induction is a beautiful 
and powerful mathematical tool, but it nevertheless is 
something that many students find mysterious. One of 
the motivations for our use of visual proofs is to reduce 
our reliance on mathematical induction as the only way of 
justifying important concepts in DS&A, and thereby ef- 
fectively educate students that seem to never comprehend 
this proof technique. 

We describe several visual proofs in the remainder of 
this paper, beginning with a well-known summation iden- 
tity that is usually justified using mathematical induc- 
tion. 



2 Comlqinatokial Arguments 

One of the first analyses that students see in DS&A is an 
analysis of the worst-case running time an algorithm such 
as bubble-sort, insertion-sort, selection-sort, or quick-sort. 
Each of these analyses use the following summation: 

n 
c i=1+2+3+.-.+(n-2)+(n-l)+n. 
i=l 

This summation arises in the analyses because of an it- 
eration performed by each of the algorithms where the 
number of operations performed inside the loop increases 
by, a fixed, constant amount with each iteration. This 
summation has the following identity: 

4 

Figure 1: Visual justikations of Proposition 2.1. Both ilhrs- 
trations visualize the identity in terms of the total area covered 
by .n unit-width rectangles with heights 1,2,. . . , n. In (a) the 
rectangles are shown to cover a big triangle of area n2/2 (base 
n and height n),phrs n small triangles of area l/2 each (base 
1 and height 1). In (b), which applies only when n is even, 
the rectangles are shown to cover a big rectangle of base n/2 
and height n + 1. 

/ ., 
‘:,, 

Proposition 2.1: For any integer n > 1, we have 
‘. t 

n 

c 
. _ n(n + 1) 
2- 

i=l 
2 * : 

, ' 

We give two visual proofs of this fact in Figure 1. The 
illustration in Figure 1.a is less well known as the one 
in Figure l.b,, but it applies for all values of n whereas 
the illustration in Figure 1.b only applies when. n is even 
(although it is fun exercise to ask students to provide 
an analogous visual proof for the case’ when n is odd). 
Both of these visual proofs augment a well-known proof 
by induction (e.g., see [7]). 

‘I ./I 
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3 Binary Tree Algorithms 

Almost immediately after giving the above summation 
identity, the curriculum for DS&A turns to discussions of 
several topics involving binary trees, including their com- 
binatorial properties and their uses as search structures. 
We discuss some visual justifications for several facts in- 
volving binary trees in this section. 

3.1 Counting Nodes in a Binary Tree 
Binary trees have several interesting structural proper- 
ties, which are not shared by general trees. A simple, but 
important such property is the following: 

Proposition 3.1: In a proper binary tree, where each 
internal node 4as two childien, the number of external 
nodes is 1 more than the number of internal nodes. 

Proof: We justify this fact using a simple visual proof, 
which is actually a proof-by-induction in “disguise.” Let 
T be a proper binary tree. If T has only one node, then 
this node is external, and the property holds. Otherwise, 
remove from T an (arbitrary) external node w and its 
parent v, which is an internal node. If u has a parent u, 
reconnect u with the former sibling z of w, as shown in 
Figure 2. This operation removes one internal node and 

Figure 2: The operation that, removes an external node and 
an internal node in the justification of Proposition 3.1. 

one external node, and it leaves the tree being a proper 
binary tree. By repeating this operation, we shall even- 
tually obtain a binary tree with a single external node. 
Since the same number of external and internal nodes are 
removed by this sequence of operations, and we end up 
with a single external node, ,we conclude that the number 
-of external nodes of T is 1 plus the number of internal 
nodes. n 

We next discuss a common algorithm that is per- 
formed on binary trees. 

3.2 Analyzing Binary Tree Traversal 
One of the prime uses of binary trees is to store objects, 
and these objects are oftenlenumerated by using binary 
tree traversal algorithms, such as the preorder, inorder, 
and postorder traversal algorithms. Viewed in an object- 
oriented framework, these tree-traversal algorithms are all , 



forms of iterators (or enumerations in Java). Each traver- 
sal visits the nodes of a tree in a certain order, which visits 
each node exactly once. However, we can unify these tree- 
traversal algorithms into a single framework, by relaxing 
the requirement that each node is visited exactly once. 
The resulting traversal is called the Euler tour huer- 
sal [8,9]. The advantage of the Euler tour traversal .is 
that it allows for more general kinds of tree traversals to 
be easily expressed. 

Figure 3: Euler tour of a binary tree. 

Intuitively, the Euler tour: traversal of a binary tree ‘$’ 
can be informally defined as a walk around T, where we 
start by going from the root towards its left child, viewing 
the edges of T as being uwallsn that we always keep to 
our left. (See Figure 3.)’ Each node w’of T is encountered 
three times by the Euler tour: 

l “On the ieft” (before the Euler tour of ‘u’s left sub 
tree) 

l “From below” (between the Euler tours of V’S two 
subtrees) 

l “On the right” (after the Euler tour of v’s right 
subtree). 

If v is external, then these three %sitZ actually happen 
at the same i&e. 

The preorder, inorder, and postorder traversals >of T 
are equivalent to an Euler tour, such that each node is 
visited when encountered on the left, from belowj or on 
the right, respectively. The time complexity of the pr& 
order, postorder, and inorder tour traversals of a binary 
tree with n nodes are easy to analyze using the Euler tour 
traversal and its visualization in Figure 3. Suppose that 
visiting a node takes O(1) time, which is often the case. 
In thii case, we spend a constant amount of time at each 
node of the tree during the traversal, so that the overall 
time complexity is O(n). 

priority queue abstract data, type in the heap data struc- 
ture. One way to present the heap-sort algorithm is to 
show that we can construct a heap storing n keys (or key- 
element pairs) in O(n log n) time by means of n successive 
insertion operations, each taking O(logn) time, starting 
from an empty heap [14]. However, if all the keys to be 
stored in the heap are known in advance, there is an al- 
ternative bottom-up construction method, which runs in 
O(n) time [6]. This is a moreefficient construction algo- 
rithm that can be included as one of the constructors in 
a Heap class. Bottom-up heap construction is shown in 
Code Fragment 1. 

Algorithm BottomUpHeap(S): 

Inpirt: a sequence 5 storing n = 2h - 1 keys 

Output:. a heap T storing the keys in S. 

if S is empty then 
rettin an empty heap (consisting of a single ex- 
ternal node). 

eqd if 
Remove the first key, I& from S. 
Split S into two sequences, 5’1 and 5’2, each of size 
(n- 1)/2. 
Let Tl = BottomUpHeap(Sr). 
Let T2 = BottomUpBeap(S2). 
Create a binary, tree T with root node r storing k, 
left subtree Tl, and right subtree T2. 
Perform a down-heap bubbling from the root T of T, 
if necessary. . , , 
return T.- 

Code Fragment i: Recursive bottom-up heap construction. 

Bottom-up heap construction is asymptotically faster 
than incrementally inserting n keys into an initially-empty 
heap, as the,following proposition shows. 

Proposition 3.2: The bottom-up construction ofa heap 
with n keys takes Oin) time. 

Proof: Let ,us use a function t(n) to denote the running 
time of this algorithm, where n is the number of keys. We 
claim that t(n) is O(n). S ince the algorithm is recursive, 
one approach to justifying this claim is to characterize 
the function t(n) by the’ recurrence relation I 

b ifn<l / 
2t(n/2) + clogn otheywise, ; 

where b and c are constants. Analyzing this formula usu- 
2 

3.3 Analyzing Bottom-Up Heap Construe- ally involves reducing it to a closed form showing that 
tion t(n) is 

Binary trees are discussed in DS&A again in the heap 
sort algorithm, where they are used to implement the 
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which is then solved by using induction and some facts 
from Calculus. We offer instead the visual 
trated in Figure 4. ’ I . !,, *, 

:* I, /’ 

proof illus- 

.< 

Figure 4: Visual justi6cation of the linear running time of 
bottom-up heap construction, where the paths associated with 
the internal nodes have been highlighted with alternating col- 
ors. For example,, the path associated with theroot consists 
of the internal nodes storing keys 4, 6, 7, and 11, plus an ex- 
ternal node. Also, the path associated with the right child of 
the root consists of the internal nodes storing keys 6, 20, and 
23, plus, yr,extemal node. ,_ L : 

Let T be the final heap, and let v be an internal node 
of T, and let T(v) denote the subtree of T rooted at v. 
In the,-worst-case,.‘the time for forming T(v) from the 
two recursively-formed’subtrees rooted at .its children is 
proportional to the height of T(v). The worsticase occurs 
when down-heap bubbling from o traverses a paths from 
v all the way to a bottommost external node of T(v). 

Consider now the path p(y) of T from node u to its 
inorder successor external node, i.e., the path that starts 
at v, goes to the right child of v, and then goes down 
lkftward until it’ ‘reaches an external node. We say that 
&&3i p(d) is ‘associated with node 3. Note that p(v) is 
not necessarily the path followed by down-heap bubbling 
when forming T(v). Clearly, the length (number of edges) 
ofp(v) is equal’to the height of T(v). Hence, formingT(v) 
takes in the worst case time proportional to the length 
of p(v). ‘I@s, the total running time of bottom-up heap 
construction is proportional to the sum of the-lengths of 
the paths associated, with the internal nodes of T. 

It iseasy to seethat for any two internal nodes u and 
21 of T, paths P(U) and p(v) do not share edges, although 
they may share nodes (see Fig. 4). Hence, the sum of the 
lengths of the paths associated with the internal nodes 
of T is no more than the number of edges of heap T, 
i.e., no more than 2n.’ We conclude that the bottom-up 
construction of heap T takes O(n) time. n . 
; I*,, 

Algorithm rotate(z): 

Input: a node x of a binary search tree T that has both 
a parent y and a grandparent z 

Output: tree T restructured 

Let (a, b,c) be a left-to-right (inorder) listing of the 
nodes Z, y, and z, and let (To, Tl, T2, T3) be a left-to- 
right (inorder) listing of the four subtrees of Z, y, and 
z not rooted at 2, y, or z. 
Replace the subtree rooted at z with a new subtree 
rooted at b 
Let a be the left child of b and give a the roots of To 
and Tl as its left and right children, respectively. 
Let c be the right child of b and give c the roots of T2 
and Ts as its left and right children, respectively. 

/ 
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Code Fragment 1: Rotation in a biiaiy search tree. 

3.4 Thk Analysis of AVL Trees 
One the prime uses of binary trees is to support the binary 
search tree data structure, and one of the most popular 
binary search trees is the AVL tree [1,7]. A difficult case 
analysis is often included in DS&A for rebalancing AVL 
trees after insertions and deletions. We offer a unifying 
visual approach. / 

Let w be a node in an AVL tree that has just been 
updated because of an insertion (the deletion method is 
similar). Let x be the first node we encounter in going up 
from w toward the root of T such that the grandparent 
z of x is unbalanced. Note that node x could be equal 
to w. Also, let y denote the parent of. x, so that y is 
a child of z. Since node z became unbalanced because 
of an insertion in the subtree rooted at its child y, the 
height’of y is equal to 2 plus the height of the sibling 
of y. We now rebalance the subtree currently rooted at 
z by performing a rotation operation, which is described 
in Code Fragment 1 and is schematically illustrated in 
Figure 5. This operation temporarily renames the nodes 
x, y,’ and z as a, b, and c, so that a is left of b and b is 
left of c (in an inorder traversal listing). It then replaces 
z with the node called b, makes the children of this node 
be lz and o, and makes the children of a and c be the 
four previous children of x, b, and z (other than x and 
y), while maintaining the inorder relationships of all the 
nodes in T. 
’ This rebalancing operation is called a rotation because 
of a geometric way we can visualize the way it restructures 
T. If b = y (see again Code Fragment 1), the execution 
of method rotate is called a single rotation, for it can 
be visualized as “‘rotating” y over z (see Figure 5(a)- 
(b)). Otherwise, if b = x, this operation is called a double 
rotation, for it can be visualized as first “rotating” x over 
y and then over z (see Figure, 5(c)-(d)). Some researchers 
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Figure 5: Schematic illustration of method rot& described in Code.l+agment i. We show next to nodes a, b and c the 
signed difference between the heights of the right and left subtree. Also, we show next to subtrees TO,. . . , Te their height: 
(a)-(b) single roqation; (c)-(d), double, rotation: : ,’ ,, 

separate these two kinds of rotations as separate methods; 
we have chosen however a rotate method that unifies these 
two types of rotations. l s 

The prime reason for a rotation is to change the heights 
of nodes in T so as to restore balance. Recall that we ex- 
ecute a rotation operation because z, the grandparent of 
z, is unbalanced. Moreover, this unbalance is dueto one 
of the children of x now having to large a,height relative 
to the height of’z’s other child. As a result of a’rot.ation 
we move up the “tall” child of i while push&g down the 
“short” child of z. Thus, after performing a rotation, all 
the nodes in the subtree now rooted at the node we called 
b are balanced (see Figure 5). (A similar visual analysis 
woiks for deletions.) I, 

I j -ia I 

4 Conclusion 

In this paper we present visual proofs for several keycon- 
cepts taught in :the design and analysis of data structures 
and algorithms course (CS7/DS&A), and we argue’that 
these proofs are ,effective ways of teaching powerful ideas 
of DS&A without resorting to sophisticated mathemati.cs. 
We have not tried to present an exhaustive,repetoire of 
visual proofs, however, and we encourage the reader to de- 
velop visual proofs of his or her own. In addition, we refer 
the reader interested’in further examples of visualways 
of presenting important concepts for DS&A (and also the 
Freshman-Sophomore data structures course (CS2)) to 
the recent book by the authors [7]. ~ 4 
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