
Teaihing the Analysis of Algorithms with Visual Proofs

j
I
j

i
I
!
I
I
t
I
I
I

Michael T. Goodrich*

, Dept. of,Comp. Sci.
Johns Hopkins Univ.
Baltimore, MD 21218
goodrich@cs.jhu.edu

Abstract

We describe an approach for visualiy teaching important
proofs in the Junior-Senior level course on the design and
analysis of data structures and algorithms (CS7/DS&A).
The main idea of this educational paradigm is to justify
important claims about data structures and algorithms
by using pictures that visualize proofs so clearly that the
pictures can qualify as proofs themselves. The advan-
tage of using this approach for DE&A is that it augments
or even replacesinductive arguments that many students
find difficult. Moreover, this paradigm communicates im-
portant algorithmic facts in a compelling way for students
who are more visually-oriented. We illustrate this tech-
nique by giving examples of visual proofs of several key
concepts in DS&A. ~

,

1 Introduction

In this era of real-time video games and MTV, students
these days. seem more visually-oriented than ever. They
learn most naturally by seeing a concept described with
a picture, and they remember that concept by recalling
the picture that goes with it. This visual orientation is
actually quite natural, for we humans devote an immense
amount of brain power to the processing of visual,infor-
mation. We feel that we can realize great educational
benefits by finding visual ways of presenting the key ideas
of important computer science concepts.

In this paper we address the commnnication of key
concepts in the’design and analysisof data structures and
algorithms, which are topics tanght in a course known
by the acronyms CS7 and DS&A (we will use DE&A).
This course is full of powerful ideas that have many ap-

*The work of this author is supported by the U.S. Army Re-
search Office under grant DAAH04-96-l-0013, and by the National
Science Foundation under grant CCR-96252g9. ’

tThe work of this author is supported by the U.S. Army Re-
search Office under grant DAAH04-96-l-0013, and by the National
Science Foundation under grant CCR-9423347.

Permission to make digitsblxud copies ofall or psrt oftbii material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or conimercial advsntsge, the copy-
right notice, tbe title oftbe publication and its date appear, and notice is
given that copyright is by pennission.oftbe ACM, Inc. To copy otherwise,
to republish, to post on servers or to n&tribute to lists, requires specific
permission sndlor fee.
SIGSCE 98 Atlanta&A USA
Copyright 1998 0-89791-994-7/98/2..%5.00

207

I Roberto Tamassiat

Dept. of Comp. Sci.
Brown Univ.

Providence, RI 02912
rtacs.brown.edu

plications, yet key concepts in DS&A are not fully com-
prehended by many students. We feel that this lack of
comprehension is due to the fact that these concepts are
often presented and justified by invoking sophisticated
mathematical arguments. We argue in this paper that
this mathematical sophistication is often unnecessary, be-
cause key ideas of DS&A can be presented visually.

As a justification of the potential of the visual alterna-
tive to teaching DE&A, we describe simple visual proofs
of several core topics in DS&A, including the following:

0 summing linear terms,
a counting nodes in a binary tree,
l analyzing binary tree traversal,
l analyzing bottom-up-heap construction,
l rebalancing AVL trees via rotations.

Some of the visual proofs we present are new, to the best
of our-knowledge, while others are known but possibly
under-utilized. -

1.1 ,Related Work
The trend towards visual ways to presenting important
topics of DS&A finds’its inspiration in the work of Brown
and Sedgwick on algorithm animation and visualization [4,
5,11,12], as well as that of Stasko [13] and others [2,3].
This work illustrates the power of visualization for corn-
municating how algorithms work and how they transform
their inputs. In addition, the authors include several ad-
ditional visual ways of presenting ideas in DS&A in their
recent book [7].

Many of the visual proofs we present in this paper
augment proofs that ,use mathematical induction (e.g.,
see Manber [lo]). We feel that induction is a beautiful
and powerful mathematical tool, but it nevertheless is
something that many students find mysterious. One of
the motivations for our use of visual proofs is to reduce
our reliance on mathematical induction as the only way of
justifying important concepts in DS&A, and thereby ef-
fectively educate students that seem to never comprehend
this proof technique.

We describe several visual proofs in the remainder of
this paper, beginning with a well-known summation iden-
tity that is usually justified using mathematical induc-
tion.

2 Comlqinatokial Arguments

One of the first analyses that students see in DS&A is an
analysis of the worst-case running time an algorithm such
as bubble-sort, insertion-sort, selection-sort, or quick-sort.
Each of these analyses use the following summation:

n
c i=1+2+3+.-.+(n-2)+(n-l)+n.
i=l

This summation arises in the analyses because of an it-
eration performed by each of the algorithms where the
number of operations performed inside the loop increases
by, a fixed, constant amount with each iteration. This
summation has the following identity:

4

Figure 1: Visual justikations of Proposition 2.1. Both ilhrs-
trations visualize the identity in terms of the total area covered
by .n unit-width rectangles with heights 1,2,. . . , n. In (a) the
rectangles are shown to cover a big triangle of area n2/2 (base
n and height n),phrs n small triangles of area l/2 each (base
1 and height 1). In (b), which applies only when n is even,
the rectangles are shown to cover a big rectangle of base n/2
and height n + 1.

/ .,
‘:,,

Proposition 2.1: For any integer n > 1, we have
‘. t

n

c
. _ n(n + 1)
2-

i=l
2 * :

, '

We give two visual proofs of this fact in Figure 1. The
illustration in Figure 1.a is less well known as the one
in Figure l.b,, but it applies for all values of n whereas
the illustration in Figure 1.b only applies when. n is even
(although it is fun exercise to ask students to provide
an analogous visual proof for the case’ when n is odd).
Both of these visual proofs augment a well-known proof
by induction (e.g., see [7]).

‘I ./I

208

3 Binary Tree Algorithms

Almost immediately after giving the above summation
identity, the curriculum for DS&A turns to discussions of
several topics involving binary trees, including their com-
binatorial properties and their uses as search structures.
We discuss some visual justifications for several facts in-
volving binary trees in this section.

3.1 Counting Nodes in a Binary Tree
Binary trees have several interesting structural proper-
ties, which are not shared by general trees. A simple, but
important such property is the following:

Proposition 3.1: In a proper binary tree, where each
internal node 4as two childien, the number of external
nodes is 1 more than the number of internal nodes.

Proof: We justify this fact using a simple visual proof,
which is actually a proof-by-induction in “disguise.” Let
T be a proper binary tree. If T has only one node, then
this node is external, and the property holds. Otherwise,
remove from T an (arbitrary) external node w and its
parent v, which is an internal node. If u has a parent u,
reconnect u with the former sibling z of w, as shown in
Figure 2. This operation removes one internal node and

Figure 2: The operation that, removes an external node and
an internal node in the justification of Proposition 3.1.

one external node, and it leaves the tree being a proper
binary tree. By repeating this operation, we shall even-
tually obtain a binary tree with a single external node.
Since the same number of external and internal nodes are
removed by this sequence of operations, and we end up
with a single external node, ,we conclude that the number
-of external nodes of T is 1 plus the number of internal
nodes. n

We next discuss a common algorithm that is per-
formed on binary trees.

3.2 Analyzing Binary Tree Traversal
One of the prime uses of binary trees is to store objects,
and these objects are oftenlenumerated by using binary
tree traversal algorithms, such as the preorder, inorder,
and postorder traversal algorithms. Viewed in an object-
oriented framework, these tree-traversal algorithms are all ,

forms of iterators (or enumerations in Java). Each traver-
sal visits the nodes of a tree in a certain order, which visits
each node exactly once. However, we can unify these tree-
traversal algorithms into a single framework, by relaxing
the requirement that each node is visited exactly once.
The resulting traversal is called the Euler tour huer-
sal [8,9]. The advantage of the Euler tour traversal .is
that it allows for more general kinds of tree traversals to
be easily expressed.

Figure 3: Euler tour of a binary tree.

Intuitively, the Euler tour: traversal of a binary tree ‘$’
can be informally defined as a walk around T, where we
start by going from the root towards its left child, viewing
the edges of T as being uwallsn that we always keep to
our left. (See Figure 3.)’ Each node w’of T is encountered
three times by the Euler tour:

l “On the ieft” (before the Euler tour of ‘u’s left sub
tree)

l “From below” (between the Euler tours of V’S two
subtrees)

l “On the right” (after the Euler tour of v’s right
subtree).

If v is external, then these three %sitZ actually happen
at the same i&e.

The preorder, inorder, and postorder traversals >of T
are equivalent to an Euler tour, such that each node is
visited when encountered on the left, from belowj or on
the right, respectively. The time complexity of the pr&
order, postorder, and inorder tour traversals of a binary
tree with n nodes are easy to analyze using the Euler tour
traversal and its visualization in Figure 3. Suppose that
visiting a node takes O(1) time, which is often the case.
In thii case, we spend a constant amount of time at each
node of the tree during the traversal, so that the overall
time complexity is O(n).

priority queue abstract data, type in the heap data struc-
ture. One way to present the heap-sort algorithm is to
show that we can construct a heap storing n keys (or key-
element pairs) in O(n log n) time by means of n successive
insertion operations, each taking O(logn) time, starting
from an empty heap [14]. However, if all the keys to be
stored in the heap are known in advance, there is an al-
ternative bottom-up construction method, which runs in
O(n) time [6]. This is a moreefficient construction algo-
rithm that can be included as one of the constructors in
a Heap class. Bottom-up heap construction is shown in
Code Fragment 1.

Algorithm BottomUpHeap(S):

Inpirt: a sequence 5 storing n = 2h - 1 keys

Output:. a heap T storing the keys in S.

if S is empty then
rettin an empty heap (consisting of a single ex-
ternal node).

eqd if
Remove the first key, I& from S.
Split S into two sequences, 5’1 and 5’2, each of size
(n- 1)/2.
Let Tl = BottomUpHeap(Sr).
Let T2 = BottomUpBeap(S2).
Create a binary, tree T with root node r storing k,
left subtree Tl, and right subtree T2.
Perform a down-heap bubbling from the root T of T,
if necessary. . , ,
return T.-

Code Fragment i: Recursive bottom-up heap construction.

Bottom-up heap construction is asymptotically faster
than incrementally inserting n keys into an initially-empty
heap, as the,following proposition shows.

Proposition 3.2: The bottom-up construction ofa heap
with n keys takes Oin) time.

Proof: Let ,us use a function t(n) to denote the running
time of this algorithm, where n is the number of keys. We
claim that t(n) is O(n). S ince the algorithm is recursive,
one approach to justifying this claim is to characterize
the function t(n) by the’ recurrence relation I

b ifn<l /
2t(n/2) + clogn otheywise, ;

where b and c are constants. Analyzing this formula usu-
2

3.3 Analyzing Bottom-Up Heap Construe- ally involves reducing it to a closed form showing that
tion t(n) is

Binary trees are discussed in DS&A again in the heap
sort algorithm, where they are used to implement the

209

which is then solved by using induction and some facts
from Calculus. We offer instead the visual
trated in Figure 4. ’ I . !,, *,

:* I, /’

proof illus-

.<

Figure 4: Visual justi6cation of the linear running time of
bottom-up heap construction, where the paths associated with
the internal nodes have been highlighted with alternating col-
ors. For example,, the path associated with theroot consists
of the internal nodes storing keys 4, 6, 7, and 11, plus an ex-
ternal node. Also, the path associated with the right child of
the root consists of the internal nodes storing keys 6, 20, and
23, plus, yr,extemal node. ,_ L :

Let T be the final heap, and let v be an internal node
of T, and let T(v) denote the subtree of T rooted at v.
In the,-worst-case,.‘the time for forming T(v) from the
two recursively-formed’subtrees rooted at .its children is
proportional to the height of T(v). The worsticase occurs
when down-heap bubbling from o traverses a paths from
v all the way to a bottommost external node of T(v).

Consider now the path p(y) of T from node u to its
inorder successor external node, i.e., the path that starts
at v, goes to the right child of v, and then goes down
lkftward until it’ ‘reaches an external node. We say that
&&3i p(d) is ‘associated with node 3. Note that p(v) is
not necessarily the path followed by down-heap bubbling
when forming T(v). Clearly, the length (number of edges)
ofp(v) is equal’to the height of T(v). Hence, formingT(v)
takes in the worst case time proportional to the length
of p(v). ‘I@s, the total running time of bottom-up heap
construction is proportional to the sum of the-lengths of
the paths associated, with the internal nodes of T.

It iseasy to seethat for any two internal nodes u and
21 of T, paths P(U) and p(v) do not share edges, although
they may share nodes (see Fig. 4). Hence, the sum of the
lengths of the paths associated with the internal nodes
of T is no more than the number of edges of heap T,
i.e., no more than 2n.’ We conclude that the bottom-up
construction of heap T takes O(n) time. n .
; I*,,

Algorithm rotate(z):

Input: a node x of a binary search tree T that has both
a parent y and a grandparent z

Output: tree T restructured

Let (a, b,c) be a left-to-right (inorder) listing of the
nodes Z, y, and z, and let (To, Tl, T2, T3) be a left-to-
right (inorder) listing of the four subtrees of Z, y, and
z not rooted at 2, y, or z.
Replace the subtree rooted at z with a new subtree
rooted at b
Let a be the left child of b and give a the roots of To
and Tl as its left and right children, respectively.
Let c be the right child of b and give c the roots of T2
and Ts as its left and right children, respectively.

/

210

Code Fragment 1: Rotation in a biiaiy search tree.

3.4 Thk Analysis of AVL Trees
One the prime uses of binary trees is to support the binary
search tree data structure, and one of the most popular
binary search trees is the AVL tree [1,7]. A difficult case
analysis is often included in DS&A for rebalancing AVL
trees after insertions and deletions. We offer a unifying
visual approach. /

Let w be a node in an AVL tree that has just been
updated because of an insertion (the deletion method is
similar). Let x be the first node we encounter in going up
from w toward the root of T such that the grandparent
z of x is unbalanced. Note that node x could be equal
to w. Also, let y denote the parent of. x, so that y is
a child of z. Since node z became unbalanced because
of an insertion in the subtree rooted at its child y, the
height’of y is equal to 2 plus the height of the sibling
of y. We now rebalance the subtree currently rooted at
z by performing a rotation operation, which is described
in Code Fragment 1 and is schematically illustrated in
Figure 5. This operation temporarily renames the nodes
x, y,’ and z as a, b, and c, so that a is left of b and b is
left of c (in an inorder traversal listing). It then replaces
z with the node called b, makes the children of this node
be lz and o, and makes the children of a and c be the
four previous children of x, b, and z (other than x and
y), while maintaining the inorder relationships of all the
nodes in T.
’ This rebalancing operation is called a rotation because
of a geometric way we can visualize the way it restructures
T. If b = y (see again Code Fragment 1), the execution
of method rotate is called a single rotation, for it can
be visualized as “‘rotating” y over z (see Figure 5(a)-
(b)). Otherwise, if b = x, this operation is called a double
rotation, for it can be visualized as first “rotating” x over
y and then over z (see Figure, 5(c)-(d)). Some researchers

-2
-1OrO

h
siagle rotate

.=Z oor+1

‘h
s-----+

horbkl b=y

h 0-x h-1 orb
%

To b',
. *

4
. . ,a,
.::, -. i To To 4 _ Ta’

Figure 5: Schematic illustration of method rot& described in Code.l+agment i. We show next to nodes a, b and c the
signed difference between the heights of the right and left subtree. Also, we show next to subtrees TO,. . . , Te their height:
(a)-(b) single roqation; (c)-(d), double, rotation: : ,’ ,,

separate these two kinds of rotations as separate methods;
we have chosen however a rotate method that unifies these
two types of rotations. l s

The prime reason for a rotation is to change the heights
of nodes in T so as to restore balance. Recall that we ex-
ecute a rotation operation because z, the grandparent of
z, is unbalanced. Moreover, this unbalance is dueto one
of the children of x now having to large a,height relative
to the height of’z’s other child. As a result of a’rot.ation
we move up the “tall” child of i while push&g down the
“short” child of z. Thus, after performing a rotation, all
the nodes in the subtree now rooted at the node we called
b are balanced (see Figure 5). (A similar visual analysis
woiks for deletions.) I,

I j -ia I

4 Conclusion

In this paper we present visual proofs for several keycon-
cepts taught in :the design and analysis of data structures
and algorithms course (CS7/DS&A), and we argue’that
these proofs are ,effective ways of teaching powerful ideas
of DS&A without resorting to sophisticated mathemati.cs.
We have not tried to present an exhaustive,repetoire of
visual proofs, however, and we encourage the reader to de-
velop visual proofs of his or her own. In addition, we refer
the reader interested’in further examples of visualways
of presenting important concepts for DS&A (and also the
Freshman-Sophomore data structures course (CS2)) to
the recent book by the authors [7]. ~ 4

i </, j

References
‘,

[1] G. M. Adel’son-Vel’skii and Y. M. Landis. An algorithm
for the organization of information. Doklady Akademii

Nauk SSSR, 146:263-266, 19621 English .translation in
Soviet aath. Dokl., 3, 1259-1262.

[2] J:‘E. Baker, I. F.‘C&& G. Liottzi, and R. Tamassia. A
‘model for’ algorithm animation over the WWW. ACM
dmput. Surv., 27(4):568-572, 1995.

[3] ‘J.‘L. Bentley and B. W. Kemighan: A system for ‘algo-
,rithm animat$n. Corn&&g Systems: 4(1):530, Winter yggl, b’)”

,.;
[?I, M. H. Brown. bilgor$hIm Ani&ion. ‘MIT Press, Cam-
,, .,bridge, 1988. ,. \,I I

[5] I$. H. Brown and R. Sedgewick. Techniques for algorithm
.,,+nimgrtion, IEEE Softwqe, 2(1):28-38, Jan. 1985.

[6] R. W.’ Floyd. Algorithm 245: Treesort 3. Communica-
tions of the ACM, 7(12):701, 1964. ;

[g M. T. Gqodrich ,aud!R. Tamqssia., Data Structures and
&gorithms in Java. ‘Jo& Wiley and Sons,. New York,

PI
PI

PO1

P4

PI
P31

P41

1998.
3. J&l& An in&duct/on to Phrallel Algorithms. Addison-
Wesley, Rzading, Mass., 1992.
R. M. Karp and V. R+machandran. ,Par+lel algorithms
for shared memory, machines.: ,m Jr, van Leeuwen, editor,
Handbook qf, Theoretical Compyter S+enqe, pages 869-
941. Elsevier/The MIT Press,‘Amsterda& 1990.
U. Manber. Introduction to Algorithms: A Creative Ap-
proach. Addison-Wesley, Reading, Mass., 1989.
F. $kdg&vi&. : ,Algodthms. Addison-Wesley, Reading,
MA, 1983.
R. Sedgewick. Algorithms in& C++. Addison Wesley,
Reacling:MA: 1992. ’ ”
J. T. Stasko. Simplifying algorithm animation with
tango. In Proc. IEEE Workshop on Visual Languages,
pages l-6, 1990.
J. W. J. Williams. Algorithm 232: Heapsort. Communi-
cations of the ACM, 7(6):347-348, 1964.

211

- 1 ._.I . .

