
A Framework for Drawing Planar Graphs

with Curves and Polylines

Michael T. Goodrich1? and Christopher G. Wagner2??

1 The Johns Hopkins University goodrich@cs.jhu.edu
2 The Johns Hopkins University wagner@mts.jhu.edu

http://www.mts.jhu.edu/∼wagner

Abstract. We describe a unified framework of aesthetic criteria and
complexity measures for drawing planar graphs with polylines and curves.
This framework includes several visual properties of such drawings, in-
cluding aspect ratio, vertex resolution, edge length, edge separation, and
edge curvature, as well as complexity measures such as vertex and edge
representational complexity and the area of the drawing. In addition to
this general framework, we present algorithms that operate within this
framework. Specifically, we describe an algorithm for drawing any n-
vertex planar graph in an O(n)×O(n) grid using polylines that have at
most two bends per edge and asymptotically-optimal worst-case angu-
lar resolution. More significantly, we show how to adapt this algorithm
to draw any n-vertex planar graph using cubic Bézier curves, with all
vertices and control points placed within an O(n) × O(n) integer grid
so that the curved edges achieve a curvilinear analogue of good angular
resolution. All of our algorithms run in O(n) time.

1 Introduction

One of the main contributions of research in graph drawing has been the formal
identification of aesthetic criteria that graph drawings can possess together with
the trade-offs that exist between these criteria and various complexity measures
of drawings. Such formal specifications allow us to quantify the qualities that
make a drawing “nice” to look at and studies of various trade-offs further our
understanding of which aesthetic goals can be realistically achieved. Examples
of such studies are too numerous to enumerate, but some well-known examples
include the importance of the drawing area identified by de Fraysseix, Pach,
and Pollack [3], the illumination of the value of bend minimization in polyline
drawings by Tamassia [13], the discussion of aspect ratio by Chan et al. [1],
and the identification of angular resolution as a signficant aesthetic criterion by
Formann et al. [5], and its further study by Kant [10], Garg and Tamassia [7],
and Malitz and Papakostas [11].

? Work by this author is supported in part by the U.S. Army Research Office under
Grant DAAH04-96-1-0013 and by NSF under Grant CCR-96-25289.

?? Work by this author is supported in part by ONR grant N00014-96-1-0829.

S.H. Whitesides (Ed.): GD’98, LNCS 1547, pp. 153–166, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

154 Michael T. Goodrich and Christopher G. Wagner

This paper is directed at continuing this tradition by articulating a unified
framework for describing aesthetic criteria and complexity measures for draw-
ings of graphs that place vertices at points in the plane and represent edges with
smooth curves (that is, curves with at least C1 continuity) or polylines (that is,
polygonal chains). We review or generalize several well-known graph-drawing de-
sign goals for this framework, including aspect ratio, vertex resolution, and bend
minimization, as well as introduce design goals that are not as well-known, such
as a curvilinear analogues to angular resolution and edge resolution. In addition
to articulating this framework for curve and polyline drawings, we also describe
new planar graph drawing algorithms that operate within this framework.

1.1 Related Prior Work

Before we describe our framework and our algorithms for this framework, how-
ever, let us review some related prior work. Specifically, since we reviewed above
much of the prior work on the identification and study of general aesthetic cri-
teria, let us review here some of the prior work relating to the drawing of planar
graphs with curves and polylines.

One of the now-classic results for drawing planar graphs is an algorithm by
de Fraysseix, Pach, and Pollack [3] for drawing an n-vertex planar graph in an
O(n) × O(n) integer grid using straight line segments to represent edges. Orig-
inally presented as an O(n log n) time algorithm, Chrobak and Payne [2] show
how to cleverly use a tree data structure to reduce the running time of this
algorithm to O(n). This algorithm does not achieve good angular resolution,
however, because edges incident on the same vertex are not necessarily nicely
“spread out.” But this algorithm introduces an important concept known as the
canonical ordering of the vertices of a plane graph, which is vital to several other
graph drawing algorithms, including several algorithms by Kant [10]. In particu-
lar, Kant uses this ordering in an algorithm to draw a planar graph with vertices
placed in an O(n)×O(n) integer grid and edges drawn as polygonal chains with
at most three bends per edge in order to obtain good angular resolution. For-
shadowing the topic of our paper, Kant observes that polyline drawings can be
modified to give drawings with nicely curved edges, by, say, using splines.

Unfortunately, several issues related to curve drawings are not addressed by
Kant. For example, if one applies standard methods for “smoothing” polylines,
there may be no guarantee that edges that previously did not cross will not
cross in their smoothed form. In addition, there are several complexity issues
related to polyline smoothing that should be addressed, such as deciding if a
polyline with three bends is better represented using a single degree-4 curve
or as two degree-3 curves joined at a point (which is called a knot). Equally
important is the impact that such a decision has on the beauty of the drawing.
Indeed, questions such as this are the driving force behind our search for a unified
framework for characterizing graph drawings that use polylines and/or curves
to represent edges.

On the topic of curve drawings themselves much less is known. There are
several systems (including most general drawing packages) that allow for curves

A Framework for Drawing Planar Graphs with Curves and Polylines 155

and polyline smoothing, but we have not been able to find much written on
formal studies of curve drawings. A notable exception to this is work of Gansner,
Koutsofios, North, and Vo [6] that addresses the issue of curve drawings for
general graphs, considering aesthetic criteria such as the hierarchical structure
of the underlying graph, the edge length, symmetry, and the number of edge
crossings. Their analysis is not as formal as, say, the work of Kant [10] for polyline
drawings, but Gansner et al. nevertheless provide evidence that their algorithm
runs quickly and produces drawings that compare favorably with previous work.
Unfortunately, the heuristics upon which their algorithm is based do not easily
provide concrete statements about the properties of the drawings produced. For
example, it seems that a drawing of a planar graph produced by this algorithm
may have edge crossings. Thus, there is a need for algorithms for drawing graphs
with curved edges so as to guarantee various aesthetic and complexity goals.

1.2 Our Results

In this paper we review and generalize several known aesthetic and complexity
goals to a unified framework for drawing graphs with polyline and/or curve
edges. Some of the novel aspects of this framework include a design goal we call
edge separation, which is a curvilinear analogue to the concepts of edge resolution
and angular resolution used for polyine drawings, as well as a concept we call
curvature minimization, which provides a curvilinear analogue to the avoidance
of sharp bends in polyline drawings.

In addition to the presentation of this framework, we provide algorithms
that operate within it and for which we can make concrete performance claims.
Specifically, we give an algorithm to draw an n-vertex planar graph in O(n)
time in an O(n) × O(n) integer grid using polyline edges that have at most
two bends per edge and achieve an asymptotically-optimal worst-case angular
resolution. Thus, we are able to achieve similar goals to a polyline drawing of
Kant [10], but with only two bends per edge instead of three. More importantly,
by limiting each polyline to two bends, we show how to extend our algorithm to
draw an n-vertex planar graph in O(n) time in an O(n)×O(n) grid so that each
edge is drawn as a single cubic Bézier curve (i.e., with no knots) in a way that
achieves good edge separation and has every vertex and control point placed at
points with integer coordinates. Before we give the details of these algorithms,
however, let us describe our unified framework for drawing graphs with polylines
and curves.

2 A Framework for Drawing with Curves and Polylines

The goal of many graph drawing algorithms is to visually represent the essential
properties of the graph in an intuitive and pleasing drawing.

156 Michael T. Goodrich and Christopher G. Wagner

2.1 Aesthetic Criteria

Based on this primary objective, we consider several formal aesthetic criteria for
drawing graphs with edges represented as polylines and/or curves. Most of these
criteria are not new, but are instead either direct translations of known aes-
thetic criteria to this combined curve/polyline framework or are generalizations
of known polyline aesthetic criteria so that they also apply to curve drawings.
In particular, we consider the following aesthetic criteria:

Aspect Ratio: If we consider the smallest rectangle that encloses a drawing,
the aspect ratio is the ratio of the longer side of the rectangle to the shorter.
In most cases, aspect ratios closer to 1 are more desirable.

Vertex Resolution: The minimum distance between any pair of vertices. Hav-
ing good vertex resolution allows an observer to quickly distinguish vertices.

Edge Length: Edges should be as short as possible, so as to allow the eye to
easily identify connected vertices.

Edge Separation: Edges should be separated so as to be easily distinguished.
Our formalization of this notion is a combination of two commonly used
graph drawing criteria—edge resolution and angular resolution—generalized
to the curved setting.
We define an offset region for each edge e, which defines a region around e
that should not contain any other edges or vertices. For each point p on e,
the offset from p is defined as all points at distance at most δe(p) from p
along a line perpendicular to e at p, where δe(p) is a function that depends
on our drawing goals. (See Figure 1.)

δ e (p)}
e

p

Fig. 1. The offset region of an edge e.

For example, if we desire an angular resolution of at least θ > 0 and edge
resolution of at least s > 0, then we would define

δe(p) = min{u tan θ, s},
where u is the distance along e from the endpoint of e closer to p.
Thus, if e is a straight line segment, then the edge separation simply states
that every edge nonincident to e is at least distance s away and every edge
incident to e defines an angle of size at least θ. In this typical usage, we refer
to θ as the angular parameter and s as the separation parameter.

Bend/Control-Point Minimization: For a polyline edge, we would like to
have as few bends as possible, since many bends tend to make edges more

A Framework for Drawing Planar Graphs with Curves and Polylines 157

difficult to follow. Analogously, as the bends in a polyline edge define the
edge, so too control points define a spline or approximation curve. The more
control points used to define a curve, the higher the degree of the curve or
the larger the number of knots needed in a spline representation; hence, we
wish to minimize the number of control points for curve edges.

Curvature Minimization: We would like edges to follow a relatively direct
route between vertices, without sharp turns. The curvature of an edge is a
measure of how quickly the edge bends. For polyline edges, this is simply
the angle created at a bend. For curves, the curvature is measured as the
rate of change of the angle of the tangent vector to the curve at any point.
This, of course, can be computed directly, but a common approximation of
curvature is to use the norm of the second derivative of the curve’s defining
equation.

These are not the only aesthetic criteria that one might wish to formalize,
but they form a core set of common goals among wide classes of drawings.

2.2 Complexity Goals

In addition to such aesthetic criteria, there are also complexity issues for graph
drawings, such as the following, which should also be considered:

Vertex Representational Complexity: Since graph drawing algorithms are
typically implemented on computers, we should minimize the space needed
to represent vertices. For example, many graph drawing algorithms impose
the restriction that vertices be represented with integer coordinates, using
O(log n) bits each. Such drawings are called grid drawings. Notice that this
condition also forces vertex resolution to be at least unit distance.

Edge Representational Complexity: Similarly, we should consider the space
needed to represent edges in a drawing. For example, in grid polyline or curve
drawings we require that bend points and control points be represented with
integer coordinates, using O(log n) bits each. In addition, by achieving good
bend/control-point minimization, we are also reducing edge representational
complexity.

Area: The area of a drawing is defined as the area of the smallest rectan-
gle that encloses the drawing. We typically desire the area of a drawing to
be small while not violating our aesthetic goals. Di Battista et al. [4] and
Tamassia [14] summarize several known bounds on area-tradeoffs for vari-
ous aesthetic properties for different types of drawings. For example, Θ(n2)
worst-case area is required for planar polyline grid drawings [2, 3, 10, 12].

Another interesting example of a tradeoff between the aesthetic criteria and
the complexity measures is the angular resolution of the drawing. Clearly, the
angular resolution of any graph drawing is at most 2π/d, where d is the degree
of the graph being drawn. But for a planar straight line grid drawing with O(n2)
area, the angular resolution can be shown to be O(1

n2) (e.g., see [14]). However,
allowing the edges to be polylines, Kant [10] shows how to achieve an angular
resolution of Θ(1

d) in linear time with at most three bends per edge.

158 Michael T. Goodrich and Christopher G. Wagner

2.3 Characterizing Our Algorithms in This Framework

Operating within this unified framework, we give O(n) time algorithms that
build on the canonical-ordering approach of the algorithms of de Fraysseix, Pach,
and Pollack [3] and Kant’s algorithm [10] to achieve the following results for grid
drawings:

– each edge is a polygonal chain (cubic Bézier curve) with at most two bends
(non-endpoint control points) per edge, such that each edge is monotonically
increasing or decreasing in both x and y coordinates,

– vertices and bend (control) points are located at points in an O(n) × O(n)
integer grid (which implies an O(1) aspect ratio).

– the polyline drawing achieves an edge separation with separation parameter
s = 1 and angular parameter θ that is Θ(1/d), where d is the degree of
the graph; the curvilinear drawing algorithm achieves these bounds for its
control curves.

We begin the presentation of the algorithm by first reviewing the canonical
ordering of the vertices of a planar graph [3, 10].

3 Our Polyline Drawing Algorithm

Let G be an n-vertex plane graph of degree d. In addition, without loss of
generality, we assume that G is maximal, since we can triangulate the faces of G
without increasing the degree of any vertex in G by more than a constant factor.

3.1 The Canonical Ordering

The following canonical ordering of the vertices of G is due to de Fraysseix,
Pach, and Pollack [3] (and extendeded by Kant [10]). Let a, b, and c be the
external vertices of G. A canonical ordering of the vertices of G (with respect to
this embedding) is a labeling v1 = a, v2 = b, v3, . . . , vn = c such that:

– the graph Gk is biconnected, internally triconnected (the subgraph of Gk

induced on the interior vertices of Gk is triconnected), and Ck contains the
edge (v1, v2);

– vertex vk+1 is on Ck+1 and has at least two neighbors in Gk on the path
Ck − (v1, v2), all consecutive,

where Gk is the subgraph of G induced on vertices v1, v2, . . . , vk and Ck is the
exterior face of Gk. We will refer to the vertices of Ck in order, meaning their
clockwise order on Ck beginning with v1. Such an ordering can be constructed
in O(n) time [3, 10].

A Framework for Drawing Planar Graphs with Curves and Polylines 159

3.2 Our Algorithmic Approach

Our algorithm is a blending of de Fraysseix, Pach, and Pollack’s ideas [3] and
the algorithm that achieves angular resolution with three bends per edge due to
Kant [10]. The novel aspect of our algorithm is in the development and use of a
simple structure for each vertex, which we call the join box.

Let V (G) be the vertex set of graph G, and let d(v) denote the degree of
vertex v. For each v ∈ V (G), take a square around v with corners d(v)− 1 units
above, below, left, and right of v. This is the join box associated with v (see
Figure 2). This construction is quite simple, yet it is the key to being able to
reduce the number of bends per edge to two.

pv,1

pv,2

sv,2

sv,1rv,1

rv,2

qv,1

qv,2

p v,3

p v,d(v)-1 q v,d(v)-1=

r v,d(v) s v,d(v)=

v

Fig. 2. A vertex v’s join box.

Notice that if v is located at a lattice point (integer grid point), then there
are 4d(v) − 4 lattice points located on v’s join box, called join points. We label
the join points as indicated in Figure 2.

The algorithm adds one vertex to the drawing of G during each phase so that
the join points of the new vertex can connect to the join points of its neighbors
via a straight line segment without any edge crossings. The join points will
become the bends in the polyline edges of the graph, so that edge (u, v) will
have two bends, one at a join point of u and the other at a join point of v.

The algorithm proceeds iteratively. At phase k of the algorithm, the kth

subgraph of G, Gk, has been embedded in the plane without edge crossings,
while maintaining the following invariants:

1. The vertices and hence the join points of the kth subgraph Gk are located
at lattice points.

2. Let w1 = v1, w2, w3, . . . , wm = v2 be the vertices of the exterior face Ck of
Gk in order and let x(wi) be the x-coordinate of vertex wi. Then x(w1) <
x(w2) < . . . < x(wm).

3. Let [wi, wi+1] be an edge connecting join points of wi and wi+1. Then
[wi, wi+1] either has slope +1 or −1, ∀i, 1 ≤ i < m.

160 Michael T. Goodrich and Christopher G. Wagner

4. For each v ∈ V (Gk), the join points rv,1 and sv,1 have been used and all
of v’s edges to its neighbors in Gk have been drawn. Also, the upper join
points that have been used are consecutive beginning at pv,1 and qv,1 (as in
Figure 2).

5. Each edge is monotonically increasing (decreasing) in both the x and y di-
rections.

Notice that the contour of the exterior face Ck should appear as in Figure 3.

Fig. 3. Appearance of Ck at any stage of the algorithm.

Now, consider when the algorithm is in phase k + 1, i.e., ready to construct
Gk+1 from Gk. First, note that as in the work of de Fraysseix, Pach, and Pol-
lack [3], invariant (2) along with the fact that the sides of the join boxes have
slopes of +1 and −1 imply that any two join points on the exterior face of Gk

have an even Manhattan distance1. This property will allow us to initially place
vk+1. If we let p(a, b) be the intersection of a line with slope +1 through point
a and a line with slope −1 through point b, where x(a) < x(b) then for any two
join points, a and b, p(a, b) is a lattice point. Also, notice that invariants (2) and
(3) imply that the line segments from a to p(a, b) and from b to p(a, b) do not
intersect Gk. So, we can add vertex vk+1 by finding its leftmost and rightmost
neighbors on Ck, choosing suitable join points, a and b, of these neighbors, and
initially placing the bottom of v’s join box at p(a, b). Unfortunately, this initial
placement of vk+1 does not satisfy invariant (4). This issue is resolved by care-
fully shifting the vertices of the drawing of the kth subgraph Gk to create space
for vk+1, and then inserting vk+1 along with edges to its neighbors on the outer
face Ck, while maintaining all four invariants. Invariant (5) will be particularly
useful when we replace the polyline edges by Bézier curves.

Let w1 = v1, w2, w3, . . . , wm = v2 be the vertices of the outer face Ck of Gk

in the order of their appearance from left to right, and let wl and wr be the
leftmost and rightmost neighbors, respectively, of vk+1 on Ck. (Note that the
neighbors of vk+1 in Gk form a contiguous sequence of vertices wl, wl+1, . . . , wr

on the exterior face Ck of Gk.) Also, let ql,i be the next unused join point on
the right side of wl’s join box and let pr,j be the next unused join point on the

1 The Manhattan distance is the standard l1 distance. In this case, d(u, v) =
|x(u) − x(v)| + |y(u) − y(v)|.

A Framework for Drawing Planar Graphs with Curves and Polylines 161

left side of wr’s join box. We will initially place the bottom of vk+1’s join box
be the second bend point in edge (wo, vk+1). The remainder of the join points
on the southwest side of vk+1’s join box will go to wl+1, . . . , wo−1 and the join
points on the southeast side of vk+1’s join box will go to wo+1, . . . , wr−1. This
will guarantee that edges (wl, vk+1), . . . , (wo, vk+1) are all monotonically increas-
ing and edges (wo+1, vk+1), . . . , (wr, vk+1) are all monotonically decreasing. (We
need only make sure that vk+1’s join points are assigned to its neighbors in such
a way that there are no edge crossings. That is, if wi and wi+1 are assigned join
points a and b respectively, then x(a) < x(b).) Also, notice that by shifting, since
we will only increase the x coordinate of any vertex v, and thus any vertices to
the right of v, we do not destroy the monotonicity of the edges.

Thus, the key to the algorithm is in determining the sets of vertices to be
shifted so that edge crossings cannot result from this shifting.

In the full version of this paper we show how to define shifting sets in O(n)
time so that shifting of vertices will not introduce any edge crossings. In fact,
this argument allows us to achieve the desired edge separation. To see this, we
give a brief inductive argument.

In the base case, this condition holds, since, for example, v1’s join box will
never intersect the convex hull of edge (v2, v3) because vertices are always shifted
to the right. We can see that this condition still holds at the inductive step by
noting that it holds for the darkly shaded region of Figure 4 by applying the
inductive hypothesis to Gk and by noticing that the only new edges added are
incident on vk+1 so that they all are above the darkly shaded region. Hence,
vk+1’s join box does not intersect any nonincident edges, and no other join
boxes can intersect the convex hulls of the edges incident on vk+1. Thus, the
convex hulls of nonincident edges do not intersect, implying the nonincident
edges themselves do not intersect, since we will be drawing with Bézier curves.

Fig. 4. The graph after shifting.

In fact, because the vertices and bend points are located at integer coordi-
nates and because the convex hull of each edge does not intersect any nonincident
join box, the convex hulls of the edges have a separation of at least unit distance,
implying that the edge separation of nonincident edges is at least unit distance.

It remains to analyze the algorithm.

162 Michael T. Goodrich and Christopher G. Wagner

3.3 Properties of the Embedding

First, it is clear that we have a planar polyline drawing of G, with at most two
bends per edge. We now examine the angular resolution of the drawing of G and
the size of the grid on which G is drawn.

Lemma 1. The size of the minimum angle is 1
d , where d is the maximum degree

of any vertex of G.

Proof. Let v ∈ V (G) have degree d. Then, the minimum angle, Θ, occurs between
a horizontal join segment, and a neighboring join segment. For d ≤ 5, the lemma
is easily verified. So, assume d ≥ 6. The size of the angle is Θ = arctan(1

d−2). By
the MacLaurin series expansion of arctan, we know that for |x| < 1, arctan(x) =
x− 1

3x3+ 1
5x5− 1

7x7+. . . ≥ x− 1
3x3. Since 1

d−2 < 1, we have Θ ≥ 1
d−2− 1

3 (1
d−2)3 >

1
d−2 > 1

d , completing the proof.

Lemma 2. The size of the grid is at most (20n − 48)× (10n − 24).

Proof. Since G is drawn entirely within the convex hull of vertices {v1, v2, v3},
to find the length of the grid, we need the distance between r1,1 and s2,1, and to
find the height, we need only find p(r1,1, s2,1). We know that v1 never moves, so
the length is simply the distance that v2 is shifted to the right, which is bounded
by

∑n
i=1(4d(vi) − 4) = 4(6n − 12 − n) = 20n − 48. But this implies that the

height of the grid is 10n − 24, and the proof is complete.

3.4 Implementation Details and Running Time

Chrobak and Payne [2] give a linear time implementation of the algorithm of de
Fraysseix, Pach, and Pollack [3] (which originally was published as an O(n log n)
time algorithm) that is easily extended to our algorithm.

The details are omitted in this extended abstract.
With this linear implementation, we arrive at the following theorem:

Theorem 1. There is a O(n) time algorithm to draw a planar graph on a grid
with the following properties:

– each edge is a polygonal chain with at most 2 bends per edge,
– each edge is monotonically increasing or decreasing in both its x and y co-

ordinates,
– vertices and bend points are located at integer grid points,
– the size of the minimum angle created by two edges is at least 1

d ,
– the size of the grid is O(n) × O(n),
– there is at least unit distance between nonincident edges,
– and the drawing achieves edge separation with angular parameter θ = 1

d and
separation parameter s = 1.

Figure 5 is a graph on 10 vertices drawn using our algorithm.

A Framework for Drawing Planar Graphs with Curves and Polylines 163

Fig. 5. A drawing of a graph on 10 vertices.

4 Drawing with Curves

We will now use some properties of the polyline grid drawing to show that the
edges can be replaced by curves while still maintaining the desired aesthetic
criteria. As mentioned, the type of approximating curve used in our algorithm
is a cubic Bézier curve.

A cubic Bézier curve is defined by four control points V0, V1, V2, and V3. The
curve interpolates V0 and V3, with the two segments (V0, V1) and (V2, V3) giving
the tangents of the curve at the respective endpoints. The curve C is defined
parametrically as C = V0(1 − u)3 + 3V1u(1 − u)2 + 3V2u

2(1 − u) + V3u
3, where

u ∈ [0, 1]. A particularly useful property of Bézier curves is that the curve stays
within the convex hull of the four control points.

We will argue that if we replace each polyline edge by a Bézier curve, where
the control points of the curve are the vertices and bend points of the polyline
edge, we do not introduce any edge crossings. In fact, we also are able to maintain
edge separation (angular and edge resolution), as defined in the framework.

We deal with two cases, the case of nonincident edges and the case of incident
edges. We have already argued that a join box does not intersect the convex hull
of a nonincident edge, implying that we have unit separation of nonincident
edges.

We now address the case of incident edges. Since the tangents of each curve
simply correspond to the first segments of the polyline edges, we have angu-
lar resolution of 1

d in the planar curve grid drawing. Before arguing that in-
cident edges do not cross, recall that all edges are monotonically increasing
or decreasing. Consider edge e. Without loss of generality, the control points
of e are (0, 0), (x1, y1), (x2, y2), and (x3, y3), with 0 ≤ x1 ≤ x2 ≤ x3 and
0 ≤ y1 ≤ y2 ≤ y3. Consider another edge incident at (0, 0), call it f . We want
to examine the separation between e and f . When measuring edge separation,
we want to consider the minimum distance between any pair of incident edges.
Clearly, this distance would be achieved by parallel edges, if they were allowed

164 Michael T. Goodrich and Christopher G. Wagner

in the graph. So, we will consider the case of parallel edges and show that we
have a measure of edge resolution for parallel edges, implying that we have that
same edge separation for incident edges.

So, to make e and f as close as possible, let the control points of f be
(0, 0), (x1 + 1, y1 − 1), (x2 + 1, y2 − 1), and (x3, y3), as in Figure 6.

(x 3 ,y3)

(x 1,y1)

(x 2 ,y2)

(x 1+1,y1-1)

(x 2+1,y2-1)

(0,0)

e
f

Fig. 6. Parallel edges e and f .

The x and y coordinates of edge e are given by xe = 3u(1− u)2x1 + 3u2(1−
u)x2 +u3x3 and ye = 3u(1−u)2y1 +3u2(1−u)y2 +u3y3, respectively. Similarly,
the x and y coordinates of edge f are given by xf = 3u(1−u)2(x1 +1)+3u2(1−
u)(x2 + 1) + u3x3 and yf = 3u(1 − u)2(y1 − 1) + 3u2(1 − u)(y2 − 1) + u3y3,
respectively. Taking differences, we have xf − xe = 3u(1 − u) and yf − ye =
−3u(1− u). This means that for any u∗ ∈ [0, 1], we have a point e(u∗) on e, and
the corresponding point on f , f(u∗), is 3u(1−u) units below and to the right of
e(u∗). For convenience, this is how we opt to initially measure the edge resolution
of incident edges; ie, the distance between edges along a line of slope ±1. So, the
minimum distance between incident edges is at most 3u(1 − u)/

√
2. (We deal

with monotonically increasing edges here, but the argument for decreasing edges
is identical.)

This fact, coupled with the monotonicity of the polyline edges implies that
converting the polyline edges to cubic Bézier curves does not introduce edge
crossings. To see this, suppose that e and f cross. Then there is a point on f
that is above some point on e. Call these points f∗ and e∗, respectively. Then
x(f∗) = x(e∗) and y(f∗) > y(e∗). Let û be the parameter value that gives this
point f∗. Then, e(û) is above and to the right of f∗. But if this is the case, then
e must come back down from e(û) to pass through the point e∗, contradicting
the monotonicity of the edges.

See Figure 7 for an example of a curve drawing.
This gives the following theorem:

Theorem 2. There is a O(n) time algorithm to draw a planar graph on a grid
with the following properties:

– each edge is a cubic Bézier curve,
– each edge is monotonically increasing or decreasing in both its x and y co-

ordinates,

A Framework for Drawing Planar Graphs with Curves and Polylines 165

Fig. 7. The graph from Figure 5 drawn with curve edges.

– vertices and control points are located at integer grid points,
– the size of the minimum angle created by two incident edges is at least 1

d , as
measured by the tangents of the curves,

– the size of the grid is O(n) × O(n),
– there is at least unit distance between nonincident edges,
– and the drawing has angular parameter θ = 1

d and separation parameter
s = 1 for the control curves.

5 Comments and Open Problems

Our algorithm can easily be extended to triconnected graphs, just as Kant [10]
extends the algorithm of de Fraysseix, Pach, and Pollack. When we initially
place a chain of vertices, we simply locate the initial point based on the vertex
of maximum degree in the chain. Then, we shift by the sum of the degrees of
the vertices in the chain.

Having established a framework for drawing graphs with curves, there are
any number of aesthetic criteria that can be redefined for curve drawings, leading
to some directions of further research:

– Devise new algorithms to draw graphs with curves, operating under this
general framework.

– Devise a dynamic algorithm for drawing graphs with curve edges.
– If one of the control points of the curve edges is far from the remaining three,

the curvature of the edge can be quite large, in fact proportional to n. One
may be able to devise an algorithm that also minimizes the curvature of the
edges.

– Because there are roughly 4d(v) join points on v’s join box and we only use
d(v) of them, we waste a great deal of space. There may be a way of cleverly
reducing the sizes of the join boxes and thus the constants involved in the
area of the drawing.

166 Michael T. Goodrich and Christopher G. Wagner

– Since we use the upper join points in order, often the join points near the top
of the join box are not used. There may be some heuristics that allow for a
better “spacing” of the upper join points once the final layout is constructed.

References

[1] T. Chan, M. T. Goodrich, S. R. Kosaraju, and R. Tamassia. Optimizing area
and aspect ratio in straight-line orthogonal tree drawings. In S. North, editor,
Graph Drawing (Proc. GD ’96), volume 1190 of Lecture Notes Comput. Sci., pages
63–75. Springer-Verlag, 1997.

[2] M. Chrobak and T. Payne. A linear-time algorithm for drawing planar graphs.
Inform. Process. Lett., 54:241–246, 1995.

[3] H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on a grid.
Combinatorica, 10:41–51, 1990.

[4] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Algorithms for drawing
graphs: an annotated bibliography. Comput. Geom. Theory Appl., 4:235–282,
1994.

[5] M. Formann, T. Hagerup, J. Haralambides, M. Kaufmann, F. T. Leighton,
A. Simvonis, E. Welzl, and G. Woeginger. Drawing graphs in the plane with
high resolution. SIAM J. Comput., 22:1035–1052, 1993.

[6] E. R. Gansner, E. Koutsofios, S. C. North, and K. P. Vo. A technique for drawing
directed graphs. IEEE Trans. Softw. Eng., 19:214–230, 1993.

[7] A. Garg and R. Tamassia. Planar drawings and angular resolution: Algorithms
and bounds. In Proc. 2nd Annu. European Sympos. Algorithms, volume 855 of
Lecture Notes Comput. Sci., pages 12–23. Springer-Verlag, 1994.

[8] J. Hopcroft and R. E. Tarjan. Efficient planarity testing. J. ACM, 21(4):549–568,
1974.

[9] G. Kant. Algorithms for Drawing Planar Graphs. PhD thesis, Dept. Comput.
Sci., Univ. Utrecht, Utrecht, Netherlands, 1993.

[10] G. Kant. Drawing planar graphs using the canonical ordering. Algorithmica,
16:4–32, 1996. (special issue on Graph Drawing, edited by G. Di Battista and R.
Tamassia).

[11] S. Malitz and A. Papakostas. On the angular resolution of planar graphs. SIAM
J. Discrete Math., 7:172–183, 1994.

[12] W. Schnyder. Embedding planar graphs on the grid. In Proc. 1st ACM-SIAM
Sympos. Discrete Algorithms, pages 138–148, 1990.

[13] R. Tamassia. On embedding a graph in the grid with the minimum number of
bends. SIAM J. Comput., 16(3):421–444, 1987.

[14] R. Tamassia. Graph drawing. In J. E. Goodman and J. O’Rourke, editors, Hand-
book of Discrete and Computational Geometry, chapter 44, pages 815–832. CRC
Press LLC, Boca Raton, FL, 1997.

	Introduction
	Related Prior Work
	Our Results

	A Framework for Drawing with Curves and Polylines
	Aesthetic Criteria
	Complexity Goals
	Characterizing Our Algorithms in This Framework

	Our Polyline Drawing Algorithm
	The Canonical Ordering
	Our Algorithmic Approach
	Properties of the Embedding
	Implementation Details and Running Time

	Drawing with Curves
	Comments and Open Problems

