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Useful in sequences, trees, graphs
- connections between nodes are of primary interest
- no implied ordering or constraint on the elements
- mainly used in iterating over a data structure

Abstracts the concept of node or index
- alternative to LEDA’sitems or STL’s iterators
- avoids indirection implied by Locators
- either user or container may change position at which an

element is stored

Locator
Useful in dictionaries, priority queues
- elements and positions rearranged to maintain an order; but

may need to find element
- locator allows constant-time access to element
- only one search needed

Adds a level of indirection
- points back to in-memory structure of container
- allows user to ignore topology of container
- follows its element around; container forbidden to change

the locator-to-element binding

Goals
- allowing rapid prototyping
- implementing complex algorithms in

computational geometry
- teaching basic data structures and algorithms

Power and Flexibility
- rich interface hierarchy

• data structures
• algorithms
• geometric primitives

- full-featured container interfaces
- universal locators

• locator can be moved from any
container to any other (even of
different type)

• feature of containers supplied with JDSL
• can implement containers without this feature

Safety
- takes full advantage of the safety of Java
- behavior always defined
- exceptions thrown on invalid input

JDSL: Library of Data Structures in Java

Edge

Graph Editor

Used to generate Embedded-
PlanarGraphs. Decorations
on the edges and vertices store
visual elements.

Decorable
Allow attachingattributes to positions
- row-based access
- useful in graph algorithms, visualization

• weight in Dijkstra, Prim; capacity in flow networks
• graphical representation in GUIs
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An implementation of a graph

This figure describes a possible implementation of the
Graph interface. The Vertex has an incidence list (a
Sequence of some kind), which holds a list of edges. It
also has a table of decorations associated with the ver-
tex, and a locator. The edge is similar, but stores ex-
actly two vertices instead of a list of edges.

Shortest Path Inside a Polygon

Range Searching

This applet, written using JDSL, il-
lustrates the data structures used in
solving the 2-d range searching
problem. The timeline allows step-
ping through the run of the algo-
rithm at the user’s pace, or to run
through at a set speed.

Dijkstra’s Algorithm

For the final project in CS 16 (the
CS2-level class at Brown), the stu-
dents implemented a significant
subset of the JDSL-TeachGraph
interface, and used it in Dijkstra’s
shortest path algorithm.
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An implementation of a red-black tree

The fields of each object in the highlighted region are
indicated. The locators, to which the user has access,
have pointers into the nodes of the data structure;
these nodes then have pointers to their children and
parent, and store the color of the node.

public void dijkstra() {

while ( ! pq.isEmpty() ) {

Vertex v = (Vertex) pq.removeMin();

if (v==t) return;

int vdist = distance(v);

Enumeration outedges = graph.outIncidentEdges (v);

while (outedges.hasMoreElements()) {

Edge e = (Edge) outedges.nextElement();

Vertex dest = graph.destination (e);

int destdist = vdist + weight(e);

if ( destdist < distance(dest) ) { // relax

pq.replaceKey ( (Locator) dest.get(locator), new Integer (destdist) );

dest.set (incoming, e);

}

} // while there are outgoing edges

} // while there are vertices in pq

} // dijkstra(.)

private int weight(Edge e) {

return ((Integer)e.get(weight)).intValue();

} // distance(.)

Priority queue stores vertices
of the graph.  (Vertex is a
subinterface of Position.)

Using the Decorable
attribute mechanism
to get and set labels
on vertices.

replaceKey(.) takes a locator
for a vertex already in the pq.
That locator is stored as a
label of the vertex.
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Teaching with JDSL
JDSL-Teach
- simplified version with focus on

design principles
- used at Brown and Hopkins by over

300 students in CS2 courses (data
structures & algorithms)

- facilitates implementation of
advanced algorithms
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Optimizations
- Goal: Pay only for what you use
- On-Demand Locators

• allocate Locators only when needed
- Enumeration Caching

• compute the snapshot once;cache
the result

• successive calls return very quickly
(constant time)

- Undecorated Positions
• in KeyBasedContainers, user has no

access to internal Positions
• avoid overhead of Decorable
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