
Abstracting Positional Information in Data Structures:
 Locators and Positions in JDSL

 M.T. Goodrich, M. Handy,
 B. Hudson, R. Tamassia Position

Useful in sequences, trees, graphs
- connections between nodes are of primary interest
- no implied ordering or constraint on the elements
- mainly used in iterating over a data structure

Abstracts the concept of node or index
- alternative to LEDA’sitems or STL’s iterators
- avoids indirection implied by Locators
- either user or container may change position at which an

element is stored

Locator
Useful in dictionaries, priority queues
- elements and positions rearranged to maintain an order; but

may need to find element
- locator allows constant-time access to element
- only one search needed

Adds a level of indirection
- points back to in-memory structure of container
- allows user to ignore topology of container
- follows its element around; container forbidden to change

the locator-to-element binding

Goals
- allowing rapid prototyping
- implementing complex algorithms in

computational geometry
- teaching basic data structures and algorithms

Power and Flexibility
- rich interface hierarchy

• data structures
• algorithms
• geometric primitives

- full-featured container interfaces
- universal locators

• locator can be moved from any
container to any other (even of
different type)

• feature of containers supplied with JDSL
• can implement containers without this feature

Safety
- takes full advantage of the safety of Java
- behavior always defined
- exceptions thrown on invalid input

JDSL: Library of Data Structures in Java

Edge

Graph Editor

Used to generate Embedded-
PlanarGraphs. Decorations
on the edges and vertices store
visual elements.

Decorable
Allow attachingattributes to positions
- row-based access
- useful in graph algorithms, visualization

• weight in Dijkstra, Prim; capacity in flow networks
• graphical representation in GUIs

PVD

DFW

ORD

SFO
Vertex

Incidence List

Edge

1:40

3:42

3:
33

2:15

2:
07

3:0
5

from

Locator

1:40D
ec

or
at

io
n

Ta
bl

e

fro
m

fro
m

D
ec

or
at

io
n

Ta
bl

ePVD

An implementation of a graph

This figure describes a possible implementation of the
Graph interface. The Vertex has an incidence list (a
Sequence of some kind), which holds a list of edges. It
also has a table of decorations associated with the ver-
tex, and a locator. The edge is similar, but stores ex-
actly two vertices instead of a list of edges.

Shortest Path Inside a Polygon

Range Searching

This applet, written using JDSL, il-
lustrates the data structures used in
solving the 2-d range searching
problem. The timeline allows step-
ping through the run of the algo-
rithm at the user’s pace, or to run
through at a set speed.

Dijkstra’s Algorithm

For the final project in CS 16 (the
CS2-level class at Brown), the stu-
dents implemented a significant
subset of the JDSL-TeachGraph
interface, and used it in Dijkstra’s
shortest path algorithm.

8

15

10 16

5

RedBlackTree

Node
parent=
container=

color=
right child=
left child=

Node
parent=
container=

color=Black
right child=null
left child=null

 Red
locator=

Locator

element=
position=

Locator

element=
position=

15

16
locator=

RedBlackTree

Edge

to

An implementation of a red-black tree

The fields of each object in the highlighted region are
indicated. The locators, to which the user has access,
have pointers into the nodes of the data structure;
these nodes then have pointers to their children and
parent, and store the color of the node.

public void dijkstra() {

while (! pq.isEmpty()) {

Vertex v = (Vertex) pq.removeMin();

if (v==t) return;

int vdist = distance(v);

Enumeration outedges = graph.outIncidentEdges (v);

while (outedges.hasMoreElements()) {

Edge e = (Edge) outedges.nextElement();

Vertex dest = graph.destination (e);

int destdist = vdist + weight(e);

if (destdist < distance(dest)) { // relax

pq.replaceKey ((Locator) dest.get(locator), new Integer (destdist));

dest.set (incoming, e);

}

} // while there are outgoing edges

} // while there are vertices in pq

} // dijkstra(.)

private int weight(Edge e) {

return ((Integer)e.get(weight)).intValue();

} // distance(.)

Priority queue stores vertices
of the graph. (Vertex is a
subinterface of Position.)

Using the Decorable
attribute mechanism
to get and set labels
on vertices.

replaceKey(.) takes a locator
for a vertex already in the pq.
That locator is stored as a
label of the vertex.

D
ijk

st
ra

’s
 a

lg
or

ith
m

 w
rit

te
n

in
 J

D
S

L

Teaching with JDSL
JDSL-Teach
- simplified version with focus on

design principles
- used at Brown and Hopkins by over

300 students in CS2 courses (data
structures & algorithms)

- facilitates implementation of
advanced algorithms

Graph
GeoAl

Arith
m

GeoOb
Core

Reduct

Optimizations
- Goal: Pay only for what you use
- On-Demand Locators

• allocate Locators only when needed
- Enumeration Caching

• compute the snapshot once;cache
the result

• successive calls return very quickly
(constant time)

- Undecorated Positions
• in KeyBasedContainers, user has no

access to internal Positions
• avoid overhead of Decorable

References
[1] R. Baker, M. Boilen, M. T. Goodrich, R. Tamassia, and B. A. Stibel. Testers

and visualizers for teaching data structures. Manuscript, 1998.

[2] N. Gelfand, M. T. Goodrich, and R. Tamassia. Teaching data structure design
patterns. InProc. SIGCSE, 1997.

[3] N. Gelfand and R. Tamassia. Algorithmic patterns for graph drawing. InProc.
Graph Drawing ’98. Springer-Verlag, to appear.

[4] M. T. Goodrich, M. Handy, B. Hudson, and R. Tamassia. Accessing the internal
organization of data structures in the JDSL library. InProc. Workshop on Algo-
rithm Engineering and Experimentation (ALENEX’99). Springer-Verlag, to
appear.

[5] M. T. Goodrich and J. G. Kloss II. Tiered vector: An efficient dynamic array for
JDSL. InOOPSLA Technical Notes, 1998.

[6] M. T. Goodrich and R. Tamassia.Data Structures and Algorithms in
Java. Wiley, New York, NY, 1998.

[7] R. Tamassia, L. Vismara, and J. E. Baker. A case study in algorithm
engineering for geometric computing.Proc. Workshop on Algorithm
Engineering, pages 136--145, 1997.

Applications
[1] B. Hudson.Graph Editor

[2] N. Gelfand. Range searching in two dimensions

[3] J. Beall. Shortest path between two points in a polygon

[4] CS 16 Teaching Staff.Flight

Container

PositionalContainerKeyBasedContainer

PriorityQueue

Dictionary

InspectableKeyBasedContainer

Graph

OrderedDictionary

InspectableOrderedDictionary

InspectableDictionary

InspectableContainer

InspectableSequence

InspectableGraph

InspectableTree

InspectablePositionalContainer

InspectableBinaryTree

BinaryTree

ModifiableGraph

Sequence

Tree

to

to

Locator

Check

