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Abstract 

Given a set S of n points in lRd, we show, for fixed d, 
how to construct in O(n log n) time a data structure we call 
the Balanced Aspect Ratio (BAR) tree. A BAR tree is a 
binary space partition tree on S that has O(logn) depth 
and in which every region is convex and “fat” (that is, has 
a bounded aspect ratio). While previous hierarchical data 
structures, such as k-d trees, quadtrees, octrees, fair-split 
trees, and balanced box decompositions can guarantee some 
of these properties, we know of no previous data structure 
that combines alI of these properties simultaneously. The 
BAR tree data structure has numerous applications ranging 
from solving several geometric searching problems in fixed 
dimensional space to aiding in the visualization of graphs 
and three-dimensional worlds. 

1 Introduction 

Geometric searching of multi-dimensional spaces is a 
fundamental operation in many fields, including as- 
tronomy, geographic information systems (GIS), com- 
puter graphics, information retrieval, pattern recogni- 
tion, natural language processing, and statistics. Typ- 
ical searches include nearest-neighbor searches, farthest- 
neighbor searches, and range queries (which are inter- 
section queries for geometric shapes). In this paper we 
study efficient data structures for performing such quer- 
ies in moderate-dimensional spaces, that is, in spaces 
where the dimensionality, d, of the space can be viewed 
as a constant compared to the number, n, of multi- 
dimensional points in that space’. 
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1 We will view d as a constant relative to n throughout this 
paper. 

1.1 Previous Work. Data structures for perform- 
ing multi-dimensional geometric searching in moderate- 
dimensional spaces is a well-studied problem in compu- 
tational geometry and spatial databases. Many previous 
data structures for performing geometric searching for 
a multi-dimensional point set S are instances of a gen- 
eral class of structures known as binary space partition 
(BSP) trees [16] (see also 1271). Each node in a BSP tree 
T represents both a convex region in space and aI of the 
points of S lying inside this region. Each leaf node in 
T represents a region with a constan! number of points 
of S inside it. Every other node in T has an associated 
hyperplane cut partitioning the region into two subre- 
gions, each corresponding to a child node. The root of 
T is associated with a bounding hyperbox containing 
S. One of the main advantages of BSP trees is that 
they allow for simple multi-dimensional searching, with 
a typical comparison for a node v in T simply involving 
a sidedness test against the hyperplane cut associated 
with 21. BSP trees are used often to solve problems in 
computer graphics [ll, 23, 24, 281, such as global illu- 
mination, shadow generation, ray casting, and visibility. 
They are also used in information retrieval for finding 
nearest neighbors, farthest neighbors, and performing 
range queries. 

The performance bounds of a BSP tree T for 
answering such queries for a point set S are directly 
related to the depth of T and the “fatness” [2, 14, 201 
(that is, the boundedness of the aspect ratios) of the 
regions associated with T’s vertices. One well-known 
class of BSP trees, known as k-d trees [6, 7, 17, 221, 
uses axis-parallel cutting hyperplanes that are placed 
so as to divide the set of points associated with a 
node more-or-less in half. Such trees have excellent 
depth properties, in that their depth is always O(log n). 
Unfortunately, since the objects in S are points, which 
are not themselves fat (as with the sets of objects 
studied in [l, 12, 21]), the regions associated with 
vertices in a k-d tree can have arbitrarily large aspect 
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ratios. This unbounded aspect ratio property of k- 
d trees partly accounts for why there are few simple 
theoretical results better than the O(nl-lld) average 
running time, even for approximation versions. 

Another well-known class of search structures, 
known as quadtrees [15, 25, 271 and octrees [3, 10, 18, 
261, are based on the alternate approach of using axis- 
parallel hyperplanes to divide region volumes equally. 
These structures produce space partitioning trees with 
regions having good aspect ratios, but their depths can 
be quite large, which again results in poor worst-case 
search times. 

These poor worst-case performances of k-d trees 
and octrees have motivated some researchers to abandon 
the BSP tree framework altogether in search of alternate 
structures with good depth and aspect-ratio bounds. ln 
particular, the balanced box-decomposition (BBD) tree 
structure of Arya et al. [S, 41, which is based on the 
fair-split tree of Callahan and Kosaraju [8, 91, provides 
a space partitioning tree that has O(logn) depth while 
also achieving vertex-associated regions with bounded 
aspect ratios. Arya et al. show that this structure can 
be used, for example, to perform approximate nearest- 
neighbor searching and range searching in O(logn + k) 
time, where k is the size of the output. The only draw- 
back with this approach is that it partitions space using 
non-hyperplanar cuts with “holes,” which sacrifices the 
convexity property for vertex-associated regions. This 
sacrifice makes the BBD tree inappropriate for several 
applications in computer graphics and graph drawing, 
where convexity of the partitioned regions is desirable 
(e.g., see [19]). 

1.2 Our Results. Building on earlier work of the 
authors for a two-dimensional balanced space partition 
data structure [13], useful in the context of graph 
drawing, we introduce in this paper a multi-dimensional 
space partition tree data structure, which we call the 
balanced aspect ratio (BAR) tree, that is defined for 
any set S of n points in lRd. The BAR tree data 
structure is conceptually quite simple, for it follows the 
traditional format of the binary space partition (BSP) 
tree. Moreover, BAR trees simultaneously achieve the 
desired properties of having O(log n) depth and vertex- 
associated regions that are convex and “fat” (having 
bounded aspect ratios). 

In the following sections, we give a general frame- 
work for BAR trees, some geometric searching applic- 
ations that are realized by BAR trees, and finally give 

the latter of which we call “corner cuts.” This method 
can be viewed as an extension of the traditional k-d tree, 
for our BAR tree is identical to the k-d tree defined on 
S so long as the k-d tree maintains a balanced aspect 
ratio; we only use corner cuts when an axis-parallel cut 
would produce a region that is too “skinny.” 

2 The General BAR Tree Framework 

In this section, we develop a general framework for 
constructing BAR trees. We begin by defining what 
we mean by bounded aspect ratio. 

DEFINITION 2.1. A convex region R in IRd has aspect 
ratio asp(R) = OR/IR with respect to some underlying 
metric, where OR is the radius of the smallest circum- 
scribed hypersphere in Rd and IR is the radius of the 
largest inscribed d-hypersphere. R has balanced aspect 
ratio with maximum aspect ratio CY 2 1, if asp(R) 5 (Y. 
We say, a region R is an a-balanced region if it has max- 
imum aspect ratio cr. A collection of regions, R, has 
balanced aspect ratio with balancing factor cz if each 
region R E R is an a-balanced region. 

Typically, we use one of the standard L, metrics to 
define aspect ratios, as these are all within a polynomial 
factor of d from each other. In keeping with current 
custom [2, 14, 201, we use the terms fat and skinny 
to refer to regions which have respectively balanced 
and unbalanced aspect ratios. This definition states 
that a region R has a minimum width associated with 
its diameter. As in Arya et al. [S], we use this 
property to show worst-case bounds on some geometric 
approximation problems. 

DEFINITION 2.2. A canonical cut set, C = 
{G,vi,.. . , $1, is a collection of y, not necessar- 
ily independent, vectors that span Rd (thus, 7 2 d). 
A canonical cut is any hyperplane, H, in Rd with a 
normal in C. A canonical retion is a convex polyhedron 
in lRd with every facet having a normal in C. 

DEFINITION 2.3. Any two canon&~I cuts H and H’ 
that are normal to the same vector in C, i.e. parallel 
to each other, are opposing canonical cuts. For any 
bounded region R, define the canonical bounding cuts 
with respect to a direction v’i E C to be the two unique 
opposing C~IIO~~C~ cuts normal to v’i, and tangent to R. 
Intuitively, R is “sandwiched” between the two opposing 
cuts. - 

an efficient method for constructing a BAR tree. Our 
method for constructing a BAR tree for a point set S 

The canonical set used to define a partition tree 

uses hyperplane cuts that are either parallel to a co- 
can vary from method to method. For example, the 

ordinate axis or form 45” angles with coordinate axes, 
standard k-d tree algorithm uses a canonical set, of all 
axis-parallel directions. For notation, we often refer to 
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a canonical cut by its normal vector, Gi E C. In the k-d 
tree model, we would represent a cut along the y-axis 
by (0, LO,. . . , 0). We refer to such an opposing pair by 
its direction, fli E C, in positive or negative form of the 
normal vector. Also, let (R( represent the number of 
points from a given data set S contained in the region 
R, i.e. its size in terms of points rather than volume. 

DEFINITION 2.4. An o-balanced canonical region, R, is 
one-c&table with reduction factor P, where l/2 5 p < 
1, if there is a cut s1 E C, called a one-cut, dividing R 
into two subregions RI and R2 such that 

1. RI and R2 are o-balanced canonical regions, 

2. IRll L PIRI and lR2I I PIRI. 

DEFINITION 2.5. An o-balanced canonical region, R, 
is k-c&table with reduction factor P, for k > 1, if there 
is a cut sk E C, called a k-cut, dividing R into two 
subregions RI and R2 such that 

1. RI and R2 are o-balanced canonical regions, 

2. lR2l I PIRI, 
3. Either jR1 I 5 p/RI or RI is (k - I)-cuttable with 

reduction factor p. 

In other words, the sequence of cuts, 
sk,sk--17...,sl, results in k + 1 balanced canon- 
ical regions each containing no more than pn points. If 
p is understood, we simply say R is k-cuttable. 

THEOREM 2.1. For a canonical set, C, if every possible 
o-balanced canonical region is k-cuttable with reduction 
factor fi, then a BAR tree with maximum aspect ratio 
Q can be constructed with depth O(k logrlp n), for any 
set S of n points. 

Proof. Start with an initial bounding a-balanced canon- 
ical region on S. Since this region is k-cuttable, use 
a sequence of k cuts to divide the region into k + 1 
o-balanced canonical subregions each containing fewer 
than ,f?n of the points. Repeat this process on each of 
the resulting subregions until a subregion has less than 
some constant number of points. The process, down any 
path of subregions, can be repeated for no more than 
O(logrlp n) times, resulting in the stated tree depth 
bound. H 

The main challenge in creating a specific instance 
of a BAR tree is in defining a canonical set C such that 
every possible o-balanced canonical region is k-cuttable 
with reduction factor ,S for reasonable choices of a, P, 
and k. But, before we do this, let us motivate it by 
describing a few applications for BAR trees. 

3 BAR Tree Applications 

Suppose we are given a point set S of n points in Rd 
using any one of the Minkowski L, metrics. After 
constructing a BAR tree T on S, we are able to perform 
some useful queries. For any query point q E lRd, we are 
able to efficiently report both the approximate-nearest 
and approximate-farthest neighbors of q in S. If we are 
also given a radius T, we are able to efficiently return 
all points within a distance T from q plus possibly any 
points that are approximat6ely near P, which is a form 
of approximate range searching. We will more formally 
describe some of these applications shortly. 

Arya et al. [4, 5] propose a technique to solve the 
approximate nearest-neighbor and range query prob- 
lems by constructing a balanced box-decomposition 
tree. Similar to our BAR trees, these trees maintain an 
o-balanced aspect ratio but only by introducing non- 
convex hole cuts. Their arguments and techniques for 
solving these query problems, however, are easily trans- 
ferable to our data structure. 

DEFINITION 3.1. For a set S of points in Rd, a query 
point q E lRd, and E > 0, a point p E S is a (1+ E)- 
nearest neighbor of q if d(p, q) 5 (1 + e)bCpf , q), where 
p* is the true nearest neighbor to q. 

In other words, such a p is within a constant error 
factor of the true nearest neighbor. This definition can 
also be extended to report a sequence of s (1 + e)-nearest 
neighbors. Rather than adapt all theorems presented by 
Arya et al. in this extended abstract, we instead prove 
another useful query operation, applicable to both their 
and our methods, and establish an important packing 
feature for BAR trees. 

DEFINITION 3.2. For a set S of points in IRd, a query 
point q E lRd, and E > 0, a point p E S is a (1 - E)- 
farthest neighbor of q if b(p, q) > dw, q) - ED, where 
p* is the true farthest neighbor and D is the diameter 
of the point set. 

We are using an absolute error bound rather than 
the standard relative error, b(p,q) 1 (1 - e)&(p’,q), 
because the bound is tighter in every case. Imagine 
a point set that is tightly contained in the unit sphere, 
and a query point that is extremely, 100/e units, far 
from this sphere. Now, any point returned would be 
a (1 - e)-farthest neighbor of S using a relative error 
bound. In our definition, a query point is the better 
of the absolute and relative distances, within a constant 
factor of E. Since D is the diameter of the set, any query 
point must be at least half the diameter away from one 
of the points in the set, d(p*,q) 2 D/2. Letting E’ = 2e, 
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we see that must contain the real point that was farthest from g. 

f&q) L 4p*,q) -ED 2 6(p’,q) - c2b03f,q) 
= (1- 2e)6(p’,q) = (1 - e’)6(p8,q). 

Wlog, let this be ‘1~1 and insert 2~2 into the queue. Use 
u1 as next “extracted” node from Q and continue. 

Hence, using an absolute error bound in the approxim- 
ate farthest-neighbor query always gives a point whose 
distance is at least as far as the distance obtained using 
a relative error bound. In fact, one can extend this no- 
tion and our arguments to compensate for this problem 
in nearest-neighbor queries as well, i.e., when the query 
point is relatively far away from the entire data set. 

We now, briefly, discuss the farthest neighbor ap- 
proximation algorithm using a BAR tree. Given our 
query point q, we begin by finding a leaf node that is 
the farthest away from q. Here, a region’s maximum 
distance from a point is considered, implying that, in 
theory, the node containing the point q might still also 
be the node that is the farthest from q. We next enu- 
merate, via a priority queue, all leaf nodes in decreasing 
order of distance, i.e. farthest leaf nodes first. For every 
leaf node, we compute the distance between that node’s 
data point and q and maintain the current farthest vis- 
ited point. When the distance between q and the current 
farthest node is less than J&J, q) + CD, we can terminate 
the search, as b(p*,q) < 6(p,q) + ED. 

A priority queue can be maintained in such a way 
that the running time is O(logn) times the number of 
leaf nodes visited. The key to the algorithm’s success is 
that the number of leaf nodes visited can be liited by 
using a packing argument. Let us, therefore, describe 
both the priority queue technique and the packing 
argument needed to limit the number of leaf nodes 
visited. 

LEMMA 3.1. Given a BAR tree T with depth 
O(k log,,8 n) and y canonical vectors, for any query 
point q, a (1 - c)-farthest neighbor to q can be found 
in O(kZy log,,p n) time, where 1 is the number of leaf 
nodes visited in our algorithm. 

Proof. First we can see the correctness of our algorithm 
by looking at the leaf node U* containing p’. If U* 
has been visited, our algorithm would set p t p’ and 
return the correct solution upon termination. If u* has 
not yet been visited, implying p # p’, we see that 
&P*, d 5 &‘LL*> 4 5 d(u, d I G, q) + ED. 

Now, let u be any node that is extracted from the 
queue. Since our algorithm does not do another extract 
operation until it reaches a leaf node which has depth 
O(k logrlp n), we perform O(k log,,p n) queue inserts 
per leaf node visited and one extract per leaf node. 
If we use a Fibonacci heap, although in practice this 
would not be necessary, insertions take O(1) amortized 
time and extractions take O(logn), since the queue 
has size O(kn). At each split, deciding which node is 
farther takes 0(-y) time as the node regions have O(r) 
complexity. Thus, if 1 is the number of leaf nodes visited, 
the algorithm terminates in O(kZrlogllp n) steps. n 

3.2 Packing Constraint. Thus, as in the nearest- 
neighbor algorithm of Arya et al., if we can liiit 
the number of leaf nodes that we need to visit, the 
running time would be known. This is where a packing 
constraint comes in. 

3.1 Searching Farthest Nodes. Let us describe, LEMMA 3.2. (Packing Lemma) Given a BAR tree 

in more detail, the searching technique which uses the with maximum aspect ratio cr for a set S of data points 

priority queue. To avoid confusion between points in in Rd and two size parameters r,r’ > 0, using any 

space and in the data set, we call a point p, a data point Miiowski metric, L,, there are O((a&)d(r/r’)d-‘) 

if p E S, and a point T, a real point if r E Rd. For leaf nodes which pierce any annulus with radii r + r’ 

any node u and its associated region R, let a(u,q) = and r- 
d(R, q) = maxIERS(r,q), i.e. the distance between q 
and a node u is the distance between q and the farthest 
real point from q in the region R. 

Initially, a priority queue Q starts with the root 
node of T. Let p be the current farthest neighbor, 
initially set to q. At every stage, extract from Q the 
node, u, that is the farthest from q. If 4% d < 
6(p, q) + ED, we return p as the (1 f e)-approximate 
farthest neighbor. If u is a leaf node, let p’ E S be the 
node’s associated data point, if any. If 6(p’, q) > 6(p, q), 
let p t p’. Remove u from consideration, and continue 
with the next node in Q. If u is not a leaf, let ur and us 
be u’s children. Since u = u1 U 112, one of the two nodes 

Proof. Let 1 be a leaf node in the tree with associated 
region R that pierces the annulus, A. This means 
that the outer radius OR 2 r’. Since the region is CY- 
balanced, recall that the inner radius of R, IR 2 0~1~. 
We then know that the volume of R, in any metric, 
is greater than the volume of the L1 hypersphere, a 
diamond in the plane, 

VR 2 (21~/&i)~ 1(20~/(oJ;i))~ 2 (2r’l@hNd, 

and because the objects are convex, the intersection 
B = An R has volume VB 2 (2r’/(cx&))d. Now, in 
any metric, the volume of any annulus, A, of radius 
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r + r’, r is less than or equal to the difference between 
the volume of the outer and inner boxes of length +-- 
2(r + r’) and 2r respectively, the L, metric. This, 
VA 5 (2r + 2r’)d - (2r)d = (2r)d((l + r’/r)d - 1). 

Since the leaf nodes do not overlap, the number of 
leafs nodes, L, is larger than the ratio of the two 
volumes, L 5 VA/I& _< (caQd((r/r’ + l)d - (r/r’)d) = 

O((ad2)d(r/r’)d-1). n 

Our only other concern, then, is that some leaf 
nodes might not contain any points, as we never made 
this stipulation in our general framework, although this 
scenario is highly unlikely. This problem is averted by 
noticing that since the regions are all k-cuttable, there 
are at most k - 1 regions in sequence that can be empty, 
as after k cuts two regions must both have less than a 
p fraction of the points. We then defer the costs for 
an empty leaf node to one of the non-empty leaf nodes 
in its sibling’s region. As there is an actual split after 
every k - 1 cuts, we can ensure that no leaf node gets 
more than k of the deferred charges, so the running time 
increases by at most a factor of k. 

Figure 1: The notion of corner cuts. (a) A corner cut in the 
plane. (b) A corner cut in 3-d. 

along any face forces the next cut to either be too close 
to the opposing face or not divide a significant portion 
of the points in the region, resulting in an unbalanced 
depth. Our solution is to introduce a simple comer cut 
that yields enough freedom of direction to construct a 
BAR tree. 

DEFINITION 4.1. A corner cut in Rd is a hyperplane 
whose normal vector is of the form (10, 11, . . . , Id) where 
Ii E {1,-l}. 

:’ 

L I 

THEOREM 3.1. Suppose we are given a BAR tree 
T with depth O(klog,,p n), a balancing factor o, 
and 7 canonical vectors, on a point set S with dia- 
meter D and n data points. For any query point 
Q, a (1 - c)-farthest neighbor to Q can be found in 
O(k2-y(a&)d(l/c)d-1 logn) time. 

Proof. For any leaf node visited, but the last, U, 
b(~, Q) > S@, 9) + ED, as this was the halting condition. 
Also, every leaf node visited, U, which contained a point, 
p’, had to have b(p’, q) 5 b(p, q) by the fact that p was 
the farthest point found. Thus, similar to the method 
of Arya et al. [5], we know that every node containing 
a point visited by the algorithm must completely pierce 
the annulus of radii a(p, q) and b(p, q) + ED, i.e. he on 
both sides of this annulus. Since the diameter of the 
point set is S, every leaf node containing a point must 
also he at least partly inside a ball of radius D. Any 
leaf node piercing the original annulus, therefore, also 
pierces an annulus with radii D and D(1 + E). In ap- 
plying the Packing Lemma (3.2), Lemma 3.1, and our 
compensation for empty leaf nodes, we get a running 
time of O(kylog,,B n * (cx&)~(D/(ED))~-~ * k), and 
the stated bound follows. n 

For a region R, canonical with respect to C, consider 
a direction vector Gi E C. Let widt&(R) be the distance 
between the two bounding canonical cuts of R normal to 
Gi. For simplicity, let us normalize the distance between 
two opposing planes by using the L, metric. In a 
region R, this means that for two bounding canonical 
comer cuts p and q with normal Gi whose equations are 
of the form p : v’iiz’ = a and q : f&Z = b, the width 
widt&(R) = 9 (see Figure 2-a). 4 Corner-Cut BAR Trees 

We now show a specific instance of a BAR tree. Ideally, Notice, since the normal vector to a corner cut 

in constructing a BAR tree we would prefer to use only forms a 45’ angIe with each axis, the regular Euclidean 
axis-parallel cuts, but this is not possible. If, for ex- distance between the planes is ?a. The distances 
ample, the vast majority of the points are concentrated between two axis-parallel cuts in the L, metrics are all 
at a particular corner of a hyperbox region, cutting identical, for p E (1,. . . , oo}. Thus, using any other L, 

Notice that there are 2d possible corner cuts corres- 
ponding to all combinations of fl. In the plane, such a 
cut forms a 45” angle with both the x- and y-axes (see 
Figure 1). The advantage to using these corner cuts 
will soon become apparent. Let us therefore show how 
to use such cuts to define a canonical cut set that is 
sufficient for constructing an efficient BAR tree. 

Cauouical Cut Set: Define a specific canonical 
set, C, to be the set of all cuts which are either 
axis-parallel or corner cuts, in other words, all cuts 
whose normal is of the form (O,O,. . . ,l,. . . ,0) or 
UO,Il,.. . ,Id) where 1; E (1, -1). Let C’ be the set 
of axis-parallel cuts and C” be the set of comer cuts. 
so, c = C’ u C”. 
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metric will only change our o parameter by O(d). 

DEFINITION 4.2. A canonical region R has canonical 
aspect ratio, casp(R) = m. R has bound- 

ma~)~~~(width;(R)) 
ing boz aspect ratio, hasp(R) = minjEC, (uidthj CR)) . 

In other words, the canonical aspect ratio is the 
ratio of the longest to smallest widths among the 
2d-1 -I- d face pairs, and the bounded box aspect ratio is 
the aspect ratio of the bounding hyperbox of the region, 
ignoring the corner cuts. Because we are using the L, 
metric, the maximum distance in the region R must be 
from a cut direction in C’, implying that hasp(R) < 
casp(R). Also, for any region R, asp(R) 5 casp(R)d. 
It is acceptable, then, to use the canonical aspect ratio 
rather than the general aspect ratio in our construction 
of a BAR tree, with only a factor of d cost in aspect ratio 
performance with respect to the general framework. As 
a result, we call a canonical region R a-balanced with 
respect to the current canonical set if casp(R) < o for 
some cr 1 1. 

Even with these new cuts introduced into our 
algorithm, it is still difficult, in fact impossible, to 
guarantee a single cut that will divide the region into 
two proportionally equal regions. We do, however, 
prove that any balanced canonical region R is (d + 2)- 
cuttable for sufficiently large values of cr and p and from 
Lemma 2.1 we have a bound on our BAR tree depth. In 
the process of proving the existence of a (d + 2)-cut, we 
also show a simple O(n) time method for the discovery 
of such a cut. 

4.1 Speckic Properties. The use of corner cuts 
gives us certain very useful and important properties. 
First, during the process of making a comer cut on a 
region R, it is possible to create a subregion, Ri, such 

Figure 2: (a) Illustrates the distance between two corner cuts 
in L, for the plane. (b) Illustrates the notion of a shielding 
cut. If I is the length of the corner cut, the shielding cut is at 
distance y from the corner cut. where y 5 z/(2 - 1). 

Figure 3: (a) Two cuts 1 and T which divide a region R into 
subregions Rr, Ii&. and R,r. (b) Pairs of parallel cuts II. rl 
and 12, rs divide region R into several subregions. The shaded 
areas are the intersections of the outer regions. 

that some other bounding canonical cut, c, in R is no 
longer a bounding canonical cut in RI, i.e. it is no longer 
tangential to the new subregion RI. If this is the case, 
we simply take the bounding canonical cut of RI which 
is parallel to c to represent part of RI. Therefore, when 
we refer to canonical cuts of a region, we are always 
referring to the region’s bounding canonical cuts. 

Every corner cut, besides having an opposing 
corner, also has d neighboring axis-parallel cuts, and 
d opposing axis-parallel cuts. For a comer cut, c = 
(&,&, . . . ,&f), let d = (0,. . . ,Ij,.. . ,o) for j E {l,d} 
be the j-th neighboring cut. 

LEMMA 4.1. Suppose we are given a convex polyhedral 
region R, and two parallel hyperplanes 1 and T intersect- 
ing R (see Figure 3.a). We have three (possibly empty) 
subregions of R lying to the left, middle, and right of the 
two hyperplanes, respectively, RL, &, and Rr. For any 
1 3 @ 1 l/2, either there exists a hyperplane m parallel 
to 1 and T intersecting R, which divides the region into 
two subregions both of which have no more than PjRj 
points or no less than PlRl points lies in either RL or 
R.7. 

Proof. Assume the contrary. Then, we know that 1 Rr 1 < 
PlRl which implies that I&I + lRr[ 2 PIRI, or else the 
line 1 would be a suitable choice for m. Similarly, we 
know that l&l + l&l 1 PIRI. We now continually 
sweep a hyperplane m from I towards r, let RI and R2 
be the two subregions of R to the left and right of m. 
[RI1 = \RI~ + z for 0 5 z < I&I. This implies that 
there exists z f (0,. .., I&l} such that IRlJ = PlRl 
and lR2j = JR1 - PiRl 5 ,8lRl for ,0 2 l/2. Thus, there 
exists a hyp&plane parallel to I and T which intersects 
R, and divides R into two regions of size no more than 
flIR[, contradicting our original assumption. n 

In other words, there either is a cut that divides a 
region into two subregions each with less than a fraction 
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of the original number of points or one of the two outside COROLLARY 4.1. Given a canonical region R, a vector 
regions has more than this fraction of points. If this v’i E C and a reduction factor 1 > ,8 2 l/2, let b and 
latter case holds, we call this region the large outer c be the two opposing canonical cuts in R with normal 
region, lorl,,(R), where 1 and T are the two parallel ci. If shiel&(R) n shiel&(R) = 0, then either a cut 
hyperplanes. If there exists a dividing cut, m, then exists which divides R into two o-ba,la,nced region Rr 
loq,(R) = 0. and RZ each with less than PlRl points or one of the 

THEOREM 4.1. Suppose we are given a convex region 
shield regions has more than ,BlRl points. 

R, and k pairs of paralle1 hyperplanes (&, ri), i E Proof. Since the two regions do not intersect, we have 
(1,. . . , k} (see Figure 2.b). For any fi 2 (k - 1)/k the two cuts defining each shield divide R into three 
(and P 2 l/2), either there exists a hyperplane m regions, as in Lemma 4.1, the size constraints hold. 
parallel to one of the pairs which divides the region More importantly, by the d&&ion of a &&ld re@on 

into two subregions of size less than P/RI or IPI 2 (4.3) and the fact that the two shield regions do not 
(1 - (1 - p)k)IRj, where P = nf=, 10q,~;(R). intersect, any cut lying between the two regions will 

produce two a-balanced. regions. n 
Proof. Assume that there does not exist a hyperplane 
m dividing the region into two small subregions. By We refer to the shield region from the above corol- 
Lemma 4.1, every pair must have a maximal outer lary as the large outer shield, losi(R), where losi (R) = 
region for R or we would have a dividing hyperplane 0 if a dividing cut exists. Notice, the corollary corres- 
m. For each pair (Zi, ri), let Pi = lorli,r,.(R) be the ponds to Lemma 4.1, with the added guarantee that 
large outer region of R for each pair of hyperplanes. the two regions produced from the cut chosen are cr- 

If k = 1, we know, from Lemma 4.1, 141 1 PlRl 2 balanced. Furthermore, this corollary may be exten- 
(1 - (1 - P)k)IR(. By induction, assume the theorem ded to multiple hyperplane directions, i.e., extends The- 
holds for all values less than k. Recall from set theory orem 4.1. 
thatfortwosetsAandB, IAnI = jAI+IBI-IAIJBI. 
Let P’ = nfzt Pi. We know that lP’UPk( 5 lR(. DEFINITION 4.4. For a given canonical region R and a 
Then, P = P’nPk + IPI 2 (1 - (1 - P)@ - l))iRI + canonical corner cut c, the length, Ien,( is defined 

@[RI - IRI = (1 - (1 - P)k)(RI. Th us, it is true for k as as the distance from the cutting hyperplane c to the 

well. I associated comer of the bounding hyperbox containing 
R, i.e., how far into the region does c cut, measured in 

There are many corollaries that can be derived from the L, metric. 
this simple theorem. For example, if the intersection of 
all the large outer regions is empty and P > (k - 1)/k, Imagine any axis-parallel hyperbox. If we were to 
a hyperplane cut must exist that divides the region into remove any corner and continue cutting inward, after 
two subregions of size less than PlRl each as there is no traveling a certain length we would begin to shrink the 
other alternative location for the points to lie. bounding box of the remaining region, in at least one 

of the axis dimensions. After going even a little farther, 
DEFINITION 4.3. Given an a-balanced canonical region we would begin to &rink the bounding box in every 
R and a canonical cut c with normal v’i, sweep a cut c’ dimension simultaneously. The instant at which this 
from the opposing cut towards c, calling the region of happens is the largest the comer cut can possibly be 
R between these two cuts P, either until P is empty or while guaranteeing that the bounding hyperbox of the 
just before casp(P) > cy. Notice, if P, is not empty, remaining region is now actually a hypercube. Because 
then P has maximum aspect ratio. Call the region P, we exploit this property in proving certain regions are 
the shield region of c in R, shield,(R). one-cuttable, we more formally state and prove this 

corollary next. 
THEOREM 4.2. Given R, c, and c’ as defined above, if 
shield,(R) # 0 d an we continue sweeping c' towards c, COROLLARY 4.2. For a given canonical region 
then the region between cand c’ will have anunbala.nced R and a canonica,l corner cut c, Ien, 5 
aspect ratio until it becomes empty. maxiec(uidthi(R))(l - l/d). If equality holds, 

Proof. Intuitively, if a convex region R starts out fat 
then hasp(R) = 1. 

and in the process of cutting m a constant direction Pmof. Wlog, assume that c = (1,1,. . . , I), i.e., the 
becomes skinny, continuing in that direction will never upper left hand comer, and the corresponding corner 
make it fat again. I of the bounding hypercube for R be placed at the 
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origin. This makes the equation of the hyperplane for 
c, (1, 1,. . . , 1)s = len,(R)d. 

Let z = ma.xiec(widthi(R)) be the maximum width 
between all of the bounding canonical cuts. This must 
then correspond to a particular pair of axis-parallel cuts. 
Wlog, assume that they are cl, (l,O,. . . ,O)Z = 0, and 
its opposing cut br , (1, 0, . . . , 0)Z = z, i.e. the left and 
right sides. 

Now, assume that len,(R) > ~(1 -l/d) = $(d- 1). 
Let the intersection of hyperplanes c and c1 be the 
hyperplane c’, (0, 1, 1, . . . , l)Z = len,(R)d. Notice that 
since c n R and cr n R, c’ n R # 0. However, no point 
p E R can lie on c’, as (0, 1, 1, . . . , 1)~ 5 z * (d - 1) = 
$(d - l)(d) < len,(R)d. Thus, c’n R = 0. +* 

For the second statement, if len,(R) = ~(1 - l/d) 
and following a similar argument from above, we know 
that the distance from every axis-parallel side must also 
be at length x, or again no point in R can lie on the 
intersection of the two hyperplanes. n 

LEMMA 4.2. For an a-balanced canonical region R and 
a corner cut c, 

rney(widthi(R)) < d(len,(R) + width,(R)) 

Proof. For simplicity, assume that the corner cut has 
normal vector, ci = (1, 1, _ _ _ , 1) and the associated 
comer of the bounding hyperbox is at the origin. The 
hyperplane equation of the corner cut c is then %E = 
dlen,(R) and the opposing bounding comer cut has 
equation v’i5 = d(len,(R) + widt&(R)). Thus, the 
distance between any two axis-parallel sides of the 
region and its associated bounding hyperbox must be 
no more than d(len,(R) ,+ widt&(R)). Since we are 
using the L, metric, the maximum distance between 
any two bounding hyperplanes in R must correspond to 
one of the axis-parallel sides, i.e., a hyperplane on the 
bounding box, and the result follows (see Figure 4.a). n 

LEMMA 4.3. (Corner-Cut Shield Lemma) For an 
o-balanced canonical region R and a comer cut c E C”, 
width,(shiel&(R)) 5 len,(R)/(s - l), for a > d. 

Proof. Let x = Ien,( P = shiel&(R), y = 
width,(P), and z = mUZiec(widt&(P)). We kllOW 
from Lemma 4.2 that z 5 (x + y)d. Since P is the 
shield region for c, casp(P) = a. Because we are using 
the L, metric, y is the minimum width in P, implying 
that zfy = a =$ y = z/a 5 (x + y)d/a. Solving for y, 
we get y 5 xd/(cy - d) = z/(5 - 1) (see Figure 2.b). m 

This lemma is where the main advantage to using 
comer cuts comes in. If the corner cut is small, i.e., 
cuts very little of the region, we can make a cut in that 

direction very close to this corner cut, in proportion to 
its size and disregarding the dimensions of the rest of 
the region entirely. 

4.2 k-Cut Existence Theorem. Before we prove 
that every balanced canonical region is (d + 2)-cuttable, 
we first describe a few regions that are k-cuttable for 
k 5 3. 

THEOREM 4.3. For p > (d - 1)/d and 01 > 2d, an 
o-balanced canonical region R is one-cuttable if there 
exists a corner cut c E C” with opposing cut b such that 

1. lenb(R) = maxiec(widt&(R))(l - l/d), 

2. len,(R) > maxiec(widthi(R))(l/a). 

Proof. Wlog, assume that c = (1, 1, . . . , 1). Let 
x = maxiec (widthi(R Recall from corollary 4.2, 
hasp(R) = 1. Now, let us look at the various shield 
regions for each of the axis-parallel directions, i& E 
C’, of the neighboring face, bi, of b. If we look at 
any hyperspace cut along this direction, the region 
formed towards this neighboring face will always have 
hasp(R) = 1. This is because of the comer cut b which 
cuts every neighboring face simultaneously. Therefore, 
Pi = shieldbi (R) = 0. In the other direction, Qi = 
shield,<(R), has balanced aspect ratio a, this implies 
that widt&(R) 5 x/a. We can do this for every one 
of the axis-parallel directions. We have d pairs of shield 
regions (Pi, Qi), Vi E (1,. . . , d). From corollary 4.1, this 
means that for any @ > (d - 1) /d either a one-cut exists 
or at least (1 - (1 - P)d)lRI > 0 points lies in one of 
the intersections of the regions. Let us determine which 
intersection of regions this could be. If it contained any 
of the Pi regions, the intersection would be empty as Pi 
is empty, notice the strictly greater than 0 condition. 

W 

. 

Figure 4: (a) The longest side of the bounding box of a given 
cannonical region has to be shorter than the sum of the length 
and distance of the corner cuts, i.e. z 5 (I + y)d. (b) An 
example of a basic one-cuttable region in the plane. Notice 
that y = z/2 and z 2 z/a 
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Therefore, at least one point must lie in I = n%, &i. 
Now, let us look at Inc. Notice that len,(R) > z/o, 
yet in I, widt&(I) <= z/cr,V’i E (1,. . . ,d). The in- 
tersection is empty and no points in R can lie in this 
intersection either. Consequently, there must be a one- 
cut on R. H 

have additional corner cuts. However, with the simple 
addition of one extra shield cut in one of the d axis- 
parallel directions, it is not too difficult to see that we 
can produce a region which is one-cuttable, although we 
leave the details for the journal version. m 

THEOREM 4.4. For CY 2 3d and ,f3 2 d/(d + l), 
an a-balanced canonical region R is three-cuttable if 
hasp(R) 5 2. 

THEOREM 4.5. For o 2 3d and p 1 d/(d + l), any 
o-balanced canonical region R is (d -t 2)-cuttable. 

Proof. Let z = rnaxiec~ (widthi(R y = 
miniecl(widthi(R)), and n = IRI. Since 
b=+(R) = z/y 5 2, z/2 < y. For each axis-parallel 
direction, Gi, let us End the two shield regions, Pi and 
&i, associated with the opposing cuts. Wlog, let us look 
at P;. Notice, that the widt&(Pi) 5 t/a 5 z/4 5 y/2 
and the same for &i which implies that Pi n Qi = 0. 
Since p 2 d/(d + 1) > (d - 1)/d, from C* 
rollary 4.1, either a dividing cut exists or 
P = &c, los;(R) # 0. If a dividing cut exists, 
we are done, as the region is by definition three- 
cuttable. Otherwise, we know from our corollary that 
IPI 2 (1-(1-P)d)n 2 (1-(1-d/(d+l))d)n = n/(d+l). 

It is quite clear from our construction of P that P 
corresponds to one of the 2d corners of the bounding 
hyperbox of R. Wlog, let this be the upper left corner, 
i.e. the comer whose associated cut is 5i = (1, 1, . . . , 1). 
Now, since P is not empty, len,(R) 5 widt&(P) 5 
z/a. Let PC = shiel&(R) and Pt, = shiel&(R), 
where b is the opposing cut of c. Because b can be 
at most the diagonal, len,(R) + width,(R) 2 z/d. 
Then, since leQ(R) 5 Z/Q, width&R) 2 z(l/d - I/Q. 
For QC 2 3d, this means width,(R) 2 2z/(r and a cut 
exists between b and c which creates two a-balanced 
regions. This means Pt, n PC = 0. Also, from this, we 
know that Pb n P = 0. Now again, either a dividing 
cut exists in R in which case we are again finished 
or at least @n of the points lies in either PC or &. 
If IPbl _> ,L%, then JR - Pi] < (1 - ,6)n. However, 
lR - PbI > jPI > n/(d + 1) > (1 - /?)n which implies 
/PC1 1 ,&z, but /Pbl > @z, a contradiction. 

Proof. Let z = rnaxiecl (width?(R)) and y = 
miniecl (widthi(R If hasp(R) 2 2, we are done as 
the region is three-cuttable. If not, then there exists 
at least one axis-parallel direction with width less than 
z/2 which means that y < z/2 =+ t > 2y. Let i f C’ 
be the direction corresponding to z, i.e., corresponding 
to the longest side, and b and c be the two opposing 
canonical cuts with normal v’i. Since z is large, it is 
easy to see that shiel&(R) n shiel&(R) # 0. Now 
look at the losi(R). If losi(R) = 0, then a dividing cut 
exists in R in direction Gi and R is one-cuttable. Note 
that in many cases, especially those applications that 
find k-d trees practical, losi(R) will be empty as there 
is usually a dividing cut .along the longest direction that 
produces cr-balanced subregions. Otherwise, wlog, as- 
sume shield,(R) is the large outer region. Now, rather 
than cut at this shield region, we use a cut, c’, in the dir- 
ection of i7; to create a region R’ where widthc(R) = y. 
Notice that R 1 R’ > shield,(R), i.e., R’ is larger 
than the shield region, and if R’ is k-cuttable, then R is 
(k+ 1)-cuttable. Also, since there are at most d- 1 sides 
with width greater than y and after every cut we reduce 
this count by one, after no more than d - 1 cuts we will 
have an o-balanced canonical region with hasp(R) 5 2, 
which is three-cuttable. Therefore, any a-balanced ca- 
nonical region is (d + 2)-cuttable. n 

Notice that our scheme generally cuts along the 
longest axis-parallel side. We can alter this to include 
searching for one-cuts in the other axis-parallel direc- 
tions and in so doing mimic the performance of k-d 
trees. In practice, as k-d trees often appear to perform 
quite well, the special two-cuttable regions may never 
have to be used. However, we have the added safety net 
of using these comer cuts, and in fact even finding ap- 
propriate one-cuts and two-cuts are quite easy although 
their existence is diacult to prove. . 

THEOREM 4.6. For the given canonical set, C, a BAR 
tree with depth O(d2 logn) and balancing factor a can 
be constructed in 0(&m logn) time, where y is the size 
of the canonical set, here O(2d). This is O(nlogn) for 
fixed dimensions. 

We claim that PC is three-cuttable. First, observe 
that IR-PC1 5 (l-&z 2 on; thus, if PC is twocuttable 
then by definition R is three-cuttable. By the Comer- 
Cut Shield Lemma 4.3, width,(P,) 5 len,(R)/(cr/d - 
1) 5 le&(R)/2 + z’ = maxiec(widt&(P,)) < 
d(len,(P,) + widthc(Pc)) 5 3dlen,(P,)/2. Recall that 
len,(P,) = lew(R) 5 Z/CX and Q! 2 3d. This means 
that z’ 5 3dz/(2cr) 5 z/2. Since y 1 z/2, one of 
two types of regions may be formed. We know that 
either the bounding box of PC has minimum width z’, in 
which case PC is one-cuttable, or PC is nearly identical to 
the region in Theorem 4.3 except that the comers may 

Proof. Notice that at any stage, using even the most 
naive search, the large outer regions of a region R can 



be found in O(lRI) t ime, and the shielding regions at 
each stage can easily be found in O(y) time. Thus, 
we can find any k-cut of a region R in O(lR1-y) time. 
Since the depth is bounded, we have the running time 
as O(kyn log,,p n) time. Noticing that k = O(d) and 
P = O(dl(d + 1)) =+- 1 g, 
above stated runrung t~rn~.‘z = o(dlogn)’ we get the 

. . 

5 Conclusion and Open Problems 

In this paper, we introduced the general framework of 
the BAR tree and described some important applica- 
tions that may be solved by using this type of tree. We 
also showed that when the dimensionality is fixed, an 
(a, @)-BAR tree can be constructed in O(nlogn) time, 
where n is the number of points in the data set. 

These results, however, are only preliminary. There 
are still many open problems for this new type of data 
structure. For example, the complexity of the canonical 
regions (O(2d)), the number of cuts needed to ensure 
&balance (O(d)), and the maximum a-balance factor 
(O(d)) are all far from optimal and could with more 
careful analysis be significantly dropped, perhaps by 
choosing a different canonical set entirely. 
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