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Abstract 

We describe an approach for incorporating randomiza- 
tion in the teaching of data structures and algorithms. 
The proofs we include are quite simple and can easily 
be made a part of a Freshman-Sophomore Introduction 
to Data Structures (CS2) course and a Junior-Senior 
level course on the design and analysis of data structures 
and algorithms (CS7/DS&A). The main idea of this ap- 
proach is to show that using randomization in data struc- 
tures and algorithms is safe and can be used to signif- 
icantly simplify efficient solutions to various computa- 
tional problems. We illustrate this approach by giving 
examples of the use of randomization in some traditional 
topics from CS2 and DS&A. 

1 Introduction 

We live with probabilities all the time, and we easily dis- 
miss as “impossible” events with very low probabilities. 
For example, the probability of a U.S. presidential elec- 
tion being decided by a single vote is estimated at 1 in 
10 million’. The probability of being killed by a bolt of 
lightning in any given year is estimated at 1 in 2.5 mil- 
lion2. And, in spite of Hollywood’s preoccupation with 
it, the probability that a large meteorite will impact the 
earth in any given year is about 1 in 100 thousand3. Be- 
cause the probabilities of these events are so low, we can 
safely assume they will not occur in our lifetime. 

Why is it then that computer scientists have histori- 
cally preferred deterministic computations over random- 
ized computations? Deterministic algorithms certainly 
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have the benefit of provable correctness claims and of- 
ten have good time bounds that hold even for worst-case 
inputs. But as soon as an algorithm is actually imple- 
mented in a program P, we must again deal with prob- 
abilistic events, such as the following: 

l P contains a bug, 
l we provide an input to P in an unexpected form, 
l our computer crashes for no apparent reason, 
l P's environment assumptions are no longer valid. 

Since we are already living with bad computer events 
such as these, whose probabilities are arguably much 
higher than the bad “real-world” events listed in the pre- 
vious paragraph, we should be willing to accept proba- 
bilistic algorithms as well. In fact, fast randomized al- 
gorithms are typically easier to program than fast de- 
terministic algorithms. Thus, using a randomized algo- 
rithm may actually be safer than using a deterministic 
algorithm, for it is likely to reduce the probability that 
a program solving a given problem contains a bug. 

1.1 Teaching Randomization 

In this paper we describe several places in the standard 
curriculum for CS2, Data Structures, and CS7/DS&A, 
Data Structures and Algorithms, where randomized al- 
gorithms can be introduced. We argue that these solu- 
tions are simple and fast. Moreover, we provide time 
bound analyses for these data structures and algorithms 
that are arguably simpler than those that have previ- 
ously appeared in the algorithms literature. In fact, 
our proofs use only the most elementary of probabilis- 
tic facts. We contrast this approach with traditional 
“average-case” analyses by showing that the analyses for 
randomized algorithms need not make any restrictive as- 
sumptions about the forms of possible inputs. Specifi- 
cally, we describe how randomization can easily be incor- 
porated into discussions of each of the following standard 
algorithmic topics: 

l dictionaries, 
0 sorting, 
0 selection. 

We discuss each of these topics in the following sections. 
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An 

Dictionaries 

interesting alternative to balanced binary search 
trees for efficiently realizing the ordered dictionary ab- 
stract data type (ADT) is the skip list [3-71. This struc- 
ture makes random choices in arranging items in such 
a way that searches and updates take O(logn) time on 
average, where n is the number of items in the dictio- 
nary. Interestingly, the notion of average time used here 
does not depend on any probability distribution defined 
on the keys in the input. Instead, the running time is 
averaged over all possible outcomes of random choices 
used when inserting items in the dictionary. 

2.1 Skip Lists 

A skip list 5’ for dictionary D consists of a series of 
sequences {So, S1, . . . , Sh}. Each sequence Si stores a 
subset of the items of D sorted by nondecreasing key 
plus items with two special keys, denoted --oo and +oo, 
where -XI is smaller than every possible key that can be 
inserted in D and $00 is larger than every possible key 
that can be inserted in D. In addition, the sequences in 
S satisfy the following: 

l Sequence So contains every item of dictionary D 
(plus the special items with keys --oo and +co). 

l For i = 1 , . . . , h - 1, sequence Si contains (in addi- 
tion to --oo and +co) a randomly generated subset 
of the items in sequence Si-1. 

l Sequence Sh contains only -co and i-00. 

An example of a skip list is shown in Figure 1. It is 
customary to visualize a skip list S with sequence So at 
the bottom and sequences S1, . . ., Sh-1 above it. Also, 
we refer to h as the height of skip list S. 

Figure 1: Example of a skip list. The dashed lines show 
the traversal of the structure performed when searching for 
key 50. 

Intuitively, the sequences are set up so that Si+l con- 
tains more or less every other item in Si. As we shall see 
in the details of the insertion method, the items in Si+l 
are chosen at random from the items in Si by picking 
each item from Si to also be in Si+l with probability 
l/2. That is, in essence, we “flip a coin9 for each item 
in 5’; and place that item in Si+l if the coin comes up 

“heads.” Thus, we expect S1 to have about n/2 items, 
5’2 to have about n/4 items, and, in general, Si to have 
about n/2” items. In other words, we expect the height 
h of S to be about logn. 

Using the position abstraction used previously by the 
authors [2] for nodes in sequences and trees, we view a 
skip list as a two-dimensional collection of positions ar- 
ranged horizontally into levels and vertically into tow- 
ers. Each level corresponds to a sequence Si and each 
tower contains positions storing the same item across 
consecutive sequences. The positions in a skip list can 
be traversed using the following operations: 

after(p): the position following p on the same level. 

before(p): the position preceding p on the same level. 

below(p): the position below p in the same tower. 

above(p): the position above p in the same tower. 

Without going into the details, we note that we can eas- 
ily implement a skip list by means of a linked structure 
such that the above traversal methods each take O(1) 
time, given a skip-list position p. 

2.2 Searching 

The skip list structure allows for simple dictionary search 
algorithms. In fact, all of the skip list search algorithms 
are based on an elegant SkipSearch method that takes a 
key k and finds the item in a skip list S with the largest 
key (which is possibly -oo) that is less than or equal 
to k . Suppose we are given such a key k. We begin the 
SkipSearch method by setting a position variable p to the 
top-most, left position in the skip list S. That is, p is set 
to the position of the special item with key -oo in Sh. 
We give a pseudo-code description of the skip-list search 
algorithm in Code Fragment 1 (see also Figure 1). 

Algorithm SkipSearch( 

Input: A search key k 

Output: Position p in S such that the item at p has the 
largest key less than or equal to k 

Let p be the topmost-left position of S (which should 
have at least 2 levels). 
while below(p) # null do 

p t below(p) {drop down} 
while key(after(p)) 5 k do 

Let p t after(p) {scan forward) 
end while 

end while 
return p. 

Code Fragment 1: A generic search in a skip list s. 



2.3 Update Operations 

Another feature of the skip list data structure is that, be- 
sides having an elegant search algorithm, it also provides 
simple algorithms for dictionary updates. 

Insertion 

The insertion algorithm for skip lists uses randomization 
to decide how many references to the new item (k,e) 
should be added to the skip list. We begin the inser- 
tion of a new item (k,e) into a skip list by performing 
a SkipSearch operation. This gives us the position p 
of the bottom-level item with the largest key less than 
or equal to k (note that p may be the position of the 
special item with key -oo). We then insert (k, e) in this 
bottom-level list immediately after position p. After in- 
serting the new item at this level we “flip” a coin. That 
is, we call a method random0 that returns a number be- 
tween 0 and 1, and if that number is less than l/2, then 
we consider the flip to have come up “heads;” otherwise, 
we consider the flip to have come up “tails.” If the flip 
comes up tails, then we stop here. If the flip comes up 
heads, on the other hand, then we backtrack to the pre- 
vious (next higher) level and insert (k, e) in this level 
at the appropriate position. We again flip a coin; if it 
comes up heads, we go to the next higher level and re- 
peat. Thus, we continue to insert the new item (k, e) in 
lists until we finally get a flip that comes up tails. We link 
together all the references to the new item (k, e) created 
in this process to create the tower for (k,e). We give 
the pseudo-code for this insertion algorithm for a skip 
list S in Code Fragment 2. Our insertion algorithm uses 
an operation insertAfterAbove(p, q, (k, e)) that inserts a 
position storing the item (k, e) after position p (on the 
same level as p) and above position q, returning the po- 
sition r of the new item (and setting internal references 
so that after, before, above, and below methods will work 
correctly for p, q, and r). 

Algorithm Skiplnsert(k, e): 

p t SkipSearch (k) 
q t insertAfterAbove(p, null, (k, e)) 
while random0 < l/2 do 

while above(p) = nuEZ do 
p t before(p) {scan backward} 

end while 
p C- above(p) {jump up to higher leveZ} 
q t insertAfterAbove(p, q, (k, e)) 

end while 

Code Fragment 2: Insertion in a skip list, assuming 
random0 returns a random number between 0 and 1, and 
we never insert past the top level. 

Removal 

Like the search and insertion algorithms, the removal 
algorithm for a skip list S is quite simple. In fact, it 
is even easier than the insertion algorithm. Namely, to 
perform a remove(k) operation, we begin by performing 
a search for the given key k. If a position p with key k is 
not found, then we indicate an error condition. Other- 
wise, if a position p with key k is found (on the bottom 
level), then we remove all the positions above p, which 
are easily accessed by using above operations to climb 
up the tower of this item in S starting at position p (see 
Figure 2). 

Figure 2: Removal of the item with key 25 from a skip list. 
The positions visited are in the tower for key 25. 

2.4 A Simple Analysis of Skip Lists 

Our probabilistic analysis of skip lists, which is a sim- 
plified version of an analysis of Motwani and Ragha- 
van [4], requires only elementary probability concepts, 
and it does not need any assumptions about input dis- 
tributions. We begin this analysis by studying the height 
h of S. 

The probability that a given item is stored in a po- 
sition at level i is equal to the probability of getting i 
consecutive heads when flipping a coin, that is, this prob- 
ability is l/2’. Thus, the probability Pi that level i has 
at least one item is at most 

for the probability that any one of n different events 
occurs is at most the sum of the probabilities that each 
occurs. 

The probability that the height h of S is larger than 
i is equal to the probability that level i has at least one 
item, that is, it is no more than Pi. This means that h 
is larger than, say, 3 log n with probability at most 

P 
n 1 

3logn 5 2310gn 
-z--$--g 

More generally, given a constant c > 1, h is larger than 
clog n with probability at most l/n’-‘. Thus, with high 
probability, the height h of S is O(logn). 

Consider the running time of a search in skip list S, 
and recall that such a search involves two nested while 
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loops. The inner loop performs a scan forward on a level 
of S as long as the next key is no greater than the search 
key k, and the outer loop drops down to the next level 
and repeats the scan forward iteration. Since the height 
h of S is O(logn) with high probability, the number of 
drop-down steps is O(log n) with high probability. 

So we have yet to bound the number of scan-forward 
steps we make. Let ni be the number of keys examined 
while scanning forward at level i. Observe that, after 
the key at the starting position, each additional key ex- 
amined in a scan-forward at level i cannot also belong 
to level i + 1. If any of these items were on the previous 
level, we would have encountered them in the previous 
scan-forward step. Thus, the probability that any key 
is counted in ni is l/2. Therefore, the expected value 
of ni is exactly equal to the expected number of times 
we must flip a fair coin before it comes up heads. This 
expected value is 2. Hence, the expected amount of time 
spent scanning forward at any level i is O(1). Since S 
has O(logn) 1 eve s 1 with high probability, a search in S 
takes the expected time O(logn). By a similar analy- 
sis, we can show that the expected running time of an 
insertion or a removal is O(log n). 

Finally, let us turn to the space requirement of a skip 
list S. As we observed above, the expected number of 
items at level i is n/2”, which means that the expected 
total number of items in S is 

h 

c 
i=o 

Hence, the expected space requirement of S is O(n). 

3 Sorting 

One of the most popular sorting algorithms is the quick- 
sort algorithm, which uses a pivot element to split a 
sequence and then it recursively sorts the subsequences. 
One common method for analyzing quick-sort is to as- 
sume that the pivot will always divide the sequence al- 
most equally. We feel such an assumption would pre- 
suppose knowledge about the input distribution that is 
typically not available, however. Since the intuitive goal 
of the partition step of the quick-sort method is to divide 
the sequence S almost equally, let us introduce random- 
ization into the algorithm and pick as the pivot a random 
element of the input sequence. This variation of quick- 
sort is called randomized quick-sort, and is provided in 
Code Fragment 3. 

There are several analyses showing that the expected 
running time of randomized quicksort is O(n log n) (e.g., 
see [1,4,8]), independent of any input distribution as- 
sumptions. The analysis we give here simplifies these 
analyses considerably. 

Our analysis uses a simple fact from elementary prob- 
ability theory: namely, that the expected number of 

Algorithm quickSort( 

Input: Sequence S of n comparable elements 

Output: A sorted copy of S 

if n = 1 then 
return S. 

end if 
pick a random integer r in the range [0, n - l] 
let 2 be the element of S at rank r. 
put the elements of S into three sequences: 

l L, storing the elements in S less than 2: 
l E, storing the elements in S equal to x 
l G, storing the elements in S greater than Z. 

let L’ t quickSort 
let G’ t quickSort 
return L’ + E + G’. 

Code Fragment 3: Randomized quick-sort algorithm. 

times that a fair coin must be flipped until it shows 
“heads” k times is 2k. Consider now a single recursive 
invocation of randomized quick-sort, and let m denote 
the size of the input sequence for this invocation. Say 
that this invocation is “good” if the pivot chosen is such 
that subsequences L and G have size at least m/4 and 
at most 3m/4 each. Thus, since the pivot is chosen uni- 
formly at random and there are m/2 pivots for which this 
invocation is good, the probability that an invocation is 
good is l/2. 

Consider now the recursion tree T associated with an 
instance of the quick-sort algorithm. If a node v of T of 
size m is associated with a “good” recursive call, then 
the input sizes of the children of v are each at most 3m/4 
(which is the same as m/(4/3)). If we take any path in 
T from the root to an external node, then the length 
of this path is at most the number of invocations that 
have to be made (at each node on this path) until achiev- 
ing log,,, n good invocations. Applying the probabilistic 
fact reviewed above, the expected number of invocations 
we must make until this occurs is at most 210&/s n. 
Thus, the expected length of any path from the root to 
an external node in T is O(logn). Observing that the 
time spent at each level of T is O(n), the expected run- 
ning time of randomized quick-sort is O(n log n). 

4 Selection 

The selection problem we asks that we return the kth 
smallest element in an unordered sequence S. Again 
using randomization, we can design a simple algorithm 
for this problem. We describe in Code Fragment 4 a 
simple and practical method, called randomized quick- 
select, for solving this problem. 
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Algorithm quickSelect(S, L): 

Input: Sequence S of n comparable elements, and an 
integer lc E [l, n] 

Output: The kth smallest element of S 

if n = 1 then 
return the (first) element of 5’. 

end if 
pick a random integer r in the range [0, n - l] 
let z be the element of S at rank T. 
put the elements of S into three sequences: 

l L, storing the elements in S less than z 
l E, storing the elements in S equal to z 
l G, storing the elements in S greater than x. 

if k 5 IL1 then 
quickSelect(L, lc) 

else if k 5 IL1 + IEl then 
return 2 {each element in E is equal to x} 

else 
quickSelect(G, k - IL1 - IEI) 

end if 

Code Fragment 4: Randomized quick-select algorithm. 

We note that randomized quick-select runs in O(n2) 
worst-case time. Nevertheless, it runs in O(n) expected 
time, and is much simpler than the well-known deter- 
ministic selection algorithm that runs in O(n) worst-case 
time (e.g., see [l]). A s was the case with our quick-sort 
analysis, our analysis of randomized quick-select is sim- 
pler than existing analyses, such as that in [l]. 

Let t(n) denote the running time of randomized 
quick-select on a sequence of size n. Since the random- 
ized quick-select algorithm depends on the outcome of 
random events, its running time, t(n), is a random vari- 
able. We are interested in bounding E(t (n)), the ex- 
pected value of t(n). Say that a recursive invocation of 
randomized quick-select is “good” if it partitions S, so 
that the size of L and G is at most 3n/4. Clearly, a re- 
cursive call is good with probability l/2. Let g(n) denote 
the number of consecutive recursive invocations (includ- 
ing the present one) before getting a good invocation. 
Then 

t(n) 5 bn *g(n) + t(3n/4), 

where b 2 1 is a constant (to account for the overhead 
of each call). We are, of course, focusing in on the case 
where n is larger than I, for we can easily characterize 
in a closed form that t( 1) = 6. Applying the linearity of 
expectation property to the general case, then, we get 

E(t(n)) 2 E(bn .g(n)+t(3n/4)) = bn.E(g(n))+E(t(3n/4)) 

Since a recursive call is good with probability l/2, and 
whether a recursive call is good or not is independent 
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of its parent call being good, the expected value of g(n) 
is the same as the expected number of times we must 
flip a fair coin before it comes up “heads.” This implies 
that E(g(n)) = 2. Thus, if we let T(n) be a shorthand 
notation for E(t(n)) (the expected running time of the 
randomized quick-select algorithm), then we can write 
the case for n > 1 as T(n) 5 T(3n/4) + 2bn. Converting 
this recurrence relation to a closed form, we get that 

P%/, nl 

T(n) 5 2bn - C (3/4)i. 
i=o 

Thus, the expected running time of quick-select is O(n). 

5 Conclusion 

We have discussed the use of randomization in teaching 
several key concepts on data structures and algorithms. 
In particular, we have presented simplified analyses for 
skip lists and randomized quick-sort, suitable for a CS2 
course, and for randomized quick-select suitable for a 
DS&A course. 

These simplified analyses, as well as some additional 
ones, can also be found in the recent book on data struc- 
tures and algorithms by the authors [2]. The reader 
interested in further study of randomization in data 
structures and algorithms is also encouraged to examine 
the excellent book on Randomized Algorithms by Mot- 
wani and Raghavan (41 or the interesting book chapter 
by Seidel on “backwards analysis” of randomized algo- 
rithms [8]. 
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