
Michael T. Goodrich*

Dept. of Computer Science
Johns Hopkins University

Baltimore, MD 21218
goodrichQcs.jhu.edu

Abstract

We describe an approach for incorporating randomiza-
tion in the teaching of data structures and algorithms.
The proofs we include are quite simple and can easily
be made a part of a Freshman-Sophomore Introduction
to Data Structures (CS2) course and a Junior-Senior
level course on the design and analysis of data structures
and algorithms (CS7/DS&A). The main idea of this ap-
proach is to show that using randomization in data struc-
tures and algorithms is safe and can be used to signif-
icantly simplify efficient solutions to various computa-
tional problems. We illustrate this approach by giving
examples of the use of randomization in some traditional
topics from CS2 and DS&A.

1 Introduction

We live with probabilities all the time, and we easily dis-
miss as “impossible” events with very low probabilities.
For example, the probability of a U.S. presidential elec-
tion being decided by a single vote is estimated at 1 in
10 million’. The probability of being killed by a bolt of
lightning in any given year is estimated at 1 in 2.5 mil-
lion2. And, in spite of Hollywood’s preoccupation with
it, the probability that a large meteorite will impact the
earth in any given year is about 1 in 100 thousand3. Be-
cause the probabilities of these events are so low, we can
safely assume they will not occur in our lifetime.

Why is it then that computer scientists have histori-
cally preferred deterministic computations over random-
ized computations? Deterministic algorithms certainly

*The work of this author is supported by the U.S. Army Re-
search Office under grant DAAH04-96-1-0013, and by the Na-
tional Science Foundation under grant CCR-9625289.

‘The work of this author is supported by the U.S. Army Re-
search Office under grant DAAH04-96-1-0013, and by the Na-
tional Science Foundation under grant CCR-9732327.

Permissnon to make digital or hard copies of all 0r part Of this work for
personal or classroom use is granted without fee provided that
cpp,es are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation 0” the flrSt Page.
To copy otherwise, to republish, to post on Servers or to
redistribute to Iwts, requires prior specific permlSSl0” and/or a fee.
SIGCSE ‘99 3/99 New Orleans. LA, USA
Q ,999 ACM l-581 13.085.6/99/0003...$5.00

Roberto Tamassiat

Dept. of Computer Science
Brown University

Providence, RI 02912
rtQcs.brown.edu

have the benefit of provable correctness claims and of-
ten have good time bounds that hold even for worst-case
inputs. But as soon as an algorithm is actually imple-
mented in a program P, we must again deal with prob-
abilistic events, such as the following:

l P contains a bug,
l we provide an input to P in an unexpected form,
l our computer crashes for no apparent reason,
l P's environment assumptions are no longer valid.

Since we are already living with bad computer events
such as these, whose probabilities are arguably much
higher than the bad “real-world” events listed in the pre-
vious paragraph, we should be willing to accept proba-
bilistic algorithms as well. In fact, fast randomized al-
gorithms are typically easier to program than fast de-
terministic algorithms. Thus, using a randomized algo-
rithm may actually be safer than using a deterministic
algorithm, for it is likely to reduce the probability that
a program solving a given problem contains a bug.

1.1 Teaching Randomization

In this paper we describe several places in the standard
curriculum for CS2, Data Structures, and CS7/DS&A,
Data Structures and Algorithms, where randomized al-
gorithms can be introduced. We argue that these solu-
tions are simple and fast. Moreover, we provide time
bound analyses for these data structures and algorithms
that are arguably simpler than those that have previ-
ously appeared in the algorithms literature. In fact,
our proofs use only the most elementary of probabilis-
tic facts. We contrast this approach with traditional
“average-case” analyses by showing that the analyses for
randomized algorithms need not make any restrictive as-
sumptions about the forms of possible inputs. Specifi-
cally, we describe how randomization can easily be incor-
porated into discussions of each of the following standard
algorithmic topics:

l dictionaries,
0 sorting,
0 selection.

We discuss each of these topics in the following sections.

‘wizard.ucr.edu/polmeth/workingpapers97/gelma97b.html
2www.nassauredcross.org/sumstorm/thunder2.htm
3newton.dep.anl.gov/newton/askasci/l995/tronfAST63.HTM

Using Randomization in the Teaching of Data Structures and Algorithms

53

2

An

Dictionaries

interesting alternative to balanced binary search
trees for efficiently realizing the ordered dictionary ab-
stract data type (ADT) is the skip list [3-71. This struc-
ture makes random choices in arranging items in such
a way that searches and updates take O(logn) time on
average, where n is the number of items in the dictio-
nary. Interestingly, the notion of average time used here
does not depend on any probability distribution defined
on the keys in the input. Instead, the running time is
averaged over all possible outcomes of random choices
used when inserting items in the dictionary.

2.1 Skip Lists

A skip list 5’ for dictionary D consists of a series of
sequences {So, S1, . . . , Sh}. Each sequence Si stores a
subset of the items of D sorted by nondecreasing key
plus items with two special keys, denoted --oo and +oo,
where -XI is smaller than every possible key that can be
inserted in D and $00 is larger than every possible key
that can be inserted in D. In addition, the sequences in
S satisfy the following:

l Sequence So contains every item of dictionary D
(plus the special items with keys --oo and +co).

l For i = 1 , . . . , h - 1, sequence Si contains (in addi-
tion to --oo and +co) a randomly generated subset
of the items in sequence Si-1.

l Sequence Sh contains only -co and i-00.

An example of a skip list is shown in Figure 1. It is
customary to visualize a skip list S with sequence So at
the bottom and sequences S1, . . ., Sh-1 above it. Also,
we refer to h as the height of skip list S.

Figure 1: Example of a skip list. The dashed lines show
the traversal of the structure performed when searching for
key 50.

Intuitively, the sequences are set up so that Si+l con-
tains more or less every other item in Si. As we shall see
in the details of the insertion method, the items in Si+l
are chosen at random from the items in Si by picking
each item from Si to also be in Si+l with probability
l/2. That is, in essence, we “flip a coin9 for each item
in 5’; and place that item in Si+l if the coin comes up

“heads.” Thus, we expect S1 to have about n/2 items,
5’2 to have about n/4 items, and, in general, Si to have
about n/2” items. In other words, we expect the height
h of S to be about logn.

Using the position abstraction used previously by the
authors [2] for nodes in sequences and trees, we view a
skip list as a two-dimensional collection of positions ar-
ranged horizontally into levels and vertically into tow-
ers. Each level corresponds to a sequence Si and each
tower contains positions storing the same item across
consecutive sequences. The positions in a skip list can
be traversed using the following operations:

after(p): the position following p on the same level.

before(p): the position preceding p on the same level.

below(p): the position below p in the same tower.

above(p): the position above p in the same tower.

Without going into the details, we note that we can eas-
ily implement a skip list by means of a linked structure
such that the above traversal methods each take O(1)
time, given a skip-list position p.

2.2 Searching

The skip list structure allows for simple dictionary search
algorithms. In fact, all of the skip list search algorithms
are based on an elegant SkipSearch method that takes a
key k and finds the item in a skip list S with the largest
key (which is possibly -oo) that is less than or equal
to k . Suppose we are given such a key k. We begin the
SkipSearch method by setting a position variable p to the
top-most, left position in the skip list S. That is, p is set
to the position of the special item with key -oo in Sh.
We give a pseudo-code description of the skip-list search
algorithm in Code Fragment 1 (see also Figure 1).

Algorithm SkipSearch(

Input: A search key k

Output: Position p in S such that the item at p has the
largest key less than or equal to k

Let p be the topmost-left position of S (which should
have at least 2 levels).
while below(p) # null do

p t below(p) {drop down}
while key(after(p)) 5 k do

Let p t after(p) {scan forward)
end while

end while
return p.

Code Fragment 1: A generic search in a skip list s.

2.3 Update Operations

Another feature of the skip list data structure is that, be-
sides having an elegant search algorithm, it also provides
simple algorithms for dictionary updates.

Insertion

The insertion algorithm for skip lists uses randomization
to decide how many references to the new item (k,e)
should be added to the skip list. We begin the inser-
tion of a new item (k,e) into a skip list by performing
a SkipSearch operation. This gives us the position p
of the bottom-level item with the largest key less than
or equal to k (note that p may be the position of the
special item with key -oo). We then insert (k, e) in this
bottom-level list immediately after position p. After in-
serting the new item at this level we “flip” a coin. That
is, we call a method random0 that returns a number be-
tween 0 and 1, and if that number is less than l/2, then
we consider the flip to have come up “heads;” otherwise,
we consider the flip to have come up “tails.” If the flip
comes up tails, then we stop here. If the flip comes up
heads, on the other hand, then we backtrack to the pre-
vious (next higher) level and insert (k, e) in this level
at the appropriate position. We again flip a coin; if it
comes up heads, we go to the next higher level and re-
peat. Thus, we continue to insert the new item (k, e) in
lists until we finally get a flip that comes up tails. We link
together all the references to the new item (k, e) created
in this process to create the tower for (k,e). We give
the pseudo-code for this insertion algorithm for a skip
list S in Code Fragment 2. Our insertion algorithm uses
an operation insertAfterAbove(p, q, (k, e)) that inserts a
position storing the item (k, e) after position p (on the
same level as p) and above position q, returning the po-
sition r of the new item (and setting internal references
so that after, before, above, and below methods will work
correctly for p, q, and r).

Algorithm Skiplnsert(k, e):

p t SkipSearch (k)
q t insertAfterAbove(p, null, (k, e))
while random0 < l/2 do

while above(p) = nuEZ do
p t before(p) {scan backward}

end while
p C- above(p) {jump up to higher leveZ}
q t insertAfterAbove(p, q, (k, e))

end while

Code Fragment 2: Insertion in a skip list, assuming
random0 returns a random number between 0 and 1, and
we never insert past the top level.

Removal

Like the search and insertion algorithms, the removal
algorithm for a skip list S is quite simple. In fact, it
is even easier than the insertion algorithm. Namely, to
perform a remove(k) operation, we begin by performing
a search for the given key k. If a position p with key k is
not found, then we indicate an error condition. Other-
wise, if a position p with key k is found (on the bottom
level), then we remove all the positions above p, which
are easily accessed by using above operations to climb
up the tower of this item in S starting at position p (see
Figure 2).

Figure 2: Removal of the item with key 25 from a skip list.
The positions visited are in the tower for key 25.

2.4 A Simple Analysis of Skip Lists

Our probabilistic analysis of skip lists, which is a sim-
plified version of an analysis of Motwani and Ragha-
van [4], requires only elementary probability concepts,
and it does not need any assumptions about input dis-
tributions. We begin this analysis by studying the height
h of S.

The probability that a given item is stored in a po-
sition at level i is equal to the probability of getting i
consecutive heads when flipping a coin, that is, this prob-
ability is l/2’. Thus, the probability Pi that level i has
at least one item is at most

for the probability that any one of n different events
occurs is at most the sum of the probabilities that each
occurs.

The probability that the height h of S is larger than
i is equal to the probability that level i has at least one
item, that is, it is no more than Pi. This means that h
is larger than, say, 3 log n with probability at most

P
n 1

3logn 5 2310gn
-z--$--g

More generally, given a constant c > 1, h is larger than
clog n with probability at most l/n’-‘. Thus, with high
probability, the height h of S is O(logn).

Consider the running time of a search in skip list S,
and recall that such a search involves two nested while

55

loops. The inner loop performs a scan forward on a level
of S as long as the next key is no greater than the search
key k, and the outer loop drops down to the next level
and repeats the scan forward iteration. Since the height
h of S is O(logn) with high probability, the number of
drop-down steps is O(log n) with high probability.

So we have yet to bound the number of scan-forward
steps we make. Let ni be the number of keys examined
while scanning forward at level i. Observe that, after
the key at the starting position, each additional key ex-
amined in a scan-forward at level i cannot also belong
to level i + 1. If any of these items were on the previous
level, we would have encountered them in the previous
scan-forward step. Thus, the probability that any key
is counted in ni is l/2. Therefore, the expected value
of ni is exactly equal to the expected number of times
we must flip a fair coin before it comes up heads. This
expected value is 2. Hence, the expected amount of time
spent scanning forward at any level i is O(1). Since S
has O(logn) 1 eve s 1 with high probability, a search in S
takes the expected time O(logn). By a similar analy-
sis, we can show that the expected running time of an
insertion or a removal is O(log n).

Finally, let us turn to the space requirement of a skip
list S. As we observed above, the expected number of
items at level i is n/2”, which means that the expected
total number of items in S is

h

c
i=o

Hence, the expected space requirement of S is O(n).

3 Sorting

One of the most popular sorting algorithms is the quick-
sort algorithm, which uses a pivot element to split a
sequence and then it recursively sorts the subsequences.
One common method for analyzing quick-sort is to as-
sume that the pivot will always divide the sequence al-
most equally. We feel such an assumption would pre-
suppose knowledge about the input distribution that is
typically not available, however. Since the intuitive goal
of the partition step of the quick-sort method is to divide
the sequence S almost equally, let us introduce random-
ization into the algorithm and pick as the pivot a random
element of the input sequence. This variation of quick-
sort is called randomized quick-sort, and is provided in
Code Fragment 3.

There are several analyses showing that the expected
running time of randomized quicksort is O(n log n) (e.g.,
see [1,4,8]), independent of any input distribution as-
sumptions. The analysis we give here simplifies these
analyses considerably.

Our analysis uses a simple fact from elementary prob-
ability theory: namely, that the expected number of

Algorithm quickSort(

Input: Sequence S of n comparable elements

Output: A sorted copy of S

if n = 1 then
return S.

end if
pick a random integer r in the range [0, n - l]
let 2 be the element of S at rank r.
put the elements of S into three sequences:

l L, storing the elements in S less than 2:
l E, storing the elements in S equal to x
l G, storing the elements in S greater than Z.

let L’ t quickSort
let G’ t quickSort
return L’ + E + G’.

Code Fragment 3: Randomized quick-sort algorithm.

times that a fair coin must be flipped until it shows
“heads” k times is 2k. Consider now a single recursive
invocation of randomized quick-sort, and let m denote
the size of the input sequence for this invocation. Say
that this invocation is “good” if the pivot chosen is such
that subsequences L and G have size at least m/4 and
at most 3m/4 each. Thus, since the pivot is chosen uni-
formly at random and there are m/2 pivots for which this
invocation is good, the probability that an invocation is
good is l/2.

Consider now the recursion tree T associated with an
instance of the quick-sort algorithm. If a node v of T of
size m is associated with a “good” recursive call, then
the input sizes of the children of v are each at most 3m/4
(which is the same as m/(4/3)). If we take any path in
T from the root to an external node, then the length
of this path is at most the number of invocations that
have to be made (at each node on this path) until achiev-
ing log,,, n good invocations. Applying the probabilistic
fact reviewed above, the expected number of invocations
we must make until this occurs is at most 210&/s n.
Thus, the expected length of any path from the root to
an external node in T is O(logn). Observing that the
time spent at each level of T is O(n), the expected run-
ning time of randomized quick-sort is O(n log n).

4 Selection

The selection problem we asks that we return the kth
smallest element in an unordered sequence S. Again
using randomization, we can design a simple algorithm
for this problem. We describe in Code Fragment 4 a
simple and practical method, called randomized quick-
select, for solving this problem.

56

Algorithm quickSelect(S, L):

Input: Sequence S of n comparable elements, and an
integer lc E [l, n]

Output: The kth smallest element of S

if n = 1 then
return the (first) element of 5’.

end if
pick a random integer r in the range [0, n - l]
let z be the element of S at rank T.
put the elements of S into three sequences:

l L, storing the elements in S less than z
l E, storing the elements in S equal to z
l G, storing the elements in S greater than x.

if k 5 IL1 then
quickSelect(L, lc)

else if k 5 IL1 + IEl then
return 2 {each element in E is equal to x}

else
quickSelect(G, k - IL1 - IEI)

end if

Code Fragment 4: Randomized quick-select algorithm.

We note that randomized quick-select runs in O(n2)
worst-case time. Nevertheless, it runs in O(n) expected
time, and is much simpler than the well-known deter-
ministic selection algorithm that runs in O(n) worst-case
time (e.g., see [l]). A s was the case with our quick-sort
analysis, our analysis of randomized quick-select is sim-
pler than existing analyses, such as that in [l].

Let t(n) denote the running time of randomized
quick-select on a sequence of size n. Since the random-
ized quick-select algorithm depends on the outcome of
random events, its running time, t(n), is a random vari-
able. We are interested in bounding E(t (n)), the ex-
pected value of t(n). Say that a recursive invocation of
randomized quick-select is “good” if it partitions S, so
that the size of L and G is at most 3n/4. Clearly, a re-
cursive call is good with probability l/2. Let g(n) denote
the number of consecutive recursive invocations (includ-
ing the present one) before getting a good invocation.
Then

t(n) 5 bn *g(n) + t(3n/4),

where b 2 1 is a constant (to account for the overhead
of each call). We are, of course, focusing in on the case
where n is larger than I, for we can easily characterize
in a closed form that t(1) = 6. Applying the linearity of
expectation property to the general case, then, we get

E(t(n)) 2 E(bn .g(n)+t(3n/4)) = bn.E(g(n))+E(t(3n/4))

Since a recursive call is good with probability l/2, and
whether a recursive call is good or not is independent

57

of its parent call being good, the expected value of g(n)
is the same as the expected number of times we must
flip a fair coin before it comes up “heads.” This implies
that E(g(n)) = 2. Thus, if we let T(n) be a shorthand
notation for E(t(n)) (the expected running time of the
randomized quick-select algorithm), then we can write
the case for n > 1 as T(n) 5 T(3n/4) + 2bn. Converting
this recurrence relation to a closed form, we get that

P%/, nl

T(n) 5 2bn - C (3/4)i.
i=o

Thus, the expected running time of quick-select is O(n).

5 Conclusion

We have discussed the use of randomization in teaching
several key concepts on data structures and algorithms.
In particular, we have presented simplified analyses for
skip lists and randomized quick-sort, suitable for a CS2
course, and for randomized quick-select suitable for a
DS&A course.

These simplified analyses, as well as some additional
ones, can also be found in the recent book on data struc-
tures and algorithms by the authors [2]. The reader
interested in further study of randomization in data
structures and algorithms is also encouraged to examine
the excellent book on Randomized Algorithms by Mot-
wani and Raghavan (41 or the interesting book chapter
by Seidel on “backwards analysis” of randomized algo-
rithms [8].

References

PI

PI

[31

PI

[51

PI

[71

PI

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. In-
troduction to Algorithms. MIT Press, Cambridge, MA,
1990.

M. T. Goodrich and R. Tamassia. Data Structures and
Algorithms in Java. John Wiley and Sons, New York,
1998.

P. Kirschenhofer and H. Prodinger. The path length of
random skip lists. Acta Informatica, 31:775-792, 1994.

R. Motwani and P. Raghavan. Randomized Algorithms.
Cambridge University Press, New York, NY, 1995.

T. Papadakis, J. I. Munro, and P. V. Poblete. Average
search and update costs in skip lists. BIT, 32:316-332,
1992.

P. V. Poblete, J. I. Munro, and T. Papadakis. The bi-
nomial transform and its application to the analysis of
skip lists. In Proceedings of the European Symposium on
Algorithms (ESA), pages 554-569, 1995.

W. Pugh. Skip lists: a probabilistic alternative to baI-
anced trees. Commun. ACM, 33(6):668-676, 1990.

R. Seidel. Backwards analysis of randomized geometric
algorithms. In J. Path, editor, New Trends in Discrete
and Computational Geometry, volume 10 of Algorithms
and Combinatorics, pages 37-68. Springer-Verlag, 1993.

