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1. Zntroductiorz

The evaluation of operation sequences is a fundamental topic in the design and

analysis of algorithms. Given a sequence 5’ of set-manipulation operations, the

problem is to find the response to every operation in S and return the set one

gets after evaluating S, so that the answers are the same as if the operations in

S were performed in a sequential fashion. There are a host of problems that

are either instances of an evaluation problem or can be solved by a reduction

to an evaluation problem. For example, sorting a set S = {xl, .X2, . . . . x,,} can

easily be reduced to the problem of evaluating the sequence l(x1 )1(.Y2) “””

Z(X,I)E E .“ E, where I(x) stands for “insert x,” E stands for “Extmc-tMin,”

and there are H E’s. The answers to all the E operations immediately give a

sorting of the items in S (this is, in fact, the idea in “heap sort” [Aho et al.

1974]).

The sequence evaluation problem is well-studied in the sequential setting

(e.g., Aho et al. [1974], Edelsbrunner and Overmars [1985], and Gabow and

Tarjan [1983]), but surprisingly little is known about its parallel complexity. Our

motivation, then, comes from a desire to begin a systematic treatment of this

important area from a parallel perspective. In addition, because of the founda-

tional aspect of off-line evaluation problems, we are also interested in these

problems for their possible applications. We already know of applications to

such areas as processor scheduling, computational geometry, and computa-

tional graph theory, for example (we discuss some of these below).

As an example illustrating the difficulty of the parallel version of off-line

evaluation problems, consider the following sequence of set-manipulation

operations:

S = I(5) I(8) ED(5) I(7) I(9) ED(8)EE,

where l(x) is an abbreviation for lnsert(.y) and inserts x in the set, D(x) is an

abbreviation for Delete(r) and deletes x from the set, and E stands for

E.@wtMin and simultaneously removes and returns the smallest element in the

set (if the set is empty then it returns a “set empty” response). The set is

initially empty, and the operations are applied to it in the same order in which

they appear in S. An attempt to delete an element not in the set has no effect

and returns an “element not in set” response; otherwise, it returns an “element

deleted” response. The response to an 1(x) operation is always “element

inserted” and its effect is to add .x to the set (if x is already there then another

copy of it is added). The problem is to compute, in parallel, the responses to all

the operations in S. In the example given above, the sequence of responses is:
5 inserted, 8 inserted, 5, 5 not in set, 7 inscrtccl, 9 inserted, 7, 8 dclctcd, 9, set

empty. It is far from clear that the problem of evaluating such a sequence is in

the complexity class NC, that is, that it can be evaluated in O(log~ n ) time

using a polynomial number of processors, for some constant k [Dymon and

Cook 1980: Ruzzo 198 1]. The difficulty arises from the fact that one has no a

priori knowledge of the behavior of the E and the LXX) operations. Some of

them may not remove anything (e.g., an E applied to an empty set, or a M .x)

applied to a set in which there is no x), while others are successful, and

determining whether or not a particular operation 0, is successful depends on

knowing which operations before 0, in S are successful. We show that the
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evaluation of a sequence of I(x), D(x), and E operations is in fact in NC

(Section 3).
We note in passing that the assumption regarding the insertion of an existing

element is made without loss of generality. For example, if one wishes to define

insertion so that an attempt to insert an element x already in the set is

ignored, then one can easily convert a sequence S, where redundant insertions

are ignored, to a sequence S‘, where insertions are handled as above, as

follows: from S, create S‘ by replacing every l(x) by a D(x)l(x) (each such

D(x) can be labeled extraneous to distinguish it from delete operations in S).

Now consider an evaluation of S‘; It never attempts to insert an element that

is already in the set (because of the way S‘ was built). Furthermore, the

response in S‘ to an extraneous D(x) tells us whether the 1(x) that follows it

would be, in S, an attempt to insert an element already present: This is the

case if and only if the response to the extraneous D(x) is “element deleted, ”

rather than “element not in set. ”

In general, this paper studies the following evaluation problem: One is given

a sequence S = OIOZ “”” 0,, of operations taken from some instruction set and

asked to produce the answer each 01 would give if S were evaluated sequen-

tially in an on-line fashion. Since the answer for each operation in S is defined

by a hypothetical sequential evaluation of S, we define an operation’s position

in S to be its time of evaluation, that is, Of’s time of evaluation is t.We study

this problem for various instruction sets, deriving one of two types of results for

each:

(i) Given a sequence S, containing various kinds of operations, we show that

the problem of evaluating S is in the class NC.

(ii) Once membership in NC is established, we develop techniques for improv-
ing the time and/or processor complexity.

Our primary goal is to minimize the time complexity of evaluating S and our

secondary goal is to minimize the number of processors used. The computa-

tional model we use is the CREW PRAM model, unless otherwise specified.

Recall that this is the shared-memory model where the processors operate

synchronously and can concurrently read any memory cell, but concurrent

writes are not allowed. Some of our results are for the weaker EREW PRAM.

in which no concurrent memory accesses are allowed. We outline the specific

problems we address in this framework below, and give for each the time and

processor bounds we achieved.

(1) Tlze off-line binajy search tree problem. In this problem, the operatiorls

that appear in S are Insert(x), Delete(x), and “tree-search” queries. Intuitively,

a tree-search query is one that could be performed efficiently if the set were

stored in a balanced binary search tree (e.g., finding the minimum, selecting

the kth smallest element, range counting). We make this notion precise in

Section 2, where we show how to evaluate such a sequence in O(log n) time

using O(n) processors. Our solution is fairly simple, and will be used as a

subroutine in the (more difficult) solutions of later sections. The solution is
based on the use of a parallel data structure that we call the array-of-trees,

which has already found applications to a number of problems in parallel

computational geomet~ [Goodrich 1991; Goodrich et al. 1990]. We know of no

previous parallel algorithms for this problem; the only related work is a method
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by Paul et al. [1983] for maintaining a binaty tree in parallel through batch

insertions and deletions (where all the insertions or all the deletions come at

the same time).

(2) The off-line competitive deletes problem. In this problem, the operations

in S come from the set { Insert( x), Delete(x), ExtractMin}. We show that this

problem is in NCZ and has an NC solution with a time-processor product of

O(it logz?z). Since there are two data-dependent ways that elements can be

deleted in this problem (as discussed in the example above), showing that this

problem is in NC, let alone that it has an NC solution with an efficient

time-processor product, is quite interesting. (We called it the competitive deletes

problem because the two mechanisms for deletion, the E and D(x) operations,

are “competing” with each other. )

(3) The off-line mergeable heaps problem. In this problem, the operations

in S can take both set names and elements as arguments. In particular,

the operations in S come from the set {Irzsert(x, A), Delete(x), A4in( A ),

Union( A, B), Find(x)}, where A and B are set names. We show that any such

S can be evaluated in O(log n) time using O(n) processors. Our method is

based on using the array-of-trees data structure in conjunction with an applica-

tion of the cascade merging technique [Atallah et al. 1989; Cole 1988] to

tree-contraction [Miller and Reif 1985].

(4) The off-line priority queue problem. In this problem, the operations that

appear in S come from the set {Insert(x), ExtractMin}. We derive an algorithm

that runs in O(log n) time using O(n) processors, which is optimal. This

improves an O(logzn) time, n processor solution that is implicitly present in

Dekel and Sahni’s work on parallel scheduling algorithms [Dekel and Sahni

1983]. Our result also improves the time complexity for solving the scheduling

problem studied by Dekel and Sahni. (Subsequent to our initial announcement

of this result, we have learned that Rodger has independently discovered a

similar improvement to this scheduling problem [1989].)

(5) The off-line barrier-extractmin problem. In this problem, the operations

in S come from the set {Insert(x), ExtractMin(y)}. where the ExtractA4in( y)

operation (a generalization of E.xtractMin) returns and simultaneously removes

the smallest element greater than or equal to y. That is, it is a bamier-extract-

min operation. We show that this evaluation problem is in NCZ in the general

case, and in NC’ for the case when the ExtractMin(y)’s have non-decreasing

arguments. This special case is motivated by an application to computing a

maximum matching in a convex bipartite graph, which, in turn. has applications
to processor scheduling [Dekcl and Sahni 1984]. Our results imply that this

matching problem is in NC’, improving the previous NCZ solution by DekeI

and Sahni [1984]. We believe that the ExtractMin(y) operation will be helpful

in solving many other “lexicographic” problems, as well.

The details for each result are given in what follows, one per section. We

conclude with some final remarks in Section 7.

In what follows, if A is a set and B a sequence of set manipulation

operations, then .4B denotes applying the sequence B to a set whose initial

value is A (we use OB to denote the case when the initial set is empty). In

addition to the responses to the operations in B, an evaluation of AB also
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returns the set “left over” after B is evaluated. In this notation, we are

interested in evaluating 0S for various types of S’s.

2. The Off-Line Binay Search Tree Problem

This section gives a simple solution to a problem that is needed as a subroutine

in later sections of this paper: that of evaluating a sequence of l(x) ’s, D( x) ’s,

and “tree-search” queries. By the name “tree-search” query we mean any

query that could be performed in O(log n) time if the elements in the set were

stored in a balanced binary search tree where each node ~) of this tree could

store 0(1) labels, each label being the value of some associative operation

computed over all the elements stored in descendants of z! (note that the usual

search key information stored in the nodes of binary search trees satisfies this

condition). Examples of such tree-search queries include finding the kth

smallest element, and computing the number of elements in a certain range.

For the sake of definiteness, we assume in what follows that the label label(~)

at a node LI includes the number of elements in its subtree (the method is

easily seen to work for other such labels). Thus, a query Q is any query that

could be done sequentially in O(log n) time if the elements of the set were

available sorted at the leaves of such a balanced binary tree T is which each

internal node L! stores label(u). Thus, query Q could be “find the k th smallest

element in the set”.

2.1. THE ARRAY-OF-TREES DATA STRUCTURE. Let m be the number of

set-modifying operations in S (the l(x)’s and D(x)’s), m s n. The subsequence

S‘ of such set-modifying operations can easily be obtained from the input

sequence S by a parallel prefix computation,l and we assume that this has

already been done.

Our method is based on the idea of storing all of the rn relevant “snapshots”

of a sequential data structure that evaluates the sequence on-line with O(log nz)

time per operation. However, storing m copies of this sequential data structure

would be prohibitively expensive, so we “compress” the representation of these

logical m data structures into a single data structure that is suitable for

building and processing in O(log m) time using O(m) processors. The method

for constructing this representation makes use of the cascading divide-and-con-

quer technique [Atallah et al. 1989].

Let A, denote the set of items that are present at “time” t,that is, the set

that would be formed by performing all the operations of S‘ up to and

including the operation in position t of S‘, assuming that the initial set is @.

The array-of-trees data structure allows one processor to perform a query Q in

any such A ~ in O(log m ) time. In fact, this structure can be viewed as an array

of m trees where the tth tree stores the elements of At (hence, the name

“array-of-trees”). In this section we show that this structure can be built in

O(log m ) time and 0( m log m) space using O(m) processors in the CREW

PRAM model.

Because of the absence of ExtractA4in operations, we can, without loss of
generality, assume that all the D(x) operations are non-redundant (i.e., there

[ Recall that in a parallel prefix computation one has a sequence (al, a2,. . . . a,, ) and one wishes to

compute all partial sums Sk = z:=, al, which can be done in O(log n) time using O(n\log n )
processors [Kruskal et al. 1985: Ladncr and Fischer 1980].
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are no attempts at deleting an element not in the set). The redundant D(.x,)

operations can be removed as a pre-processing step by sorting the pairs ( .Y, t),

where x is an argument to an Insert(x) or Delete(x) operation and t is the

position of that operation in S‘. Such a preprocessing step can be implemented
in O(log m) time using O(m) processors [Cole 1988]. Also, without loss of

generality, we assume that every element x that is the argument of an

insert(x) is unique. If not, then we can think of the element as a pair (x, t),

where t is the position of the insert operation in S“. We can then use some

uniform way of determining which copy of an element x is removed by a

De/ete( x ) operation, for example, that it removes the most recently inserted

copy.

Let 0, denote the tth operation in S‘, and let x, denote the argument of 0,.

Recall that we think of 0, as the operation that is to be performed at time t (in

a hypothetical sequential execution of S ‘). Let X be a list of all the distinct .x[

values, in sorted order. The “skeleton” of the array-of-trees in a complete

binary tree T with IXl < n? leaves, such that the elements of X are associated

with the leaves of T in left-to-right order. By an abuse of notation, we use the

same symbol to denote both a leaf in T and the value that is associated with

that leaf. In each leaf node x of T, we store S ‘(x), the subsequence of S“

consisting of all operations that have .V as their argument. Note that X, T, and

all the S ‘(x)’s can be constructed in O(log m) time with O(m) processors by

using parallel sorting [Cole 1988].

The anq-oftrees ( AOT ) structure consists of 111trees that share nodes, the

tth tree depicting the (hypothetical) sequential binary tree just after operation

0, is applied to it. A node of the (skeleton tree) T is called a supenwde and

contains a number of mirzitzodes, that are nodes of the m individual trees it is

supposed to represent. The root supernode of the array of trees contains a list

of m mininodes such that the tth one is the root of the tth tree. If one starts at

the root of the tth tree, one can traverse the tth tree by following left and right

child pointers stored at each of the mininodes of the AOT. Because of

mininode-sharing (the details of which are given later), there are only

O(r~t log m) mininodes, organized as log m levels such that the ith level

contains n? mininodes grouped into s 2’ nodes (the root is at level O). The

supernodes at a certain level need not contain the same number of mininodes,

but their total at that level is nz mininodes. Each mininode consists of a 4-tuple

(t,1, r, X), whose significance is as follows. The first component of a mininode’s

4-tuple, t,indicates that this mininode’s subtree describes the corresponding

subtree of Al, the (hypothetical) sequential binary tree just after operation Of

is applied to it. The second (respectively, third) component of a mininode’s

4-tuple, 1 (respectively, r) is a pointer to the mininode that is its left (respec-
tively, right) child. The fourth component, X, is the label of that mininode in

xl, (in this case, the number of leaves in its subtree in A,). The above was an

“overview,” and we now give a precise description of the AOT. We do so in a

“bottom up” fashion, starting from the m leaf supernodes (i.e., at level loglT/).

For each leaf node x of T, we construct a leaf supernode l?(.Y) of the AOT

that consists of the list (also called B(x)) obtained from S’(X) by replacing

each 0, in S’(x) with a record (t,nil, nil, O) if 0, = D(x) or with (r, nil, nil, 1) if

Or = 1(x). We also add the “dummy” mininode (0, nil, nil, O) to the beginning

of the list B(x). Thus, B(x) represents the history of all sets defined by

restricting one’s attention to the operations in S’(x). That is, if we let
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FIC;.1. A07’for,S’ =1(3) 1(5)l(2)D(5)1(7 )D(2)D(7)1(2). (a) T.(b) AOT.

(to, t,, . . . . tlB(,K),) denote the list of t-values in B(x), then each mininode

(t,, nil, nil, *)in B(.x)canb ealternativelyt hought ofasrepresenting the root
of a (trivial) binary tree storing the “projections” of the sets

/4,, A,+,,..., Arl, _, on element x (the projection of a set on an element is

that element if the set contains it, empty otherwise). It is because the projec-

tionsof At, A,+l,. ... A,, +,_l on element x are identical that we achieve a

savings in space: we only store one copy of this projection, namely, the

mininode (t,,nil, nil, *).

Now, for each internal node v of T, we construct an internal supernode

B(l) of the AOT by merging II(24 ) and B(w) as sorted lists by t-values

(removing the duplicate for to = O), where u and w are the children of 1 in T.

Each element of 11(~) is a mininode (t,1, r, L,,,, ) where t is the first coordinate

of a mininode in B(u) U B(w) (as determined by the merge), and 1 (respec-

tively, r) is a pointer to the mininode in B( ~f) (respectively, B(w)) whose first

coordinate t[(respectively, t,)is the largest such coordinate less than or equal

to t.L,, , is the label of 1) in A ~, in this case simply the sum of L,, ~, and L,v ,.

By a simple induction, it is easy to see that, if (t,,t2,...,tlB(i,)l)denotes the list

of t-values in B(LI), then each mininode (t,,1, r, L,, ~, ,) in B( ZI) represents the
root of a binary tree representing the (common) subset of the sets

A,, A,+l,..., A “. . f,+, – 11as lt relates to the elements which are descendants of ~,.
Thus, each mmmode (t, 1, r, * ) of B(root(T )) will represent the root of a binary

tree storing the entire list A ~. (See Figure 1 for an example, where we avoided

showing the dummy mininode at the beginning of each supernode.)

Since the list of times for the mininodes in B(u) is exactly the merged union
of the lists of mininodes stored in L‘s two supernode children, we can apply the

cascading divide-and-conquer technique [Atallah et al. 1989; Cole 1988] to

construct the AOT data structure in O(log m) time and 0( m log m ) space

using O(m) processors in the CREW PRAM model. The method also produces
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the labels (such as the L,,,, values) for each mininode in B(L*) within these

same bounds.

2.2. USING THE ARRAY-OF-TREES FOR THE OFF-LINE BINARY SEARCH TREE

PROBL~~. Once we have constructed the AOT data structure for ,S’, comput-

ing the responses to all the tree-search queries of S is quite simple. From the

parallel prefix computation that obtained S‘ from ,’$, we know for each query

operation Q in S the nearest set-modifiing operation before it in S, say it is Or

in S’ (i. e., the tth operation in S’). This tells us which “tree” we must search in

order to process query Q. We therefore assign a single processor to each such

query operation Q, and that processor then performs the query operation in
the appropriate tree A ~ just as it would in the sequential algorithm.

Let us make this more concrete with an example. Suppose we want to

evaluate a sequence of lnsert( x ), Deletc( x ), and Select(k) operations, where

Select(k) reports the ,kth smallest element in the set at the time. In this case,

one constructs the AOT so that each internal node stores the number of

descendent leaves of that node (in addition to the t,1,and r fields). One then

can answer a particular Select(k) operations at, say, time t by searching in the

“tree” for time t using the obvious searching strategy. This takes O(log m)

time for each operation. Thus, the entire sequence can be evaluated in

O(log m) time using O(n) processors. See Goodrich et al. [1990] for applica-

tions of the AOT data structure to some important computational geometry

problems.

Incidentally, the evaluation of a sequence of ](x), D(x), and Que}y opera-

tions can be performed in O(log n) time using only O(n) space if all the

queries are themselves the values of associative operations, for example, Min,

Swn, etc. [Atallah et al. 1989]. (See Atallah et al. [1989] for applications of such

sequences to several computational geometry problems.)

THEOREM 2.2.1. Gil!en a sequence S of n Insert(x), Delete( x), and tree-que?

operations, olze can el’alliate 0S in 0( log/2) time ztsing 00Z) processors in t~ze

CREW PRAIII model.

In the next section, we address the (considerably harder,) case when there are

two different kinds of operations that delete elements, namely, Delete(x) and

E.rtractMin.

3. The Off-Line Competitive Deletes Problem

In this section, we show that the problem solving 0S, where the operations in

S come from the set {I(x), D(x), E}, is in NC2 (using a quadratic number

of processors). (Recall that E is a shorthand for E.~traxtMin. ) We also show
how to refine our approach to achieve O(log:rz log log n ) time using only

0(/l/log log n )processors. The difficulty in designing an NC algorithm for this

problem comes from the fact that a D(x) operation can cause a subsequent E

operation to return the “set empty response, ” and an E operationcan cause a

subsequent D(.Y) operation to return the “element not in set” response. This

complicates the parallel evaluation of ~S, since the competing D(x) and E

operations may be far apart in S.

Suppose we are given such a sequence S. Our method for evaluating 0S is

as follows. Let S1 (respectively, S?) be the sequence consisting of the first

(respectively, last) F7\2 operations ‘in S. Recursively, solve OS1 and @Sz in
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parallel. The recursive call for OS1 returns (i) the correct responses for the

operations in it (i.e., the same as in 0S), and (ii) the set just after OS1

terminates (let L, denote this set). The recursive call for OSz returns re-

sponses and a final set that may differ from the correct ones, because we

applied Sz to @ rather than to L ~. The main problem that we now face is how

to incorporate the effect of L ~ into the solution returned by the recursive call

for 0S2. We show how to compute L1 S2 in the following subsection. The

crucial insight is contained in Lemma 3.3.

3.1 AN NCZ SOLUTION. Our method for incorporating the effect of L1 on
S~ involves a number of restructurings of SQ: roughly speaking, we remove

some operations from S. and permute the remaining ones so that the restruc-

tured list has a special “~uffix property” relative to the effects of L ~. We show

that a solution to the restructured problem can be easily converted to a

solution to the original problem.

Notation. If R is a subsequence of S, then S – R denotes the sequence

obtained by removing every operation in R from S.

Throughout this section, our algorithms adopt the convention that sets are

actually multisets (i.e., multiple copies of an element are allowed), so that

whenever we say “element x“ we are actually referring to a particular copy of

x. As mentioned in the introduction, it is straightforward to modify our results

for the case when it is forbidden to have multiple copies of an element.

By convention, a D(x) executed when there are many copies of x in the set

removes the copy that was inserted latest. Similarly, an E executed when there

are many copies of the smallest element in the set removes the copy that was

inserted latest. These conventions cause no loss of generality, because they do

not change any response. However, they do simplify our correctness proofs.

Let Lz be the set resulting from OSJ (i.e., the set after OSz terminates).

Consider an l(x) for which x is not removed by any E in @Sz, that is, it either

ends up in L2 or gets removed by a D(x) (in the latter case we say that the

D(x) corresponds to 1(x)). Let S‘ be the sequence obtained from Sz by

removing every such 1(x) and its corresponding D(x) (if any). In other words

the only 1(x ) operations in S‘ are those whose x was removed by an E in OSz,

and the on~y D(x) operations in S‘ are those whose response in OSz was “x

not in set.” It is easy to see that the response to any operation in S‘ is the same

in 0S’ as in OSz. However, the following also holds:

I,EiwiMA 3.1.1. The responses to the operations in S‘ are the same in L, S‘ as in

L, S2. The set resulting from L, S2 equals L2 plus the set resultingfiorn L ~S‘.

PROOF. The lemma would immediately follow if we can prove that, for any

1(x) that is in Sz – S‘, the following properties (i) and (ii) hold:

(i) if x ends up in L2 after @Sz, then it also ends up in the set resulting from
L, S,.

(ii) if x-is, in OSQ, removed by a D(x), then it is removed by the same D(x) in
L1S2.

Properties (i) and (ii) together would imply that the operations in SJ – S‘

have, in L ~S2, no effect on any operation in S‘ and can therefore be ignored,

their only effect being the addition of L2 to the resulting set (as returned by
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fZISz). We prove (i) and (ii) by contradiction: let Z(x) be the rightmost insertion

in Sc – S’ that violates (i) or (ii).

Case 1. 1(x) violates property (i), that is, x ends up in L2 after 0S2 but is

removed by some operation O in L1S2. If O = D(x), then, since x ends up in

L ~ after OSz, O does not remove x in Sz and hence must have removed

another copy of .Y (call it x’, x‘ = x). By our convention that the latest copy is

removed by a deletion, 1(x’) must have occurred after 1(x). Since 1(.Y’)

violates property (ii), this contradicts our choice of 1(.Y) as the rightmost

violation of (i) or (ii). If O = E, then, since O did not remove x in OSJ, the

response to O in Sz must have been better (either smaller than x, or equal to

it but inserted later). But it is a contradiction for x, the response of O in L1S2,

to be worse than the response of O in OSz (because having L, rather than 0

as the initial set can only make the response of any E better).

cast?2. 1(x) violates property (ii), that is, x is removed by D(x) in @Sz, but

is not removed by the same D(x) in L, S2. Suppose x is removed in L1S2 by O.

If O is a deletion. then, since x is removed by D(.Y) rather than by O in OSz,

O must have removed in OSj another copy of x (call it x‘, x‘ = x). By our

convention that the latest copy is removed by a deletion, 1(x’) must have

occurred after l(x). Since 1(x’) violates property (ii), this contradicts our

choice of 1(x) as the rightmost violation of (i) or (ii). If O = E, then, since O

did not remove x in OS~, the response to O in OSz must have been better

(either smaller than x, or equal to it but inserted later). But this is a

contradiction for x, the response of O in L, S2, to be worst than the response

of O in @, S.. ❑

Lemma 3.1.1 has reduced the problem of solving L1S2 to that of solving

L, S’. The next lemma will further reduce the problem to one in which a crucial

,sufllx property holds, as is later established in Lemma 3.1.3.

LEMMA 3.1.2. Let ~ be obtaitzed from S‘ by moling elct> 1(x) to just before

tile E whose response it was itl OS~ ( sllch an E must exist @ definitio}l of S‘ ).

T/len the responses to tile opemtions<n S‘ are tile same in L, ~ as ill L ~S2. The set

wsulti)lg $-ot~l L, S2 equals L2 phts the set resulting from L, S.

PROOF. Because of Lemma 3.1.1, it s~ffices to prove that the responses to

the operations in S’ are the same in L, S as in L, S’ and that the set resulting

from L, S is the same as the set resulting from L ,S’. Therefore, it suffices to

show that for no l(x) c S‘ can x be removed, in L, S’, any earlier than by the

E (call it El) that removed x in @SL (this would establish that moving that

l(x) to just before El dots not change anything). Suppose, to the contra~, that
such an .Y is removed in L, S‘ by some operation O that occurs before E,. That

operation O cannot be a D(x) because otherwise that same D(x) (and not El)

would have removed x in OSz (since that D(.Y) is in S‘, it had an “x not in

set” response in OSl ). Therefore, O is an E (say, E?). Now, the response of E2

in @Sz must have been some y that is better than x (because x ended up

being removed by E{). This means that x, the response to E2. in LIS’, is worse

than its response in @Sz. Since the response to E2 in 0S2 N the same as its

response in 0S’, it follows that the response to E2 in L, S‘ is worse than its

response in @S’. It is a contradiction for the response to an E to be worse in

LIS’ than it is in 0S’. ❑
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Since we already know the responses to OSz (they were returned by one of

the two parallel recursive calls), a simple para~lel prefix computation easily

identifies the set S‘ (and hence Sz – S‘ and S), in O(log n) time and with

0( n\log n) processors. The responses in L, Sz to the operations in Sz – S‘ are

now trivially known: the response to an 1(x) is “.x inserted” by the definition of

1(x), and the response to a D(x) is “x deleted” by the definition of S‘. The

main problem we face is obtaining the responses in L ~Sz to the operations in

S‘, and obtaining the final set resulting from L, Sz. Lemma 3.1.2 has reduced

this problem to that of solving L, S, so we now focus on obtaining the

responses and final set for L, S. The rest of this subsection shows that they can

be obtained in O(log n) time and with 0(n2 ) processors, thus implying for the

overall problem an O(logzn) time and 0( n z) processor bounds.

Let ;= 010~ . . . O,,z, m < n/2. For every j, 1 <j < m, let S(j) be the

sequence of operations obtained from 01 . . . 0, by removing the E’s from it.

Note that S(j) contains only two kinds of operations: (i) 1(x) for which x was a

response to an E in @Sz, and (ii) D(x) whose response was “.x not in set” in

OSQ. Let L(j) denote the set resulting from L ,S( j). Let L(0) denote L1.
Recall that, by convention, element x is better than element y if and only if

either (i) x < y, or (ii) x = y and x was inserted later than y.

LEMMA 3.1.3 (THE SUFFIX PROPERTY LEMMA). For ezlery j such that 0, is a

D(x) or an E, 1 < j < m, there is an integer, O <f(j) < lL(j)l, sLLch that the

set resulting ji-om L, O, “”” 01 consists of the f( j) worst (i.e., la~est ) elements in

L(j).

PROOF. It suffices to prove that the D(x)’s and E’s (in L1O1 . . . 01)

remove the b best elements in L(j), for some integer b (this would establish

the lemma, with f(j) = IIX j)l – b). The proof is by contradiction: Suppose to

the contra,~ that some O,, i <j, removes an element x of L(j) and that some

element y of L(j), where y is better than x, is not removed by any operation

(in L ,0{ “”” OJ). We distinguish two cases.

Case 1. 0, is an E (call it El).
Since y is better than x, y could not have been present when El removed x,

and therefore y was inserted by ~n 1(y) that comes after El and befo~e ?j.

Such an 1(y) is (by defini~ion) in S, and therefore (by the definition of S) it 1s

immediately followed in S by an E (call it El) that is after El and not after O,

(possibly Ez = 0,, since 1(y) = O,_ ~ is possible). By hypothesis, y is not

removed in L, 01 “”” OJ and hence Ez must have removed a z that is better

than y. Since z is better than x, z could not have been present when El

removed x and therefore z was inserted by an 1(z) that comes in between El

~nd Ez. Such an Z(z) is (by definition) in S, and therefore (by the definition of

S) 1(z) is immediately followed in S by an E (call it Es) that is in between El

~nd EL (Es + Ez because it is 1(y) and not 1(z) that occurs just before Ez in

S). Now, repeat the argument with Es playing the role of Ez, as follows. Es did

not remove z in LIO1 . . . 0, and hence must have removed a w that is better

than z. This w could not have been present when El removed x and hence it

must have been inserted by an 1(w) that comes in between E1 and Es, and is

followed by an EJ that is in between El and Es. Repeat the argument with Eq

playing the role of Es, resulting in an Es that is in between El and El, etc.
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Eventually, after (say) q iterations of this argument, a contradiction is

reached (when there is no E in between El and E~). Thus, O, cannot be an E,

Case 2. 0, is a D(x).

Then clearly y < .x, since if y = x, then 0, would have removed y rather

than x. In LIS(j), x ended up in L(j) and hence was not removed by 0,, and

therefore O, removed another, better (i.e., later) copy xl (xl = x). The fact

that 0, removes x rather than x, in L, O ~ .”” 01 means that xl was removed

earlier by some operation Of, t < i. If Or is an E, then a contradiction is

obtained as in Case 1 (with Of and xl playing the roles of El and x,

respectively). So suppose Of is a D(x). In L, S(j), xl was removed by 0, rather

than by 0,, and therefore Of removed another. better copy Xz (x? = x). The

next paragraph iterates the argument of this paragraph one more time.

That O, removes xl rather than Xz is LIO, “”” O, means that X? was

removed earlier by some operation 0,,, u < t. If 0,, is an E, then a contradic-

tion is obtained as in Case 1 (with 0,, and .xJ playing the roles of El and x,

respectively). So suppose 0,, is a D(x). In L, S(j), Xz was removed by 0[

rather than by 0,,, and therefore 0,, removed another, better copy X3 (X3 = x).

Iterating the argument eventually leads to a contradiction (when after q

iterations we get to .x~, the earliest copy of x). Thus, 0, cannot be a D(x)

either. This completes the proof of the lemma. ❑

Thus, if O, is an E or a D(x), then the set resulting from L1O1 ~”” O, is a

suffix of L(j). The size of this suffix is ~(j). It is not hard to come Up with

examples showing that the suffix property does not hold for an 01 which is an

1(x ); by convention. if O, is an [(x), then ~(j) is undefined. The “suffix”

property is the main reason why we can solve the problem in NC. We have yet

to show how to exploit this property, however. For now, we note that, if we

knew all the ~(j) values, then we would be essentially done (we omit the trivial

det~ils of the proof that knowing the ~(j)’s implies knowing the responses to

L(S).

We now turn our attention to showing that the jlj)’s can, in fact, be

computed in O(log n) time with 0( YLz) processors. Using the array-of-trees

technique described in the previous section, we can compute an implicit
representation of each of L(0), L( 1), . . . . L(m), stored in a binary tree. Once

we have such a description of the L(i)>s, a single processor can determine in

O(log n) time whether a certain x is in L(i) or not. Now, for each 0, = D(x),

we check whether .x is in L( i – 1):If not, then such a D(.Y) has no effect and

can therefore qe ignored: we henceforth assume that all such D(.r)’s have been

purged from S&and the L(i)>s recomputed accordingly (i.e., from now on for

each D(x) in S, we know that x E L(z)).

Let L(i, k), 1 s i s m, 1 < k s lL(i)l. denote the set consisting of the worst

k elements of L(i). Note that L(O, ILl 1) = L,. We say that an 0, is rele[ant if it

is an E or a D(x) (i.e., notAan l(x)). Let O, be relevant, and let 0,(1) be the

next relevant operation in S; in fact we have either (i) s(i) = i + 1 (if 0,+ ~ is

not an l(x)), or (ii) s(i) = i + 2 (if 0,+, is an l(x)), because every l(x) is

followed by an E in ~. If L(i. k)O, +, ““ 0,(,, results in L(s(i), p). then we say

that L(s(i), p) is the successor of L(i, k). The lemma below shows that if

L(s(,i), p) is the successor of L(i, k), then p G ~k, k – 1). An L(i, k) has no

successor if 0, is the last relevant operation in S (i.e., if i = m); otherwise, it

has exactly one successor.
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Dejhzition 3.1.4. Foreach O,+l = D(x), let n, be the number of elements in

L(i) that are > x.

All the ni’s can easily be computed in O(log 72) time, since we have the

L(i) ’s.

InAthe lemma below, the reader should keep in mind that, by the definition

of S, every 1(x) in it is immediately followed by an E, and every E is

immediately preceded by an 1(x).

LEMMA 3.1.5. For a relel’ant 0,, the successor of L(i, k) is obtained m

follows:

Case 1. 0,+, is a D(x) operation. The successor of L(i, k) is L(i + 1, k) if-x is

not in L(i, k) (i. e., if k < n,), and is L(i + 1, k – 1), otherwise.

Case 2. 0,., is an 1(x) operation and 0, ~ ~ is an E operation. The successor

of L(i, k) is L(i + 2, k).

PROOF. Let us consider each case in turn.

Case 1. 0,+, is a D(x) operation. In this case, if x is in .L(i, k), then there

is one less element in the set resulting from L(i, k)O[+, than in L(i, k). If x is

not in L(i, k), then this D(x) operation has no effect.

Case 2. O,~lOl,z = I(x)E. There are two subcases, depending on whether

x is in L(i, k) or not.

Case 2a. x is in L(i, k). In this case, the set resulting from L(i, k)O, +, has

one more element than L(i, k) and consists of the last k + 1 elements in

L(i + 1). But the next operation is an E, which will delete one of these

elements—namely the best one in L(i + 1, k + 1). Thus, the combined affect

of l(x) and E is that the set resulting from L(i, k) O,+ ,0, +z is L(i + 2, k).

Therefore, it is correct to say that the successor of L(i, k) is L(i + 2, k).

Case 2b. x is not in L(i, k). In this case, the set resulting from L(i, k)O, + ~

has one more element than L(i, k) but does not consist of the worst k + 1

elements in L(i + 1); it consists of L(i + 1, k ) plus the element x E L(i),

which is less than all the elements in L(i + 1, k). But the next operation is an

E, and, since x is the best element in the set resulting from L(i, k)O, +,, itwill

delete x. Thus, in this case, the combined effect of 1(x) and E is that the set

resulting from L( i, k)O1 + ~0, + ~ is L(i + 2, k). Therefore, it is correct to say

that the successor of L(i, k) is L(i + 2, k). ❑

The successor function for L(i, k)’s defines a forest 9 whose 0(n2) nodes

are the L(i, k)’s for which 0, # 1(x), and such that the edge emanating out of

L(i, k) goes to its successor node (Figure 2 shows such a forest Y). Note that

the only nodes with no predecessors, that is, the source nodes, are the

L(O, k) ’s, and the only ones with no successors, that is, the sink nodes, are the
L(rn, k) ’s. The problem of computing the ~(i)’s then becomes a path finding

problem in ~ where we wish to compute the path of successors in 9 from

L(O,/ L, 1) to the appropriate L(rn, k). This path is drawn in heavy lines in

Figure 2. Marking this path can easily be done in O(log n) time using 0(n2)
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FIG, 2, An example of a successor forest :7

processors, by a simple pointer-doubling scheme. Thus, we get the following

lemma:

LEMMA 3.1.6. Gi[etz a sequence S of n 1(x), D(x), and E operations, one can

el’aluate 0S i?z O(log~ n ) tif?ze tlsing O(n~ ) processors ill the CREW PRAM

model.

In the next subsection, we show how to use the relationships established in

the above discussion to reduce the total work to 0( n lo,gz n ) while only

increasing the time by a log log n factor.

3.2. STREAM-LINING THE CONSTRLTCTION. The previous subsection essen-

tially reduces the problem to the following path problem. We are given a grid

G whose columns are numbered {O,..., h} and whose rows are numbered

{1,..., 1}, and a threshold integer value ?z, for every column i of the grid. A

node at row r and column c is numbered (c, r) rather than (r, c), in keeping

with the notation of the previous subsection (where L(i) was thought of as

representing “column i“ and L( i, k) as representing “the k-suffix of column

i“). There is one edge leaving each node (i, k) if k < h: that edge goes to node

(i + I,/c) if k < n,, to node (i + l,k – 1) if k > n,. No edge leaves any node

of the form (h, k) (i.e., a node in the last column). We want to mark, for each

column, the node in it reachable from node (0, 1).

Note. The correspondence with the notation of the previous subsection is as

follows:

Here /2 is the number of relevant operations of ~, and 1 = IL, 1.Also. in the

forest S of the previous subsection, for some columns i we had a “successor”
edge from L(z, k) to L(s(z), k) for all k (i.e., irrespective of any n, value); this

situation is modeled here by considering n, to be m for each such column i.

The first thing to observe is that, if we start at any (i, k) in grid G and take s

steps, we end up at an ( i + s, k‘) where k – s s k’ s k (this follows from the

fact that when moving along an edge we either stay at the same row or move

down one row). Let A,, ,(k) denote k – k‘; that is, starting at (i, k) and taking s

steps brings us down by A,, ,(k) rows, where O s A, ,(k) s s. Suppose that, for a

given i and s, we partition the nodes at column i into equivalence classes as

per their A,, ,(k) values: nodes (i, kl) and (i, k,) are in the same class if and

only if Al,,(kl) = A1,, (k2). Let r,,.clenote this partition of column i into
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equivalence classes. In r, ,, equil’alerzce class a is the element of r, ,, consisting

of the row indices k for’ which Al, ,(/c) = a. In Figure 2, rtl ~ corisists of two

equivalence classes: class O consisting of {1, 2, 3}, and class 1 consisting of

{4, 5, 6}.

LEMMA 3.2.1. r,, contains s s + 1 equiLwlence classes. Each equivalence

class is a contiguous ‘inten’al of row indices. Furthernlore, for any two equi[%aletzce

classes a and B where a < B, the row indices of equivalence class a are smaller

titan those of equivalence class ~.

PROOF. A straightforward induction on s. ❑

Thus, if in a given 17,,,, partition we let the highest (respectively, lowest) row

number of equivalence class a be U. (respectively, 1.), then equivalence a

consists of the nodes (i, la), (i, la + 1) ,... ,(i, ac – l),(i,L~a). Thus, we do not

need to explicitly store equivalence class a: we can just remember the

beginning and end of its interval of row indices (we call these the endpoint row

indices of that class). In Figure 2, the endpoints of equivalence class 1 of rfl, ~

are 4 and 6. Hence, 0(s) space suffices to describe r,, ,. Of course, the

trade-off of such an implicit representation of r,,,, is that, for a particular k, in

order to compute A,, ,(/c), we now need to locate k in one of the O(s) intervals

Of r,,,.
A by-product of the above representation is that, given r,,, and r,+,,,,, one

can obtain r, ~, in O(log log s) time and 0(s) work in the CREW-PRAM

model. This is’ done by using parallel merging to implement the following:

(1) Create a sorted sequence u consisting of the elements k – a where k is
an endpoint row index of class a in r,,, (i.e., u contains k – a for all such

pairs k, a). Note that Io / = 0(s). Also note that a may contain more than

one copy of an element, since the sum k – a might be achieved for more

than one pair k, a: in that case, we “remember” where a copy came from

by attaching to each such k – a a reminder that this entry was caused by

row endpoint k of equivalence class a.

(2) Locate the relative positions of the elements of (i.e., “cross-rank”) the
following two sequences: (i) cr, and (ii) the sequence m‘ of the endpoint

row indices of r,+,,,. This “cross-ranking” is done by merging u and o‘.

(3) For each k – a in m, if k – a is equal to an entry k‘ that is in

equivalence class p of r,+,,,,(not necessarily as a row endpoint), then we

mark k as being a row endpoint of equivalence class a – ~ in r,, ~,.

Note: More than one such k might have k – a = k‘ for the same k‘

value, but these k‘s become the row endpoints of different equivalence

classes of r, ~,,, since each of them is in a different equivalence class of r,,,.

(4) For each element k‘ of u‘ that does not coincide with any k – a of m,

locate the equivalence class (say, a) of r,,, that contains the point (i, k)

such that k – a = k‘ (note that this k – a is not in u‘, since k is not a

row endpoint of r,,,). Mark k as being a row endpoint of equivalence class
~—p Ofri z,, where ~ is the equivalence class of r,+,,, that contains k‘.

Note. It is not hard to see that the point k is unique, since the only way

there can be two such k‘s is if they are both row endpoints in r,,,,.
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The above has shown how to obtain r,, ~, from r,,, and r,+ ~,,. NOW, for each

row endpoint k in r,,z,,, let cut,,2,,(k) be the row index at which the path from

(i, k) intersects column i + s (the “middle” column). That is, node (i + s,

cut,j2,(k)) is reachable from node (i, k). The computation of the cut,, -,f(k )’s can

easdy be incorporated into the above “combining” procedure for obtaining

r,,z, from I’,,, and r,+,,,: in both steps (3) and (4), simply set c14t,, ~,(k) equal to

k’=k–a.

We are now ready to describe the procedure for marking the nodes reach-

able from node (O, /). Build a complete binary tree T on top of the column

indices, where each node z) of T has associated with it an interval 1(L) of

column indices: If L is a leaf, then 1( L)) is the column index associated with it,

and if LI is an internal node then l(~) is the union of the two intervals

associated with its two children. Thus, if L} is at height j then 11(L’) I = 2‘. Let

first(L) ) be the smallest column index in I(L)). The computation consists of two

stages, which we describe next.

The first stage builds, in a “bottom-up” fashion, rfl, ,,(,,), ,,(, ~1for each node L’
in T. While doing so, it also computes the ~utf,,,, ~(,), 1[(~)1(k )’s for that node L’.

This is done in O(log n log log n) time and O(n log n) work by using the

above-mentioned combining procedure once at each node z) (here n = h + 1).

The second stage uses the results of the first stage to mark, in each column,

the node that is reachable from node (O, 1). We explain how to do it in O(log n)

time and 0(n) processors. The procedure is recursive, and starts at the root.

When called at a node LI of T, its input also consists of (i) Il(L’ )1processors, and

(ii) a grid node (j%St(L1). J ) ( < need not be a row endpoint of r

(
,,,,(, ),,/(/,,) The

output is to cause, for each column c in the column interval 1 c)), the marking

of the node of c that is reachable from node ( fiML’), < J (this marking is

permanent in the sense that it does not get undone when the recursive

procedure returns). The procedure does this marking as follows:

—Mark grid node (first(L), ~). If t’ is a leaf of T, return. Otherwise, proceed

with the following steps.

—Use the 11(~ )1 processors to locate, in constant time, which equivalence class

of rf[l,r(l),lm)j contains row index { (say it is class y). Then, in constant

time, mark grid node (jlrst(L’) + 11(~’)1, 1 + y).

—Recursively call the procedure for the left child Lt of L’ in T and grid node

(first(u), <), giving it II(z4)I = 11(u)l/2 processors.

—Recursively call the procedure for the right child w of 1’ in T and grid node

(first(w), c~lfftr$r([)> II(L’)1([)), giving it lKw)l = IKL )1/2 processors.

Correctness of the above second stage follows from the definitions. Its

complexity bounds are clearly O(log n) time and 0(n) processors.
This completes the proof that the desired path can be marked in

O(log n log log n) time and O(n log n) work, thus implying an 0(10g2n log log n)

time and 0( n log~n ) work solution for the Competitive Deletes problem.

4. The Off-Line Mergeable Heaps Problem

The methods of the previous sections only apply when the set-manipulation

operations all are for the same set. In this section, we study sequences of

operations that can take set names as arguments in addition to specific

elements. In particular, we address the problem of evaluating a sequence of
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operations from the set {Insert(x, A), Delete(x), Min(A), Union( A, B), Find(x)}.

We begin by describing the semantics associated with each operation. Initially,

we assume that every set named in the sequence S exists and is empty. Since

one of the possible operations in S is Find(x), we also assume that the

elements are distinct.

(1) Insert(x, A). Insert x into the set A.

(2) Delete(x). Delete an element x from whichever set it currently belongs

to.

(3) Union (A, B). Union the elements of A and B into the set B, destroying
A (i.e., no operations after a Union(A, B) can have A as an argument).

(4) Find(x). Determine the name of the set to which x currently belongs.

(5) Min( A). Return the value of the minimum element currently in A. Here,
“minimum” can be replaced by any associative operation.

The element argument (respectively, set argument) of an operation like

Znsert( x, A) is x (respectively, A). Without loss of generality, one may assume

that none of the operations in S are inconsistent (e.g., a Delete(x) issued when

x is not in any set), since these can all be eliminated by a simple pre-processing

step in which one sorts all the elements referenced in S.

Suppose we are given a sequence S = OIOZ “”” O. of operations from the

above collection. In this section we show how to evaluate @S in O(log n) time

using O(n) processors. We begin by creating a union tree U from S, where the

nodes of U are labeled with the set names used in S and there is an edge from

a node L’, whose label is A, to a node w, whose label is B, if and only if there is

an operation Of = Union( A, B) in S. For the time being, let us assume that U

is a proper binary tree (i.e., all internal nodes have exactly two children). We

will show later how to relax this condition. For each internal node L’ whose

label is A, the extinction time of ~ (denoted t,,), is the time of evaluation of the

operation Union( A, B), that is, Of = Union(xl, B) (note that A is the first

argument). The tree U can easily’ be created in O(log n) time using 0(n)

processors, by sorting [Cole 1988].

Intuitively, our method is to construct a subsequence 1(~1) of S for each node

L’ in U, which consists of all the operations in S whose element argument (say,

x) was originally inserted in the set (say, A ) labeling ~) (i.e., the earliest

reference to x in S is an Insert(x, A)). We then “percolate” the 1( L’)’s up and

down the tree U to construct for each u in U a list (which we will denote by

lvf~,) of all (t,m) pairs such that Of involves the set name labeling u (call it A),

and m is the minimum value that would be stored in A at that time t (i.e.,

after a hypothetical sequential evaluation of 00, “”” Ot). We call this the

minimum-history oector for u. We store the A4~, lists sorted by t values. Given
these A4:, lists it is trivial to then print out a solution to 0S. Specifically, the

solution to an operation Ot = Find(x) is simply the set name labeling the node

u such that the list A4;, contains a pair of the form (t,*),and a solution to an

Ot = Min( A) is the m value of the pair (t,m) in the M;, list for the node L’

that A labels.

We give below an overview of our method for constructing these M[, lists.

High Let’el Description

Step 1. In this step, we convert the union tree U into a binary tree T that
has O(~z) nodes and O(log n) height (U does not necessarily have O(log H)
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height) .Foreach~ inlllet I(u) denote the subsequence of Sconsisting of all

Insert, Delete, and Find operations 0, such that the element argument of 0,

was originally inserted in the set name labeling L]. Let T,, be a complete binary

tree built “on top” of Z(.u), where each leaf of T,, is associated with an

operation in 1( ~’). We perform a tree-contraction procedure on U, in which we

iteratively combine pairs of nodes in U, until U has been reduced to a single

node z. Each time we combine two nodes L and w into a node L1we combine

T,, and TW into a tree TU by creating a root for TU and making the roots of ~,

and TW its children. We let T denote the final tree T=. We implement this using

the tree-contraction scheme of Abrahamson et al. [1989] and Kosaraju and

Delcher [1988], which build on the “rake-and-compress” paradigm of Miller

and Reif [1985]. This scheme implies that the resulting T has 0( fz) nodes and

O(log n) height.

Step 2. In this step, we perform a cascade merging procedure in T, similar

to that used for the array-of-trees construction, computing for each node 0 the

list of all elements stored in descendants of 8 sorted by their execution times.

(We use the “hat” accent to distinguish the nodes in T from their correspond-
ing nodes in U.) In addition, for each element in each such list we store the

min of the elements present at the execution time associated with that element

(as we did in the array-of-trees). For each 0 ● T, we let MJ denote the list of

(t,m) pairs, where t is an execution time and m is the minimum for that time
over all elements stored in 1(h) lists in the descendants of 6, including 0. We

also compute for each node u the maximum of all the extinction times of nodes

that were contracted to form [). (Recall that, if LI is labeled by set name A,

then its extinction time is the time t such that 0, = Union( A, B).)

Step 3. In this step, we perform a reversal of the tree-contraction step (Step

1), in which we iteratively reconstruct the union tree U from T in the reverse

order in which T was obtained from U (by “uncontracting” nodes, etc.). As we

perform the reversed tree-contraction we maintain a list, M;,, of (t, m) pairs

with each node L’ in the “current” tree U, (i. e., the ith tree in the contraction,

i = O(log n)). As mentioned above, we define the M~, lists so that when the

procedure completes and we have reconstructed the tree U, M:, will contain a

“history” of all the minimum values stored in the set that labels LI.

End of High -Leuel Description

Before presenting the details for implementing each of the above steps, let

us give some notational conventions.

Notation. Given a sorted list A of records, and two values k and 1 taken
from the universe of keys for records in A (with k < 1), we let A 1[~,/1 denote

the sublist of A consisting of all records whose key value falls in the interval

[k, 1]. Given two lists of records A and B whose keys come from the same

universe, we let A u B denote the merge of sorted A and B.

4.1. STEP 1: CONTRACTING THE UNION TREE. Recall that, for each L in

U, 1(1!) denotes the subsequence of S consisting of all operations 0, such that

0, has an element argument which was initially inserted in the set labeling L.

Also recall that ~, is a bina~ tree built “on top” of 1(c). We perform a

tree-contraction procedure on U, in which we iteratively combine pairs of
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nodes in U, until U has been reduced to a single node. We store a pointer in

each z to the root of its associated T{, tree, denoted d. Each time we combine

two nodes u and w into a new node L’ we combine ~, and TW into a tree ~, by

making il and i be the children of 0.

As mentioned earlier, we implement this step using the tree-contraction

scheme of Abrahamson et al. [1989] and Kosaraju and Delcher [1988], which is

built upon the rake-and-compress paradigm of Miller and Reif [1985]. We let

U[J denote the initial tree U and iteratively contract U,l, producing U,, LIZ, and

so on, until we reach a ~, that is a single node (s = O(log n)). Specifically, we

assign an index variable i := O and perform the following steps:

(1) Number the leaves of ~ from left to right 1,2,3, etc.

(2) Combine each odd-numbered leaf u of ~ with its parent z, provided LI is a

left child. This is commonly called raking LI [Miller and Reif 1985]. We also

combine T,, and T, into a single tree, as mentioned above. We don’t

deallocate the space used for the nodes Z) and z, however. Instead, we store

the records for L and z with the nodes 6 and 2, which were previously the

roots of T,, and T:, respectively, and “splice” LI and z out of ~ by changing

the pointers that point to them. (We shall use these records to help the

contraction-reversal step (Step 3).) Let U/+, denote the resulting tree, and

assign i := i + 1.

(3) For each node L of ~ that had one of its children raked, combine LI with

its remaining child w (if there is one). This is commonly called a compress

operation [Miller and Reif 1985]. We also combine T,, and TU as in the

previous step. Let ~+, denote the resulting tree, and assign i := i + 1.

(4) Repeat the previous two steps for odd-numbered leaves that are right
children.

(5) If the tree iJ resulting from the above four steps has more than one node,
then repeat the previous four steps for ~.

It should be clear that, given a processor assigned to each leaf, each iteration

of the above procedure can be implemented in O(1) time. In addition, since

each iteration eliminates half of the leaf nodes, there are at most O(log n)

iterations. This implies that the tree T = T= resulting from the last execution of

Steps 2–3 has O(log n) height and O(n) nodes. (In fact, it follows from

Abrahamson et al. [1989] and Kosaraju and Delcher [1988], that the entire

procedure can be implemented in O(log n) time using only O(n/log n ) proces-

sors.)

4.2. STEP 2: CASCADING IN THE TREE T. In this step, we perform a cascade

merging procedure on T, computing for each node LI in T the list of all

elements stored in descendants of L) sorted by their execution times. In

addition, for each element in each list, we store the min of the elements

present at the execution time of that element (as in the array-of-trees section).

For each 0 in T, we let J40 denote the list of (t,nz) pairs, where t is an

execution time and m is the minimum for that time. We also compute for each

node 8 in T the maximum of all the extinction times of nodes in U associated
with descendants of d (including itself).

Let ~ be a node in some ~, and let Nodes( L’) be the set of nodes of U that

were combined to form LI. Let us generalize the definition of 1(u) to nodes in

~ so that 1( LI) denotes the subsequence of S consisting of all the operations 0,
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such that 01 has an element argument which was initially inserted in the set

labeling one of the nodes in Nodes(u). Since 0 is both the root of ~, and a

node in T, itstores a list Mfl, which can be viewed as the histo~ of minimums

for 1(u) as if all the operations in 1( L’) were for the same set. In addition,

MO = M6 U ML, where ii and b are the children of C. So, just as with the

array-of-trees data structure, we can compute each (t,m) pair in each Mr by

applying the cascading divide-and-conquer scheme [Atallah et al. 1989, Cole

1988] to achieve a running time that is O(log n) using 0(n) processors.

In the next step, we take advantage of the properties of T and its M[, lists to

complete the evaluation of 0S.

4.3. STEP 3: REVERSING THE TREE-CONTRACTION TO RECONSTRUCT U. In

this step, we perform a reversal of the tree-contraction step (Step 1). Let 1 be a

node in some ~. We let Ops( L!) denote the subsequence of S consisting of all

the operations 0, such that 0, has an element argument which was initially

inserted in the set labeling a node in Nodes(w) for some descendent w of LI in

U/ (including c itself). Note that the operations in Ops( LI) are all the operations

that could possibly affect l’. We let Up(L)) denote the minimum-history vector

for the operations in Ops(c) as if they all applied to the same set, restricted to

the range [t,,, + m],where t,denotesthe ma~imum extinctiontime of nodes in

Nodes( LI). (This minimum history vector corresponds to information that must

be passed up from L’ to nodes higher in ~.)

For each node LI with parent z in the current tree ~, we maintain a list M:,
which is defined as follows (recall that A 1[~,~1denotes the sublist of a sorted list

A consisting of all records whose key value falls in the interval [k, /1):

(1) If L! has no children, then Mj = Jffll[O, t,].

(2) If L has one child, u, then M~, = Mtl[O, ,,1 u Up(U) l[tL(,t:].

(3) If LJ has two children, u and w, then Ml, = MPl[o, ~,l U ~p(LL)l[tL,, r,] U

qd~)l[tw.f,].

The m value for each (t, m) in Ml, is determined in the obvious way:

Namely, by taking the minimum of the m values of the ( t‘,m.)pairs in the sets

unioned to define M(, where f‘ is the immediate predecessor of t.

As mentioned above, our method is based on the observation that if ~ = U,

then, for each L in U, the list M;, will contain a history of all the minimum

values stored in the set that labels L). We iteratively reverse the tree-contrac-

tion step, converting ~+, back to U,, while maintaining M~, lists for each u in

the current tree. In the next lemma, we establish an important relationship

between the M and M’ lists, which we exploit for quickly reconstructing U in

parallel.

LEMMA 4.3.1. Suppose a and b are the two nodes of I!J that were conzbined to

fotm some r in ~~,. Without loss of generality, let b be the child of a (so t~ < t,,).

Suppose further that z is the parent of a in L( (if z does not exist, then take

tz = + ~). (See Figure 3.) Then we haL’e the following relationships for M: and

M;:

Case 1. The node v has no children in ~ ~ ~. Then Ml = MJ[o, t:] U MLIIL.LI>
and M; = ML 1[0,~,,l.

Case 2. The node L’ has a child, w, in U/~,.
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Case 2a. a and b were conzbined by a rake operation. Then M: = M: 1[[1,~:1U

M;l[tl,,t:lu MLl[t,,, t:l, and ML = Mjl[o,t<,].

Case 2.b. a and b were combined by a compress operation. Then kl~ =

M;l[o, tti] U M;l[t,,, t,l U M;,l[th,t,l, a~zd ML = Mb I[o,t<,]U M~ 1[[,,.l(,l. In addition, we
can assign ikl~v := M:, 1[(1,~,,1in ~, since b is the parent of w in U, (the old M~v

extended to t,, = t.).

The m Lalue for each (t, m) in M; (respectively, M;) is determined by taking the

minimum of the m ualues of the (t’, m) pairs in the sets unioned to define M:,,

where t‘ is the immediate predecessor oft.

PROOF. The proof is by induction on the iteration number i of the reversed

contraction procedure (note that i decreases as the algorithm progresses).

Initially, U/+, is a single node. Thus, Case 1 applies. The lemma follows from

the fact, then, that b is a leaf and a has no other children. Suppose, then, that

the lemma holds for the nodes in l-J+,. Consider U,. If a node Z’ is a leaf in

q+,, then Case 1 applies, and is clearly correct. So suppose [ has a child w in

q+l.

Case 1. a and b were combined by a rake operation. In this case, a has

children b and w in ~. The lemma follows in this case, since b is a leaf, and,

by induction, M;, restricted to [tw,t:]must be the same as Up(w) restricted to

[tw,,tz].

Case 2. a and b were combined by a compress operation. In this case, in ~,

w is the only child of b, which is, in turn, the only child of a. The formula for

M: follows, by induction, from the fact that Up(b) l[t,,,~zl = ML I[th.t,] U M~, I[t,,,~,1,

since Up(b) = ML 1[~~,~1 U Up( w )I[fk, ~l. The formulas for ML and M:, follow

immediately from induction.

This completes the proof. ❑

Thus, we have a method for constructing ~ with all its M~, lists, given ~+,

and its M;, lists. We have yet to describe how we implement each step of the

reversed contraction routine in O(1) time using O(n) processors, however.

Initially, we assign two processors, which we call a processor pair, to each

element in M;, where z is the single node to which U was contracted. As we

reverse each iteration of the tree-contraction step (Step 1) we maintain the M{,

lists as mentioned above and two important ranking invariants: (i) that M;, is
ranked in MO, for each L’ in U/, where 0 is the root of T,,, and (ii) that M;, is

ranked into M:, for each u in ~, where w is a child of u. (Recall that a list A

is ranked in a list B if we know the rank of the predecessor in B of each

element a in A [Cole 1988].) We can easily maintain these ranking invariants
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as the procedure progresses, since, for each invariant of the form “A is ranked

in B“ that we wish to maintain, we have B c A. In addition to these two

ranking invariants, we assume that MP is ranked in M; and ML, where & and ~

are the children of t, the root of T,,, since this comes for free from the

cascading procedure (recall that M:, = MJ U ML).

Let us, then, describe how to implement each of the uncontract steps. Let a

and b be the two nodes of U, that were combined to form L’ in ~+,, with b

being the child of a. Let us consider the possible cases:

Case 1. 1 is a leaf in lJ+l. In this case, we can construct M; in 0(1) time,

since (i) M;, is ranked in MP, and (ii) MO is ranked in Mti and Mi. In addition,

there is an element in M:, for each element in M; (hence, each element of

) This implies that we can use the processors associatedJfAIo, t, I and ~;l[~,,t,I .

with the elements of M;, to construct A4j, and assign these processors to M:.

Some of these processors may be needed in M/,, however. In particular, the

elements in M~l[~,,, ~,,1are needed for both M: and M;. In this case, we split the
processor pairs for these elements, assigning a single processor to the copy of

each element from A4L1[~,,,f,,] in M: and a processor to each element from

Jf; l[ffi. r.] in M;. We will show later that once a processor pair has been split for

an element t; we will never again attempt such a split again for t (in any list).

This does not give us all the processors needed for M;, but, fortunately, for

M:, there is an element in M~, for each element in MJIO, ,,,1, and none of these

elements are needed to form M:. Thus, we can reassign the processors

assigned to these elements to their counterparts in ML.

Case 2a. a and b were combined by a rake operation, and 1 has a child, w,

in U,+,. We can construct M: in 0(1) time in this case, since (i) i14~, is ranked

in M:, (ii) M:, is ranked in M;, and (iii) MP is ranked in M; and M;. In
addition, there is an element in Ml, for each element in MO (hence, each

element of Mdl[o, ~.l and MLl[r,,, t,]) and for each element in M~Vl[~,i,~,l. This

implies that we can use the processors associated with the elements of M( to

construct M;, and in turn assign these processors to M:. As in the previous

case, we may need some of these processors for M;, however. As before, for

M;, there is an element in M~, for each element in ML 1[0,,,1, and none of these

elements are needed to form M:, but the elements in M; l[~b,~t,l are needed for

both MI, and ML. So, as before, we split the processor pairs for these elements,

assigning a processor to the copy of the element from Mj I[f,,,~<,1in M: and a

processor to the copy in M:.

Case 2.b. a and b were combined by a compress operation, and 1 has a

child, w, in L(+,. Let z be the parent of a in ~. We can construct M: in 0(1)
time, by essentially the same method as in the previous case. A similar method

constructs M; in 0(1) time. The processor assignments are more involved,

however. As before, there is an element in M;, for each element in M:. Thus, if

we were only interested in constructing M:, the processor assignment would be
trivial. Recall, however, that Mj = M; 1[0,,Ul U M~VI[tw.rul, and, since b is a child

of a, M: l[fh,~dl must be a subset of M:. In this case, we do not resolve the

overlap by processor-pair splitting alone. We only split processor pairs for the

elements in ML I[t,, tal (giving a processor to each copy in M: and M; of each
element from M; I[r,, ~al). We do not need to split processor pairs for the

elements from ML, l[~w,lU1.Instead, we can locate a sufficient number of proces-
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sors assigned to elements in lists of ~+ ~ such that these processors are no

longer needed in the corresponding lists of ~. Specifically, the elements in

ML, I[tw,,tbIwerein J(( of ~+ 1, but these elements are not in M:. Thus, we can
reallocate the processors for the copies of these elements in M;, (of ~+ ~) to

their copies in Mj (of ~). In addition, the elements in M~V1[,,,tal (of ~+,) need

no longer be stored in M: (of ~), since w’s parent in lJ is b. Thus, we can

reallocate the processors for the copies of these elements in ML (of L/+ ~) to

their copies in M: (of ~). This completes the description of the method for

implementing each round of the reversed tree-contraction in 0(1) time using

O(n) processors. The following lemma completes the proof of correctness of

this implementation:

L,EMMA 4.3.2. At no point in the computation will we euer ty to perjorm a

processor-pair split for an element that is assigned only one processor.

PROOF. Any time we split a processor pair for an element t, we do so only if

t is in an interval [tb,ta]where b is the child of a in the tree lJ. Since tb is the

extinction time for b, all the extinction times for nodes (in Nodes(b)) that were

combined to form b must necessarily be less than tb.Thus, all the future

processor-pair splits done for nodes in Nodes(b) must involve elements that

are not in the interval [tb, ta ]. So, the only possible illegal processor-pair splits

must come from nodes in Nodes(a). But we will have performed processor

splits only for the elements of ML 1[~,,,~ol (which are also in M;). These elements

are not in Mi, however. Thus, these elements are not in Mt for any node 2 in

Nodes(a). This completes the proof. ❑

Thus, we have the following lemma:

LEMMA 4.3.3. Suppose one is gilen a sequence S of Insert(x, A), Delete(x),

Union(A, B), Find(x), and Min(A) operations. If the tree determined by the

Union( A, B) operations in S is a proper binay tree, then one can eualuate DS in

O(log n) time using O(n) processors in the CREW PRAM model.

In the next subsection, we show how to extend this lemma to arbitrary union

trees.

4.4. ALLOWING FOR NONBINARY UNION TREES. The tree, U, determined by

the Union( A, B) operations in S does not have to be a proper binary tree for

us to be able to evaluate S in O(log n) time using O(n) processors. In this

subsection, we show how to transform U into a proper binary tree U’, such that

applying the above procedure on U’ can easily be converted into a solution for

U. The method for converting U into U’ consists of two steps. The first step

adds a “dummy” child to each node with only one child, and the second step

adds dummy descendants to a node LI if L’ has more than two children, so as to

“fan in” the sets coming from the children of u.

Step 1. Let u be a node in U that has only one child, w. Let 0, =

Union( A, B) be the union operation in S that determines the edge from w to
L1, that is, A is the set name labeling w and B is the set name labeling L’. We

add an operation Union( Z, B) just before Ot in S, where Z is a set not
referenced by any operation in S. Let S‘ denote the resulting sequence.

Comment. It is easy to see that Step 1 forces u, the node labeled by B, to

have two children in the union tree determined by S‘. Moreover, since Z is not
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referenced by any other operation in S, the response to an operation O in S is

the same as its response in S”.

Step 2. Let U be the union tree determined by the operations of S‘; so

each node in U has at least two children. Let 1’ be a node in U that has

children wl, w2, ..., Wk such that k > 3. Order these children of L, so that

, fori={l,2,...,t,c< t,,,,, k – 1}.We modify U by building a complete binary

tree B,, whose leaves are WI, w?, ..., w~ and whose root is ~J.For each internal

node u in B,,, we make the extinction time for 14, denoted t,,, be the maximum

of the extinction times of u‘s descendants in B,,. Let U’ denote the resulting

union tree. Clearly, U’ is a proper binary tree.

Comment. U’ clearly has O(IUI) nodes. The only difference between U’ and

the union tree of this algorithm is that for any child–parent pair (b, a ) in U’ we

have tb< tu, instead of th< ta.This does not change the correctness of

Lemma 4.1, however. Thus, we can implement the algorithm of Lemma 4.3 on

U’ so as to still run in O(log n) time using O(n) processors. So we have only to

convert the solution to U’ to a solution for U.

For any node u in the (nonbinary) union tree determined by S, if u has at

most two children, then, by arguments given above, the list M:, for the

corresponding node LI in U’ is the same as M;, would be in the union tree

determined by S. So, let L be a node that has children WI, W2, ..., Wk in U such

that k >3. We show how to construct the M:, list for L in U, given the M;, list

for each node Z4 in B, of U’.

Let (t,m) be a pair in some M: list for an internal node u of B,, (u may be

L’). Since (t, m) is in an Ml, list for an internal node of B,,, there must be a pair

(t, m“:) in M; in U (i.e., with the same first coordinate). Thus, we have only to
determine the minimum value, m“, associated with this pair. Let n be the path

from u to L’ in B,,. Since the leaves of B,, are listed left-to-right by increasing

extinction times, any leaf w, that is the descendent of a node on the left fringe

of m must have tw < t.In addition, any leaf w, that is the descendent of a

node on the right f~inge of m must have tw > t.(Recall that a node is on the

left fringe (respectively, right fringe) of a pat~ m if it is not on rr but is the left

child (respectively, right child) of a node on -rr.) If m < m*, then m* must

belong to a pair (t’,m“) in some Ml list, where z is on the left fringe of rr and

t‘is the immediate predecessor of t in M;. This is because t has no immediate

predecessors in any of M: list if z is on rr or the right fringe of m. Thus, to

determine the value of m“, we have only to assign a processor to the pair (t,m)

and have that processor locate the immediate predecessor of t in each M; list

such that z is on the left fringe of m. If we were to implement the query for

this processor by performing a binary search in each Ml list such that z is on
the left fringe of m. then the running time of our algorithm would grow to be

O(logzn). Thus, we must be more clever in how we implement this query.

To perform the query for a pair (t, m) in M;, it certainly is sufficient for the

processor for (t, m) to locate in each M; the pair (t’,m‘ ) such that t‘ is the

immediate predecessor of t,where z is a node on the walk o in B,, that starts

from u, and traverses up B,,, visiting each node on m and each node on the left

fringe of n. Such a traversal is defined as a multilocation of t in o [Atallah et

al. 1989]. Atallah et al. [1989] show that one can perform such a multilocation

of t in o in O(log N + 101) time, where 101 is the number of nodes in w, given

a preprocessing step that takes O(log N ) time using 0( N/log N) processors,
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where N is the total size of the graph being searched, including all the lists it

contains. In our case, N is O(n), since there can be at most two pairs in M:

lists of U with the same t value (i.e., in the M;, list for a node z’ and in the M:

list for its parent, z). In addition, 101 is O(log n). Thus, we can determine the

value of rn* for each (t,m) pair such that (t,m) is in some M:, list for a node ~~

in U’ in O(log n) time using O(tZ) processors. This gives us the correct M:, list
for each node LI in U, hence, gives us the following theorem:

THEOREM 4.4.1. GilYen a sequence S of Insert(x, A), Delete( x ), Union(A, B),

Find(x), and Min( A) operations, one can elaluate 0S in 0( log n) time using

O(n) processors in the CREW PRAM model.

In the next section, we address the off-line priority queue problem.

5. The Off-Line Priorip Queue Problem

In this section, we show that one can evaluate S in O(log n) time using O(n)

processors when the operations in S are I(x) and E, i.e., an off-line priority

queue problem. This is optimal, because one can easily reduce sorting to this

problem. Our algorithm generalizes an algorithm by Dekel and Sahni for

processor scheduling [Dekel and Sahni 1984] that can be applied to this

problem, which ran in O(logzn) time using O(n) processors. The main contri-

bution of our algorithm is the development and application of generalized

cascade merging to the off-line priority queue problem.

Let S = 0101 “”. O,, be a sequence of lnsert( x) and ExtractMin operations.

We wish to evaluate 0S. As mentioned earlier, Dekel and Sahni [1984] study a

related processor scheduling problem, namely, that of finding a schedule for F2

jobs, specified by release times and deadlines, so as to minimize the maximum
lateness. Their solution amounts to a reduction of this scheduling problem to

the {1(x), E} evaluation problem, which is essentially the sequential method

used by Horn [1974]. If the sequence S does not contain any redundant E’s,

then the method used by Dekel and Sahni can be applied directly to solve the

{1(x), E} evaluation problem, resulting in a solution running in O(logzn) time
using O(n) processors. If there can be redundant E’s, then one must precede

their algorithm by a parallel prefix computation to eliminate the redundant

E’s.

The main idea of the Dekel–Sahni algorithm is to build a complete binary

tree “on top” of the operations in S and then perform two “passes” over this

tree—the first flowing up the tree and the second flowing down the tree. Our

method uses a similar approach, except that each pass is implemented by a

generalized cascade merging procedure. We perform this procedure in two
directed acyclic graphs (dag’s), rather than using a tree. The dag we use for the

first pass is derived from a recursive merging procedure similar to that used in

the first pass of the algorithm by Dekel and Sahni. Since some nodes in this

dag have out-degree 2 (i.e., two “parents”), one of the important aspects of our

implementation is showing how to perform cascade merging in this dag using

only O(n) processors. This is also true for the dag we use to implement our

second phase, for it too contains nodes that have out-degree 2. This second dag
is derived from a “merge-and-purge” procedure that is quite different from the

second phase of the Dekel–Sahni algorithm (in fact, it is not clear that one can
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efficiently implement their second phase with a cascade merging procedure).

We give the details of our algorithm below.

We begin by constructing a complete binary tree T “on top” of S so that

each leaf of T is associated with a single operation 0, (listed from left to right).

For each node L! let e( L’) denote the number of ExtractMill operations stored

in the descendent leaves of l’. One can compute e( L’) for each L’ in T in

O(log n) time using O(n/log n) processors by a simple bottom-up summation

computation in T. For every leaf of T corresponding to an E operation, we

replace that leaf with a node L’ with two leaf-node children such that its left

child corresponds to an Z(m) operation and its right child corresponds to an E.

This allows us to assume that each E has a response. That is, the ~’s are added

so that the response to an E is = if and only if its response should be “set

empty” in 0S.

For each L’ in T, let S(L)) denote the substring of S that corresponds to the

descendants of L). For each LI in T, we will compute two sets A(~l ) and L(~)):

A(L) will be the sorted list of answers to all the E’s in 0S( 1)) (recall that this

denotes performing S(L) with the set of elements initialized to @), and ~(Li)

will be the sorted list of elements left in the set after we perform 0S( L ). For

any list B and integer m, we let 1+-e~ix,.( B ) denote the list consisting of the

first m elements in B (if IBI < m, then 1%-efti~( B) = B). Similarly, we let

Suf@~(B) denote the list consisting of the last m elements in B (if IBI < m,

then Suf/lx~(B) = B).

LEMMA 5.1. Let S be a sequence of I and E operations, and let L be a sorted

list of elements, If A is the sorted list of answers from 0S, then PrefLq~,( L U A) is

tile list of answers fi-om LS.

PROOF. The proof follows from arguments given in Dekel and Sahni

[1983]. ❑

This immediately implies the following corollary:

COROLLARY 5.2. Let 1 be a node in T with left child x and right child y. Then

we haLe the following relationships:

A(u) =A(x) U Prefix,(Y) (L(x) UA(y)),

L(~J) = L(y) U Sujj51xfl,_c(Xj( L(x) UA(y)).

In words, this states that the answers in A(L) that are for extractMin

operations that are stored in descendants of y come from the first e(y)

elements of L(x) u A(y). We shall use this lemma to construct A(c) and L(LJ )
for every L’ in T. We begin by constructing a dag G from T by expanding each

node o into T into five nodes: [ALI], [LLJ ], [SLI], [AU], and [LyLI], where x and

y are the left and right children of ~J,respectively. For each such node z of T,

the following are edges in G: ([AxI, [AXLII), ([Lx], [SLII), ([AYI, [SUI),
([Ly], [Lyt]), ([ AxL], [A~)]), ([S~], [AL]), ([SU ], [LLI]), and ([ LyLI], [LLI]). (See

Figure 4.) Before we explain the role of each of the five nodes of G that

correspond to a node L’ E T, we observe that G consists of a number of layers

equal to twice the height of T (hence, G has O(log n) layers). This is because

the definition of the edges of G is such that, if u is on level 1 in T, then the

nodes [AL1] and [Lz)] are on level 21 – 1 in G and the nodes [Su], [AxL1], and
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FIG. 4. The upward cascade merging procedure.

[Lyz) ] are on level 21. We now discuss the roles played by each of the five nodes

of G corresponding to a u = T. We will construct a single sorted list for each

node in G by a cascade merging procedure [Atallah et al. 1989]. We generalize

the method of Atallah et al. [1989] and Cole [1988], however, in that the input

to a node LI in G will not necessarily be strictly a sorted merge of the lists at

the in-nodes of L. The set we will build at [Au] is A(u) and the set we will

build for [LLI ] is J5(LI). Intuitively, [S~! ] is a “splitter” node, as its output will be

split between [ A~I ] and [ Lz) ]. The nodes [ A.m ] and [ LyL1] are added so as to

synchronize the flow from level to level. We perform a cascade merging

computation in G that proceeds in stages, where, for each stage t,each node

[a 1 in G will store a list U([ a ]). Initially, Q([ a ]) is empty for all but the nodes
that correspond to leaves of T. Specifically, if L) is a leaf of T, then (i)

UO([AZII) = {co}, and (ii) UO([LL’]) equals {x} is 0,, = l(x), {~} if 0,, = E. We say
that a node L’ of G becomes f4411 in stage t if Q( [’ ) will equal UC,(L’) for all

t‘ > t.Intuitively, LI is full when Ut( LI) contains all the elements it was intended

to have. In our procedure, which we describe below, we can easily test if a node

becomes full in stage t as soon as it happens (because we know the final size of

the sorted list we are building at each such node).

Let Samp,,, ,(Q( u )) denote the sample of ~( L’ ) at node L], defined as follows:
if L’ was not full at the end of stage t – 1,then Sampt,, ~(Ur( ~])) consists of every

4th element from ~(L)); if L) just became full at the end of stage t – 1, then

Samp,, ,(U( u )) consists of every other element from ~( ~’); and if L’ was full at--, . .
the end of stage t – 2, then S&np,, ,(~(~)) = ~(L).

The five no~es for L;

~+l([ALJ]) =

q+,([LLI]) =

Q+l([/ixL1l) =

LJ+l([su]) =

q+l([z,yu]) =

have the following merge equations:

samP[Axc~, t (q([AxLJ l))

uSamp[sL,l,t(Preftie, y)(~([sL]]))),

samp,$tl,f(stffix,,,_ e,.,,(~([SLl)))

u’$w+L.v,)],f (Q([LYuI)),

saw[A ,1,, (lIJ([AXl))

samp[Lxl,t(Ut([Lxl)) u saw[Ayl, f(q([41)),

saw[Ly],, (~([Ly])).

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)
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Note that, if both children of a node are full in stage t,then that node is full

in stage t + 3.

Comparing the above five equations to the two equations of Corollary 5.2,

we have that in the stage, r, when [A~I] and [L~] become full, then Q([A~I]) =

A(~) and ~([L~]) = L(~). Since G has twice as many levels as T, if we can

perform our cascade merging procedure in G so that each stage can be

implemented in 0(1) time, then we will have an O(log n) time algorithm.

In Atallah et al. [1989] and Cole [1988], it was shown that in a cascade

merging procedure as above, but without Prefix and Suflti functions, one can

maintain a rank label for each element e of L’_,( LI ) that gave the rank of e’s

predecessor in Q(1), as well as similar labels from U,(c) to the samples at z’s

in-nodes (i.e., its “children”) in stage t – 1 (which were merged to form U(( ~1)).

Ivforeover, Atallah et al. [1989] and Cole [1988] show that these labels can be

used to perform the merge at node u for stage t + 1 in 0(1) time using

0( It/, +,( u )1) processors in the CREW PRAM model, provided the sample that

came from each of L‘s in-nodes in stage t – 1 is a “good approximation” of the

sample coming from that node in stage t.In particular, if e and ~ are elements

of the sample that came from L in stage t – 1 such that there are k elements

of this sample in the interval [e, ~ ). then there must be at most c(k + 1)

elements in [e, ~ ) from the sample coming from LI in stage t,for some constant

c (in the scheme of Atallah et al. [1989] and Cole [1988], c = 2). This is called

the c-col:er proper(y.

The only difference between our merge equations and those of Atallah et al.

[1989] and Cole [1988] is that in Eq. (5.1) we use the Prejix function and in Eq.

(5.2) we use the Suffix function. Thus, had we not added the SL@ti and Prefix

functions, we would have satisfied the c-cover property. These functions do not

upset the crucial c-cover property, however, as we see from the following

observation:

Observation 5.3. Let e and f be two elements of Samp[stl,t- 1
(Prefirc,( ,j(~ ,([St’ ]))) with e < ~. If there are at most d elements of

Santp[j,,l ,( U/([SLI])) is the interval [e, ~), then there are at most d elements of

Samp[$[l,,( Prefix,,t ,j(~([Srl))) in the interval [e, ,f).

A similar observation can be made for equations involving the Suflix func-

tion. Thus, if a cascade merging procedure without Prefi and Suffix functions

has the c-cover property, taking prefixes or suffixes before taking samples will

not upset this. Note, however, that this might not be the case if we were to take

prefixes or suffixes after taking samples. Therefore, we can implement each

stage in 0(1) time, provided we have enough processors assigned to each active

node.
To show that our method can be implemented in O(log n) time with only

0(n) processors, we must show that we can perform the processor allocation

with only an 0(1)-time overhead per stage. Our method is to “send” processors

along with elements. Specifically, if we send mf elements from a node w to a

node L in stage t (as a part of the merge for node L]), then we send ~nf – ml_ ~

processors to accompany them, where m,- ~ is the number of elements we sent

in the previous stage. Thus, each nonfull node L) receives new processors for all

the “extra” elements it receives in stage t and sends a fourth of the processor

assignments it had in the previous stage. By a simple inductive argument, it is

easy to see that this maintains nr – m ~_, processors assigned to such a u,
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where ni is the size of the list stored at L at the end of stage t.For if a node LI

becomes full in stage t – 1, then it sends nf/4 -- m_ ~ processors in stage t,

nl/2 – nt/4 in stage t + 1,and Ht – nl/2 in stage t + 2. Since nf – m_l is

O(n,), this scheme is sufficient to solve the processor assignment for our

method.

When the cascade merging procedure in G terminates, each t = T can just

“read” from G its A( L’) and L( LI) lists. This does not yet give us the response

to each specific ExtmctMin in S, however. It only gives us the total set of

answers. To determine the answer that is the response to each ExtractMin, we

perform one more cascade merging procedure, this one derived from proceed-

ing down the tree T, as follows:

Let L’( L’) denote the set of elements that is left over after performing the

operations in 0S up to, but not including, the operations in S(~)). In other

words, L‘( L]) is the set of elements that are actually left over just before

performing the operations in S(L)). The following Iemma gives us the main idea
for performing the downward sweep.

h3WVIA 5.4. Let L’ be a node in T with left child x and right child y. Suppose we

haLe L’(LI) at L?and A(x) and L(x) at x. Thetl

L’(x) = L’(L),

L’(y) = suj~i-,,l , _ ,(.,JL’(x) UA(X)) U L(.Y),

where m, = IL’(x) U A(x)I.

PROOF. The proof that L’(x) = L’(L) follows from the definition of L’(X)

and L’(LJ). The proof that L’(y) = S@x,~t_,(K)(L’(x) u A(x)) u L(x) follows

from Lemma 5.1, with S( z’) playing the role of S in the Lemma and L’(x)

playing the role of L. ❑

We can use these definitions to define a top-down computation to construct

all the possible true “left-over” sets. The response of an E operation at

leaf-node L) is simply the first element in the left-over set L ‘(w) for L”s parent

w. This approach is not enough to give us an efficient algorithm, however. As it

is expressed now, it would be impossible to construct the necessary left-over

sets in O(log n) time using O(n) processors. This is because for each level of’

the tree we would essentially be doubling the amount of space we need to

represent all the left-over sets. We can get around this problem, however, by

noting that for any node LI we need only send its children as many left-over

elements as the number of E’s that are descendants of that child. That is, if x

and y are the left and right children of L, respectively, then we need only send

the first dx) elements of L’(/J) to x and only the first e(y) elements of L’(x)

to y.

The details of the construction are as follows:

We obtain a dag G from T, as follows: Let L! be a node in T with left child x

and right child y. Corresponding to each such LI G T are the following six

nodes of G: [L’L1], [L’x], [LX], [Ax], [Suji], and [L’y]. (See Figure 5.) The idea
is to define U, lists so that, when it becomes full ~([ L‘ L ]) = L‘( L ), ~([ Ax]) =

A(.x ), and ~([ Lx]) = L(x). For each such node L) of T, the following are edges

in G: ([ L’u], [L’x]), ([ L’L)], [suji]), ([ Ax], [SUji]), ([ Lx], [L’y]), and ([sufi],

[L’y]). In addition, there is a complete binary tree that feeds into [,4x]



1078 M. J. ATALLAH ET AL.

[L’v]

*V

(7f\X* ●Y
T

+

G

FIG. 5. The downward cascade merging procedure.

(respectively, [Lx]) and contains all the elements of A(x) (respectively, L(x))
in its leaves. The flow equations in each of these two [Ax] and [Lx] trees are

just as in the sorting algorithm of Cole [1988]. Initially, there is a complete

binary tree feeding into [L’mot]; it has n leaves, each containing {~}. The flow

equations for the other nodes of G are as follows:

Ut+ ,([SU$V1) = smnp[,4x],f( ~t([Ax l)) u ~~w[iv,].r (J+@ti,,},(Q([L’, l)))

uf+l([L’Yl) = salnp[~tl,,(ut([~~l)) u ~~mqsuf,],f (sufliYe(,,(q([ sLlfi]))).

The reader should note that these flow equations satisfy the constraints

determined by Lemma 5.4. Also recall that the Samp functions are synchro-

nized so that a node becomes full three stages after both of its children become

full.

It is not hard to show that the graph G that results from this construction

contains 0(n) nodes and has O(log ~z) height. As with the first pass, the l+e~lx

and Su&ti functions do not upset the c-cover property. Moreover, even though

each node [ L‘ L’] has out-degree 2, the number of elements that we send from

[L’LI]. when [L’LI] is full, does not exceed the total number of elements stored

in Ut([L’ZI]). Thus, the cascading flow problem can be solved for G in O(log n)
time using 0(n) processors. This, in turn, gives us a solution to the sequence

evaluation problem that runs in these bounds, because for each leaf node LI

associated with an ExtractMi}t operation, we can simply examine the L‘( w ) list

for L‘s parent w to determine the response for this E.xtmctMi~~. Thus, we have

the following theorem:

THEOREM 5.5. Gioen u sequence S of Insert(x) and ExtractMin operations,
one can etaluate 0S in 0( log n ) time using 0(n) procmsom in the CRE WPRAM

model, which is optimal.

In the next section, we study a generalization to the ExtractMin operation

that can be used to parallelize certain types of “lexicographic” sequential
algorithms.

6. The Off-Line Barrier-Extra ctMin Problem

Let the operation ExtractMin( y) (E(y) for short) return and simultaneously

remove from the set the smallest element > y (if there are many copies of it
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then, by convention, the one inserted latest gets removed). This section

concerns itself with the case where the operations appearing in S are 1(x) and

E(y). Before we give our method for evaluating @S, let us give an application

of this sequence-evaluation problem to an important matching problem, so as

to motivate our study of the E(y) operation.

6.1. APPLICATION: MAXIMUM MATCHING IN A CONVEX BIPARTITE GRAPH.

One additional problem that can be formulated as an off-line sequence of set

manipulation operations is that of computing a maximum matching in a convex

bipartite graph. An O(logzn)-time algorithm for solving this problem on an

EREW PRAM model was given by Dekel and Sahni [1984]. In this section, we

show how to formulate this problem as the evaluation of a sequence of 1(x)

and E(y) operations. This reduction can be implemented in O(log n) time.

First, recall that a convex bipartite graph is such that its vertex set can be

written as A U B where A = {al, . . . . aP} and B = {b,, . . . . b,,}, where (i) every

edge has one endpoint in A and the other endpoint in B, and (ii) of ( a,, bj ) and

(a,, b,+~) are edges, then so is (a,, b,+,) for every 1< s < k. Let /,(r, ) be the
smallest (largest ) j such that (a,, bj ) is an edge. Glover’s algorithm [1967] for

finding a maximum matching in such a graph works as follows: Consider the

vertices of B one by one, starting at b ~. When b, is considered, match it

against a remaining ak that is adjacent to it and whose rk is smallest, and then

delete ak from the graph. Glover’s algorithm can be formulated as a sequence

of 1(x) and E(y) operations, as follows:

Without loss of generality, we assume that the al’s are renamed so that

rl 5 . . . < rP. Let LJ (RJ) denote the set that contains every al whose 1, (r, )

equals b,. Then Glover’s algorithm is equivalent to the problem of evaluating

the sequence S created by considering the vertices of B one by one, starting at

bl with S = 0 and ~ = – a. When b] is considered, we append to the end of

S an I(al) for every a, G LJ, followed by an E(~). Then (before moving to

b,, ~), we set ~ equal to the max of its old value and the largest element in R,.

If, in S, the response to the jth E(y) is al, then the edge (al, bJ) is in the

maximum matching. It is easy to prove that this procedure results in exactly the

same matching as Glover’s algorithm. We can construct the list of al’s by

sorting [Cole 1988] and then construct all the corresponding ~ values by a

parallel prefix computation [Kruskal et al. 1985; Ladner and Fischer 1980].

Thus, we have the following:

THEOREM 6.1.1. The maximum matching problem for conue.x bipartite graphs

can be reduced to the problem of eljaluating 0S in O(log n) time using 0(n)

processors in the EREW PRAM model, where S contains I(x) and E(y) opera-

tions, and where the a~ments to the E(y) operations are nondecreasing.

In the next subsection, we show that the problem of evaluating a sequence of

1(x) and E(y) operations is in the class NCZ. In the subsequent subsection,

using a completely different technique, we show that if the arguments to the

E(y) operations are nondecreasing then the evaluation problem is in NC 1.

Thus, as a simple corollary, we get that the maximum matching problem for
convex bipartite graphs is in NC 1.

6.2. THE GENERAL OFF-LINE BARRIER-EXTRACTMIN PROBLEM. In this sub-

section, we show how to evaluate a sequence S of Insert(x) and ExtractMin( y)
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operations in O(logz n) time using 0(n3\log n) processors in the CREW

PRAM model. For expository reasons, we first concern ourselves with proving

membership in NC by giving a rather inefficient algorithm that runs in

O(logzn) time with O(ns) processors. The next lemma reduces the problem to

that of determining which IS( y )’s have an empty response.

LEMMA 6.2.1. Let S be a sequence of n I(x) and E(y) operations. Let O be

any one of the My) operations in S, and let TEST( S, O) be any algorithm that

sok’es the problem of determining whether O has an empp response in 0S. Let

T(n) and P(n) be the time and processor complexities of TEST( S, O ). Then

determining the uctual responses to all the E(y) operations in 0S cutl be done in

time 0( T( n ) + log tl ) with 0( n~P( n)) processors.

PROOF. To every operation O that is an E(y), assign P(n) processors that

perform TEST( S, O) to determine whether it has a nonempty response in 0S.

If TEST(S, O) determines that the response to O in 0S is empty, then that is

the correct response for O. However, if TEST(S, O) determines that O has a

nonempty response in 0S, then O gets assigned nP( ~t) processors whose task it

will be to determine the actual response of O. We now show how these nP(n)

processors can find the (nonempty) response of such an O in time 0( T(n ) +

log n). We need only consider the prefix of S that ends with O, i.e., if

s = 0102 ““” 0,1 and O = 0] = E(y) then we need only look at 0S, where

SJ is OIOZ “.” O,. Let (xl, xZ, ..., x,, ) be the elements inserted in SJ that are

> X, sorted from worst to best (and hence xl > Xz > “”. > x,, > y). In other

words, if there are, in SJ, q insertions of elements > y, then the sequence

(Xl, X2, . . . . Xq) is the sorted version of

One of these x,’s is the correct response to O. To determine which one it is, we

create q subproblems where the kth subproblem is that of determining

whether O has a nonempty response in

001 ... OJ_lE(.K1) . . . E(x~)O,, (6.1)

i.e., the kth subproblem is obtained by putting just before O, in 0S, the

sequence E(x1 )E(xz ) “”” E(x~). Each such kth subproblem is solved in T(n)

time with P(n) processors using the TEST procedure (there are enough

processors for this because Oj has nP( n) processors assigned to it). We claim

that the response of Oj in 0S, is then x,,, where s is the maximum k such that

the response of 0, in the kth subproblem is not empty. We now show that x,
is indeed the response of 0] in (ZISj. Let rk be the response to 01 in the kth

subproblem (possibly r~ is an empty response, i.e., r~ = “set empty”). Observe
that the sequence rl, r2, ..., r~ is initially monotonically decreasing, then at
some threshold index, consists of “set empty” responses (this monotonicity

follows from the way that q subproblems are defined). Let x, be the response

to OJ in 0S,. Then surely the response to !J is still x, in every kth subproblem

for which k < t (because the kE( y) operations just before O, in that subprob-

lem remove elements about which O, “doesn’t care” because they are worse

than its own response Xt). On the other hand, if k > t, then surely the response

to O, in the kth subproblem is empty, because otherwise that response is
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better than Xt, a contradiction (the response to 01 in any kth subproblem

cannot be better than its response in OSj). Therefore, t = s, completing the

proof (the additive log n term in the time complexity comes from the max

operation needed for computing s). ❑

Next, we focus on describi~g a procedure TEST(S, O) that has a T(n) =

O(logzn) and a P(n) = 0(n3/log n).

This will imply a weaker version of Theorem 6.4, one with O(n5/log n)

processors. We then show how to bring down the processor complexity to

O(n3/log n) by exploiting similarities between the nz copies of the TEST-ing

problem that are created.

Without loss of generality, we may describe TEST(S, O) assuming that O is

the last operation in S, that is, S = 01 Oz “”” O. where O = O.. We begin with

the observation that solving TEST(S, 0) amounts to determining the cardinal-

ity of a maximum up-left rnatchi~lg problem [Leighton and Shor 1986]. Create n

distinct points in the plane, as follows: for every operation 0, in S, create a

corresponding planar point whose x-coordinate is i and whose y-coordinate is

the parameter of 0, (i.e., z if 0, = 1(z) or 01 = E(z)). The points correspond-

ing to E(z)’s are called plusses, those corresponding to 1( Z)’S are called

minuses. The responses to the E( Z)’S in 0S can be viewed as being the result

of the following matching procedure: Scan the plusses in left to right order (i.e.,

by increasing .x coordinates), matching the currently scanned plus with the

lowest unmatched minus that is to the left of it and not below it. The

correspondence between the matching so produced and the responses in 0S

should be obvious: a plus at (i, a) is matched with a minus at (j, b), j < i and

a s b, if and only if the E(a) corresponding to the plus has as its response in

EIS the element b inserted by the I(b) corresponding to the minus. Further-
more, one can show [Leighton and Shor 1986] that this greedy left-to-right

matching procedure produces a matching of maximum cardinality among all

possible up-left matchings (up-left matchings are ones in which a plus can be

matched with a minus only if that minus is to its left and not below it). These

remarks imply that in order to determine whether O has a response in 0S, it

suffices to compare the cardinality c of a maximum matching for the configura-

tion of plusses and minuses corresponding to S, with the cardinality c‘ of a

maximum matching for the configuration of plusses and minuses corresponding

to s – o = 0,02 ““” Q,,_,. If c = c‘, then the presence of O does not make a

difference and hence Its response in 0S is empty, while c = c‘ + 1 implies

that it has a nonempty response.

This reduces the problem of designing TEST(S, O) to that of designing a

procedure for computing the size of the maximum cardinality up-left matching

of a configuration of n plusses and minuses. We now give a sketch of such a

procedure.

If p = (a, b) is a plus, then Region(p) is the region ( – ~, a] X [b, + ~), that

is, the closure of the region of the plane that is to the left of p and above it.

(See Figure 6.)
If P is a set of plusses, then Region(P) = U ~ ~ ~Region(p).

The defieie)tcy of any region of the plane is the number of plusses in it minus

the number of minuses in it. The deficiency of a set of plusses P is that of

Region(P) and it denoted by clef(P).

For example, in Figure 7, def({u, L, w}) = 5 – 1 = 4.



FIG. 6. Illustrating Regzon( p ).
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LEMMA 6.2.2 [LEIGHTON AND SHOR 1986]. Let II denote the set of plusses.

The curdinalip of a maximunz up-left matching is then equal to

IHI - ntax{def(P) : P c II}.

PROOF. A straightforward application of Hall’s Theorem (see Leighton and

Shor [1986] for details). ❑

The above lemma implies that one can compute TEST(S, 0) in O(logzn)

time using O(I1 ‘/log H) processors provided we can compute the quantity

max{def( P) : P g II} within those same bounds. This is what we show how to

do next.

Let G(S) be the weighted dag whose vertex set is the set of plusses and two

new special vertices s and t,and whose edge set is defined as follows: For every

two vertices p and q, there is an arc from p to q if and only if one of the

following conditions (i)–(iii) holds:

(i)p=sandq ft.

(ii) p+sandq=t.

(iii) p is a point (a, b) and q a point (c, d) such that a s c and b s d (i.e., q is
to the right and above p).

In case (i), the cost of the arc (s, q) is equal to def(q ). In case (ii), the cost of

the arc (p, t) is zero. In case (iii). the cost of the arc (p, q) is the deficiency of

the region [a, c] x [d, +co).
For the situation shown in Figure 7, the cost of arc (s. u) is 2 – 1 = 1, that

of (u, ~) is 2, that of (~), w) is 1, and that of (w, t) is O (s and t are fictitious

vertices to which no points correspond in the figure).
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It is not hard to see that the cost of a longest s-to-t path in G(S) is precise-

ly equal to the quantity max{def(~): P c II}. Since G(S) is acyclic, comput-

ing its longest s-to-t path is trivial to do in O(log2 n) time with 0( n3/log n)

processors.

The above 0(log2n) time, 0(n3/log n) processor algorithm for TEST(S, O)

immediately implies (by Lemma 6.2) an 0(log2n ) time, 0(n5/log n ) processor

algorithm for evaluating sequence S.

However, this is extremely inefficient: We would be creating all rzz instances

of the TEST-ing problem suggested by the proof of Lemma 6.2, that is, all nz

graphs G(S), one for each S of the form 6.1 (in the proof of Lemma 6.2).

Instead, we save a factor of nz in the processor complexity as follows:

Step 1. We create a graph G(S): the one for S equal to the original

sequence of n operations.

Step 2. We solve the all-pairs longest paths problem on the G(S) created in

Step 1, obtaining an all-pairs longest paths matrix M. This is trivial to do in

time O(logzn) and with 0(rz3/log n) processors.

Step 3. We partition our rzs/log n processors into n groups of nz/log n

processors each, and assign one group to each E(y) in the original (input)

sequence S. We now describe the algorithm performed by one typical such

group, say, the group assigned to O1. The task this group of rzz/log n proces-

sors faces is to use the matrix M computed in Step 2 to determine the response

of OJ in 0S. Refer to 6.1, in the proof of Lemma 6.2.1, and recall that the

response of Oj is one of xl, ..., xg. To determine which one it is, we already

know that it suffices to compute the length of a longest s-to-t path in each of

the q + 1 graphs Gl, . . .. G~+l. where

Gk = G(O1 ““” O1_lE(.Y1) ““” E(xL)),

using the notational convention E( y~ +, ) = 0,(= E(y)). We therefore need

only concern ourselves with the problem of computing the lengths of these

s-to-t paths. Observe that no path can go through more than one of the q + 1

plusses corresponding to {E( yl),..., E( y~+ ~)} (because yl > .”” > y~ > Y).
Let PkM(E) denote the plus corresponding to E. The length (call it Best(k, ~))

of a longest s-to-t path in G~ that goes through Plus( E( yl)) (1 < k) is equal to

the maximum, over all i c {1 ,. ... j – 1} for which 0, is an E, of the quantity

M(s, Plus( 0, )) + the cost of the Plus( 01 )-to-Plus( E( Y[ ) ) arc in Gk.

We use the rz2\log n processors available to compute Best( k, i) for all pairs

k, 1 in O(log n) time. Then we use n/log n processors for each k to compute,
in O(log n) time, the length of a longest s-to-t path in Gk, which is equal to

max Best(k, 1).
I<l<k

The time and processor complexities of the above algorithm are clearly

dominated by those needed for the all-pairs longest paths computation of Step

2. This establishes the following theorem:

THEOREM 6.2.3. Given a sequence S of n I(x) and E(y) operations, one can

evaluate 0S in O(logzn) time using O(nB/log n) processors in the CREW PRAM

model.
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In the next subsection. we study an important special case of this evaluation

problem.

6.3. A SPECIAL CASE OF THE OFF-LINE BARRIER-EXTRACTMIN PROBLEM.

The main result of this subsection is an NC] algorithm for the special case of

evaluating 0S when S contains 1(x) and E(y) operations, where the J5(.Y)

operations in S are such that the sequence of y‘s is in nondecreasing order. As

a consequence of this result, we can obtain an NC 1 algorithm for finding a

maximum matching in a convex bipartite graph, a time improvement by a

factor of log n over the previous fastest parallel algorithm for this problem, by

Dekel and Sahni [1984].

Let m denote the number of fZ(Y) operations in S, and let E(Y, ) denote the

ith such operation. Note that, by hypothesis, we have yl < yz < ..” s y,,,. Let

A, denote the set of elements inserted by the 1(x) operations between E(Y1 _, )

and E(yL), so that the sequence ,S can be written ,S = AI-E( y, ).4 ZE(YZ) .“”

A,~E(Y~ ) (some of the A,’s may be empty). Without loss of generality, we

assume that no A, contains an element less than ~’, (such an element would be

useless anyway).

The longest-paths characterization of the previous section apparently does

not result in an O(log n) time algorithm: that yl < y~ < “~” s y,,, implies that

the plusses form an increasing chain, but this in itself does not give an

O(log i2 )-time algorithm for the resulting longest-path problem. Our solution

actually avoids the characterization of the previous section. Instead, we replace

the problem with a polynomial number of subproblems each of which is such

that the first E(y) occurs after the last l(x). The next lemma observes that this

type of problem is solvable in O(log n) time.

LEMMA 6.3.1. If S is of the form AE(yl )E( yz) .”” E(y,,, ), then all the w-

sponses can be computed in 0( log n ) time using 0(n) processors in the ERE W

PRAM model.

PROOF. Let L(i, k), 1 < i s m, O s k s /Al, denote the set consisting of

the largest k elements of A. Note that L(O, IA 1) = A. Let the successor of

L(i, k) be the set obtained by removing all the elements that are less than y,

from the set resulting from L(i, k) E(yt). It is easy to see that the successor of

I,(i, k) is equal to L(i + 1, p) for some integer p < k, since all the E(y, )’s

come after A and the y,’s are monotonically nondecreasing. An L( i, k) with

i < m has exactly one successor and hence the successor function defines a

tree whose 0(n2) nodes are the L(i, k)’s and such that the parent of L( i, k) is

its successor. The root of this tree is L( nz, q ) for some integer q. The successor

function is easily computed, since the successor of L( i, k) is L(i + 1, k – 1) if
k s ni and is L(i + 1, rzj) otherwise, where n, is the number of elements in A

greater than or equal to y,. In the tree defined by the successor function,

consider the path originating from the leaf L(O, IA 1) and terminating at the

root L(m. q). This path constitutes a complete description of the responses to

the E( y, )’s, as follows: If L( i, k) is on this path and k > 0, then the response

to E( y,) is the smallest element in L(i, k). If L(i, k) is on this path and k = O,

then E( y, ) has a “set empty” response. Tracing this path is trivial to do in time

O(log n) with O(nz ) processors. We can achieve O(log n) time using only O(n)

processors, however. The method is very similar to that used in Subsection 3.2.

In this case, however, one merges singleton sets instead of lists, so that the
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time is O(log n) instead of O(log n log log n). This is because for any collection

of columns i, i + 1, ..., j there is only one critical rank; namely, the rank that

has L(j, n] ) as its successor. n

We now show how to solve the problem for S = ~ ~E( yl )Az E(yz ) “.”

A,,l E( y., ) by solving a polynomial number of problems each of which is of the
type considered in Lemma 6.3.1.

Notation. Let A, = Al U ~,+1 U . . .

~ ““ E(yj). Let ~

u ~J. Let r,J be the response to E(~J)

in ~, E(yL)HYz+I

~

,, be the response to E(yJ) m

~l~~Yt ~l+l~LY[:l ) ““” AJE(y, ).

Note that in this notation the response to E( yj ) in S is ZIJ. Also note that

the r,j’s can be computed in O(log n) time because of Lemma 6.3.1. The

following theorem establishes a crucial link between the .r,J’s and the ZIJ’S and

implies that the ZIJ’S can also be computed in O(log n) t~me:

LEMMA 6.3.2. For eueiy j, 1 s j s m, ZIJ = nzin, < ,~, r,,.

PROOF. The proof is in two steps (claims 1 and 2).

PROOF OF CLAIM 1. First, note that Zl, s z,, for every i <j. Hence, it

suffices to prove that z,, s r,, for every i s j. We prove this by induction on

j – i, the basis (j = i) being trivial. For the inductive step, we distinguish two

cases.

Case 1. In ALJE(y,)E(y, ~l ) “” o H y,), no element of A, gets extracted. In

this case, we have

1’
lJ

= the response to E(y, ) in At+l, JE(yl)E(y,, l)”.” E(yJ)

> the response to E(yJ) in A1+l,, E(y, +l)E(y, +Q) ““” E(y, ). (6.2)

Let ~A, be obtained from A, by removing from it the smallest element, and all

the elements <y, +,. The definition of Z,J implies:

Zl, = the response to E( yj )

Ain (A, +l UXI[)E(Y,+I~~t+Q E(Y, +2) ““” A, E(yJ)

s the response to E(y, ) in A,+l E(y, +l)A1+z E(y, +z) “.” AJE(Y, ),

which, using the induction hypothesis, gives us the following:

z,] < the response to E(yJ) in ~1+1, JE(y, +l)E(yl+z) ““” E(yj).

This and (6.2) imply that Z,J < r,,.

Case 2. In A1,E(yi)E(y, + ~) “”” H y,), at least one element of ~, gets

extrac~ed. Since yl < Yz < . . . < y,,,, the smallest element in ~, gets extracted.

Let A, bc obtained from Al by removing from it the smallest element, and all

the elements < yi+,. The definition of r,, implies

rij = the response to E(yJ) in (~,+1,, U~A, )E(y, +l)E(Yl+z) ““. E(Y, ). (6.3)
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The definition of z,, implies

z
l]

= the response to E( y, )

in (A[+l UAA, )E(y, +l)A, +zE(Yl+z) ““

which, using the induction hypothesis, in turn, implies

z,, s the response to E(y, ) in [Al+l,, UAA1]E(y, +l

= 1-1,,

M. J. ATALLAH ET AL.

A, E(YJ),

L5(Y1+2) . . . E(yJ)

where (6.3) was used. This completes the proof of Claim 1.

CLAIM 2. -Llj ~ lninl~L~lrz,.

PROOF OF CLAIM 2. We prove, by induction on j, that for every j there is an

i < j such that Zl, > r,,. The basis (j = 1) holds trivially. For the inductive step,

we again distinguish two cases.

Case 1. Zll > z,,. Let A-z =Az UA1 – {Zll}, and let AA, =A, if 2< i <j.

Then we have that

~1] = the response to E(y, ) in A’z E(yz)AA~E(y~)AAq . . . A“, E(yJ ).

By the induction hypothesis, there is an i, 2 s i <j, such that

Zl, > the response to E(y, )

(
in A’, UAA, +I u . . .

)
UAA, E(yl)li(y, +1 )... E(y, ). (6.4)

If i >3, then the right-hand side of (6.4) is r,,, and hence ZI, > r,,. If i = 2,

then

Zlj > the response to E(y, ) in

((AI - {Z,,}) UA2 U ~~~U#t,)E(y,)E(y,) E(y). (6..5)

Since Zll > z,, and Z1, is the smallest element of Al, all the elements of

Al – {zll} are larger than Zl, and hence, by (6.5), larger than the right-hand

side of (6.5). Consequently, the right-hand side of (6.5) is the same as the

response to E(y, ) in AIJE(yz)E(y~) . . . E(y, ), that is, rz,.

~ Case 2. Zll < ZIJ. Let A“z = Al U Az – {zll} – {all elements < Yz}, and let
A, = A, if 2 < i <j. Then we have the following:

~1] = the response to E(y, ) in AAzE(yz)AA~E(y~)AAd . . . AAJE(y, ).

By the induction hypothesis, there is an i, 2< i <j, such that

Zl, > the response to E(YI )

(
in A“l UA”, +l u

)
““” UAA, ~(YL)E(yl+ l).”. E(Y, ). (6.6)
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If i. >3, then the right-hand side of (6.6) is r,,, and hence z,, > rt,. If i = 2,

then

ZIJ > the response to E( y, )

(in AA2 UA3 U o“” U4)E(Y2)E(Y3 )””” -My,). (6.7)

From (6.7), and the fact that any element in A ~ U zl ~ – ~A2 is < Zl,, it follows

that

Zl, > the response to ~(y~) in (Al u zlz – AA2)

U(A”2 UA3 U . . . UA, )E(y JE(y3) “o” E(yJ)

= the response to E( y, )

in(A, UA2UA~U .“. UA, )E(yz)E(y~) ““” E(yJ)

= T,l.

This completes the proof of Claim 2, and hence of Lemma 6.6. ❑

We are now ready to state the main result of this subsection,

THEOREM 6.3.3. GiLen a sequence S = AI E(yl)A~E( y2) .”. A~E(y~) where

Yl~Y2~ “”” < ym,, one can evaluates in O(log n) time using 0(n3) processors

in the ERE W PRAM model.

PROOF. Assign n processors to every pair i and j, i <j, and use them to

compute r,, in O(log n) time. Then, assign n/log n processors to every E(y[)

and use them to compute z,, = mini < ~<, rl,. The overall time complexity is

clearly O(log n) using O(n3) processor;. - ❑

COROLLARY 6.3.4. The problem of computing a maximum matching for a

conuex bipartite graph is in NC’.

PROOF. An immediate consequence of Theorems 6.1.1 and 6.3.3. ❑

7. Final Remarks

The problem of efficiently evaluating an off-line sequence of data structure

operations has been extensively studied for sequential models of computation.

However, surprisingly little work had previously been done on the parallel

complexity of such problems. This paper provides a first step in the study of the

parallel complexity of these problems. Here we focussed primarily on problems

whose membership in NC was nonobvious, due to the behavior of Extracti14in

and ExtractMi~z( y ) operations. The main open question that remains is whether

the problem is in NC when S contains l(x), lXx) and E(y) operations.
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