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Abstract. We describe a data structure, the tiered vector, which is an
implementation of the Vector ADT that provides O(1/e) worst case time
performance for rank-based retrieval and O(n®) amortized time perofor-
mance for rank-based insertion and deletion, for any fixed ¢ > 0. We also
provide results from experiments involving the use of the tiered vector
for e = 1/2 in JDSL, the Data Structures Library in Java.
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1 Introduction

An array is perhaps the most primitive data structure known; it is hard to
imagine any non-trivial program that does not use one. Almost all high-level
languages and assembly languages have some built-in concept for accessing el-
ements by their indices in an array. But an array is a static data type; it does
not allow for element insertions and deletions, just element replacements and
accesses. There is nevertheless a great need for dynamic arrays as high-level pro-
gramming structures, for they can free a programmer from having to artificially
constrain his or her set of elements to be of a certain fixed size. This is in fact the
motivation for the inclusion of a dynamic array data type in the Java language.

The Vector/Rank-Based-Sequence Abstract Data Type. A Vector,
or Rank-Based Sequence, is a dynamic sequential list of elements. Each element e
in a vector is assigned a rank, which indicates the number of elements in front of
e in the vector. Rank can also be viewed as a current “address” or “index” for the
element e. If there are n elements currently stored in a rank-based sequence, S,
then a new element may be inserted at any rank r in {0,1,2,...,n}, which forces
all elements of rank r,...,n — 1 in S to have their respective ranks increased
by one (there are no such elements if r = n, of course). Likewise, an existing
element may be removed from any rank r in {0,1,2,...,n — 1}, which forces all
elements of rank r + 1,...,n — 1 in S to have their respective ranks decreased
by one. Formally, we say that the data type Vector or Rank-Based Sequence (we
use the terms interchangably) support the following operations:

insertElemAtRank(r,e): Insert an element e into the vector at rank r.
removeElemAtRank(r): Remove the element at rank r and return it.
elemAtRank(r): Retrieve the element e at rank r.



Standard Implementations. There are two standard implementations of
the Vector abstract data type (ADT). In the most obvious implementation we
use an array S to realize the vector. To retrieve an element of rank r from this
vector we simply return the element located at the memory address S[r]. Thus,
accesses clearly take constant time. Insertions and deletions, on the other hand,
require explicit shifting of elements of rank above r. Thus, a vector update at
rank 7 takes O(n —r + 1) time in this implementation, assuming that the array
does not need to grow or shrink in capacity to accommodate the update. Even
without a growth requirement, the time for a vector update is O(n) in the worst
case, and is O(n) even in the average case. If the array is already full at the
time of an insertion, then a new array is allocated, usually double the previous
size, and all elements are copied into the new array. A similar operation is used
any time the array should shrink, for efficiency reasons, because the number
of elements falls far below the array’s capacity. This is the implementation, for
example, used by the Java Vector class.

The other standard implementation uses a balanced search tree to maintain
a rank-based sequence, S. In this case ranks are maintained implicitly by having
each internal node v in the search structure maintain the number of elements
that are in the subtree rooted at v. This allows for both accesses and updates
in S to be performed in O(logn) time. If one is interested in balancing access
time and update time, this is about as good an implementation as one can get,
for Fredman and Saks [5] prove an amortized lower bound of {2(logn/loglogn)
in the cell probe model for accesses and updates in a rank-based sequence.

In this paper we are interested in the design of data structures for realiz-
ing rank-based sequences so as to guarantee constant time performance for the
elemAtRank(r) operation. This interest is motivated by the intuitive relation-
ship between the classic array data structure and the Vector abstract data type.
Constant time access is expected by most programmers of a Vector object. We
therefore desire as fast an update time as can be achieved with this constraint.
Our approach to achieving this goal is to use a multi-level dynamic array struc-
ture, which we call the “tiered vector.”

Relationships to Previous Work. There are several hashing implemen-
tations that use a similar underlying structure to that of the tiered vector, al-
though none in a manner as we do or in a way that can be easily adapted to
achieve the performance bounds we achieve. Larson [1] implements a linear hash-
ing scheme which uses as a base structure a directory that references a series of
fixed size segements. Both the directory and segements are of size I = 2¥ allowing
the use of a bit shift and mask operation to access any element within the hash
table. However, Larson’s method is a hashed scheme and provides no means of
rank-order retrieval or update.

Sitarski [9] also uses a s* fixed size directory-segement scheme for dynamic
hash tables, which he terms “Hashed Array Trees.” His method provides an
efficient implementation for appending elements to an array, but does not provide
an efficient method for arbitrary rank-based insertion or deletion into the array.



Our Results. We present an implementation of Vector ADT using a data
structure we call the “tiered vector.” This data structure provides, for any fixed
constant € > 0, worst-case time performance of O(1/¢) for the elemAtRank(r)
method, while requiring only O(n¢) amortized time for the insertElemAtRank(r e)
and removeElemAtRank(r) methods (which sometimes run much faster than
this, depending on r). Intuitively, keeping access times constant means we are
essentially maintaining ranks explicitly in the representation of the vector. The
main challenge, then, is in achieving fast update times under this constraint.

Besides providing the theoretical framework for the tiered vector data struc-
ture, we also provide the results of extensive experiments we performed in JDSL,
the Data Structures Library in Java, on the tiered vector for € = 1/2. These re-
sults show, for example, that such a structure is competitive with the standard
Java implementation for element accesses while being significantly faster than
the standard Java Vector implementation for rank-based updates.

2 A Recursive Definition of the Tiered Vector

We define the tiered vector recursively. We begin with the base case, V1, a 1-level
tiered vector.

A 1-Level Tiered Vector. The base component, V1, of the tiered vector
is a simple extension of an array implementation of the well-known deque ADT.
(The deque (or double-ended queue) is described, for example, by Knuth [7] as
a linear list which provides constant time insert and delete operations at either
rank the head or tail of this list.) This implementation provides for constant-
time rank-based accesses and allows any insertion or deletion at rank r to be
performed in O(min{r,n — r} + 1) time.

We use an array A of fixed size [ to store the elements of the rank-based
sequence S. We view A as a circular array and store indices h and ¢ which
respectively reference the head and tail elements in the sequence. Thus, to access
the element at rank r we simply return A[h + r mod [], which clearly takes O(1)
time. To perform an insertion at rank r we first determine whether r < n —r. If
indeed r < n — r, then we shift each element of rank less than r down by 1; i.e.,
fori=h,...,h+r—1mod !, we move A[i] to A[i +1—1 mod I]. Altnernatively,
if 7 > n — r, then we shift each element of rank greater than or equal to r up
by 1. Whichever of these operations we perform, we will have opened up the
slot at rank r, A[h + r mod ], where we can place the newly inserted element.
(See Figure 1.) Of course, this implementation assumes that there is any empty
“slot” in A. If there is no such slot, i.e., n = [, then we preface our computation
by allocating a new array A of size 2I, and copying all the elements of the old
array to the first [ slots of the new array.

Element removals are performed in a similar fashion, with elements being
shifted up or down depending on whether » < n — r or not. We can optionally
also try to be memory efficient by checking if n < /4 after the removal, and if
so, we can reallocate the elements of A into a new array of half the size. This
implementation gives us the following performance result:
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Fig. 1. A 1-level tiered vector V implemented with an array A of capacity 4. (a) An
initial state: V' = (2,3); (b) Element 0 is added at rank 0, so V' = (0, 2, 3), which causes
the head pointer to move in A, but no shifting is needed; (c) Element 1 is added at
rank 1, s0 V = (0, 1,2, 3), which causes 2 and 3 to shift up in A.

Lemma 1. A I-level tiered vector, V! can be maintained as a rank-based se-
quence S such that any access is performed in O(1) worst-case time and any
update at rank r is performed in O(min{r,n — r} + 1) amortized time.

Proof. We have already described why accesses run in constant time and why
an update at rank r runs in time O(min{r,n — r} + 1) if no resizing is needed.
The amortized bound follows from two simple observations, by using the ac-
counting method for amortized analysis (e.g., see [6]). First, note that any time
we perform a size increase from [ to 2] we must have done [ insertions since the
last resizing. Hence, we can charge growth resizing (which takes O(l) time) to
those previous insertions, at a constant cost per insertion. Second, note that any
time we perform a size decrease from [ to 1/2 we must have done //4 removals
since the last resizing. Thus, we can charge growth resizing to those previous
removals, at a constant cost per removal. This gives us the claimed amortized
bounds.

Note in particular that insertions and removals at the head or tail of a se-
quence S run in constant amortized time when using a 1-level tiered vector V!
to maintain S.

The General k-Level Tiered Vector. The k-level tiered vector is a set
of m indexable (k — 1)-level tiered vectors, {Vy !, V¥~ ... VE~1}. Each V1
vector is of exact size [ where [ = 2* for some integer parameter k, except possibly



the first and last non-empty vectors, which may hold fewer than [ elements. The
vectors themselves are stored in a 1-level tiered vector, V', which indexes the first
non-empty vector to the last non-empty vector. The total number of elements
a tiered vector may hold before it must be expanded is Im, and the number of
non-empty Vik_1 vectors is always at most |n/l| + 2.

Element Retrieval. Element retrieval in a tiered vector is similar to meth-
ods proposed by Larson [1] and Sitarski [9], complicated somewhat by double-
ended nature of the top level of the vector V. To access any element of rank r in
the k-level tiered vector V¥ we first determine which V! vector contains the
element in question by calculating ¢ < [(r — lg)/l], where [y is the number of
elements in the first non-empty vector in V' (recall that we always begin vector
indexing at 0). We then return the element in Vf‘l by recursively requesting
the element in that vector of rank r if ¢ = 0 and rank r — (i — 1) — [y otherwise.

Element Insertion. Insertion into a tiered vector is composed of two
phases: a cascade phase and a recurse phase. In the cascade phase we make room
for the new element by alternately popping and pushing elements of lower-level
queues to the closest end of the top-level vector, and in the recurse phase we
recursively insert the new element into the appropriate (k — 1)-level vector on
the next level down.

Let us describe the cascade phase in more detail. Without loss of generality,
let us assume that r > n —r, so we describe the cascade phase as a series of pops
and pushes from the (k — 1)-level vector currently containing the rank-r element
in V to the last non-empty (k — 1)-level vector in V. (The method for popping
and pushing to the front of V" when r < n — r is similar, albeit in the opposite
direction.) We begin by first determining the (k — 1)-level vectors in which the
elements at rank r and rank n — 1 are located, where the element of rank n — 1
indicates the last element in the tiered vector. Term these vectors as V;Z;l and
Vi1, respectively. These vectors are used as the bounds for a series of pair-wise
pop-push operations. For each vector Vik_l, sub < 1 < end, we will pop its last
item and push it onto the beginning of the vector Vi’j__ll. Each such operation
involves an insertion and removal at the beginning or end of a (k—1)-level tiered
vector, which is a very fast operation, as we shall show each such operation takes
only O(k) time. Since there are a total of m vectors this cascading phase requires
a maximum of O(mk) operations.

In the recurse phase we simply recursively insert the element into V1 at the
appropriate rank r’ (which is determined as described in the element retrieval
description above). (See Figure 2.) Thus, if we let I;(r,n) denote the running
time of inserting an element of rank r in a tiered vector of size n, then, assuming
no resizing is needed, the total running time for this insertion is:

Ik(’l“, n) < LT/lJIk,1 (1, l) + kal(’l“l, l)
This implies that It (1,n) is O(k). More generally, we can show the following:

Lemma 2. Insertion into a k-level tiered vector where expansion is not required
can be implemented in O(min{[r/n'/*], k2n*/% [(n —r)/n'/*1} + k) time.
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Fig. 2. Insertion of element 1 at rank r in a 2-level tiered vector.

Proof. If we choose [ to be O(nk_Tl), and maintain m to be O([n/l]), then
Ii(r,n) is O(min{[r/n'/*1, K*n/*, [(n - r) /n*/*]} + k),
by an induction argument that we leave to the reader.

Note that if » = 1, then the above time bound for insertion is O(k). Also
note that if & > 1 is any fixed constant, then this bound is O(n!/*) for any
r. Throughout the remainder of our algorithmic description we are going to
maintain that the size m of the top-level vector is O(n'/*).

Resizing During an Insertion. A special case occurs when the number
of elements in the tiered vector, n equals the maximum space provided, ml.
In this case the data structure must be expanded in order to accomodate new
elements. However, we also wish to preserve the structure of the tiered vector in
order to insure that the size, I, of the sublists is kept at O(nk_l/ k). We achieve
this by first reseting the fixed length [ to I’ < 2/ and then creating a new set
of I'-sized (k — 1)-level tiered vectors under the top-level vector V. We do this
by recursively merging pairs of subvectors, so that the size of each subvector
doubles in size. This implies, of course that number of non-empty (k — 1)-level
subvectors of V becomes m’ = 11'. The total time for performing such a resizing
is O(n), assuming that m is O(n'~%) for some constant § > 0, which is the case
in our implementation. As in our description of expansions needed for a 1-level
tiered vector, this linear amount of work can be amortized to the previous n/2
insertions, at a constant cost each. Thus, we have the following:

Theorem 1. Insertion into a k-level tiered vector can be implemented in amor-
tized time O(min{[r/n/*], E*>n'/* [(n —r)/n'/*]} + k).

Expansion is demonstrated in Figure 3, where a 2-level tiered vector of fixed
subarray size 4 is expanded into a 2-level tiered vector of subarray size 8.
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Fig. 3. Expansion and reordering of a 2-level tiered vector..

Element Deletion. Deletion is simply the reverse of insertion and uses
a similar cascade and recurse process. Without loss of generality, let us again
assume that r > n — r, so that any casing we need to perform is for ranks
greater than r. As with the insertion operation, we begin by determining in
which subvectors the elements at rank r and rank n — 1 are located and term
these subarrays V;’L;l and V;’j;il. Then for each pair of subarrays, Vi’“_1 and
Vil_“[ll, sub < i < end, we will pop the head of Vi’ffll and push it onto the tail of
Vik_l. Since this process is simply the reverse of insert’s cascade phase, we are
guaranteed a maximum of O(m) operations.

During the second phase we perform a recursive removal in V71 to close
up the space vacated by the removed element. This implies a running time for
deletion, without resizing, that is essentially the same as that for insertion.

A special case of delete occurs when the number of elements remaining in
the tiered vector equals %ml . At this point we must reduce the size of the tiered
vector inorder to preserve the desired asymptotic time bounds for both insertions
and deletions. We first reset the fixed length [ to I’ + %l and then create a new
set of size-l' subvectors, by a recursive splitting of the (k — 1)-level subvectors.
Note that by waiting until the size of a tiered vector goes below %ml to resize,
we avoid having resizing operations coming “on the heals” of each other. In
particular, if we do perform such a shrinking resizing as described above, then
we know we must have performed n/4 deletions since the last resizing; hence,
may amortize the cost of this resizing by charging each of those previous deletions
a constant amount. This give us the following:

Theorem 2. Insertion and deletion updates in a k-level tiered vector can be
implemented in amortized time O(min{[r/n'/*],k*n'/* [(n — r)/n*/*]} + k)
while allowing for rank-based element access in O(k) worst-case time.

3 Implementation Decisions and Experiments

We implemented the scheme described above for £ = 2 and performed several
experiments with this implementation to test various design decisions. Our im-
plementation used JDSL, the Data Structures Library in Java developed as a



prototype at Brown and Johns Hopkins University. This implementation was
tested against the two best-known Java vector implementations: the Java vector
implementation that is a part of the standard Java JDK language distribution
and the dynamic array implementation included in JGL, the Generic Library in
Java. All of our experiments were run on a Sun Sparc 5 computer in single-user
mode.

Since our experimental setup used k = 2 we made a simplifying modfication
in the definition of the tiered vector so that the top-level vector is a standard
vector sequence S and each vector below it is also a standard vector sequence S;.
Moreover, we maintain each subvector S; to have size exactly [ except possibly
the very last non-empty vector. This allows us to simplify the access code so that
searching for an element of rank r simply involves computing the index i < [r/{]
of the vector containing the search element and then computing r — il as the
rank in that vector to search for. Moreover, we maintain the number of possible
bottom-level vectors in S to be a power of two, so that we may use a bit shifting
and magking instead of division to determine which subvector S; holds the rank
r element. By storing the shift and bit mask values we can reduce the number of
operations required to retrieve an element from a tiered vector to only two, thus
holding access time to only twice that of normal array-based vector retrieval.
These modifications have negligable effects on asymptotic running times, but
they nevertheless proved useful in practice.

Subvector Size Test. The choice of size for subvectors in a 2-level tiered
vector has significant impact on its performance. The following test demonstrates
the optimal subvector size for the tiered vector. Initially we start with a subvector
size of ten and for each successive test we increase the subvector size by ten up
to ten thousand. For each test we preinsert ten thousand elements into the tiered
vector and then time how long it takes to insert one hundred elements at the
head of this vector. Thus for the first tests the majority of the time for insertion
is spent in cascade operations whereas for the final tests the majority of the time
is spent in recursive shift operations in subvectors. Each test is run ten times
and the resulting time represents the average of these tests.

Theoretically, the optimal subvector size should be near 100; however, the
perfomance graph of Figure 4 shows the actual optimal size is near 750. The
likely reason for these results is that the cascade operations are computationally
more expensive than the recursive shifting operations.

Access Test. The cost of performing an access in a tiered vector should
clearly be higher than that of a simple vector, but a natural question to ask is
how much worse is the 2-level tiered vector than a standard vector. The following
test demonstrates the time taken to retrieve the first one hundred elements from
a tiered vector, a Java Vector, and a JGL Array. In each successive test a set
number of elements is preinserted into each vector, starting at one hundred
elements and increasing in number each successive test by one hundred element
increments up to ten thousand. We then test to see how much time it takes to
retrieve the first one hundred elements from each vector. Each test is run one
hundred times and the resulting times represent the averages of these tests. The
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Fig. 4. Results of the subvector size experiment. Note that small sizes are very ineffi-
cient, but this inefficiency falls fast as the subarray size grows, it reaches an optimal
value at 750 and then slowly rises after that.

choice of the first one hundred elements for retrieval was arbitrary. The results
are shown in Figure 5.

Insertion Test. The claimed performance gain for tiered vectors is in the
running times for element insertions and deletions. The following test demon-
strates the time taken to insert one hundred elements at the head of a tiered
vector, a Java Vector, and a JGL Array. The testing procedures are the same as
the access test above. The choice of inserting at the head of each vector was to
demonstrate worst case behavior in each.

Regarding the odd, step like behavior of the tiered vector, we note that sud-
den drops in insertion time occur when the vector initially contains near 64, 256,
1024, and 4098 elements. At these points the tiered vector is full and forced to
expand, increasing it’s subvector size by a factor of four. This expansion there-
fore reduces the initial number of cascade operations required for new insertions
by a like factor of four. However, as the number of elements in the tiered vector
increases the number of cascade operations increase linearly until the next forced
expansion. The full results are shown in Figure 6.

Deletion Test. The following test demonstrates the time taken to remove
one hundred elements from the head of a tiered vector, a Java Vector, and a
JGL Array. The testing procedures are the same as the access test. The choice
of deleting at the head of each vector is to demonstrate worst case behavior in
each. The step like behavior of the tiered vector represents points of contraction,
similar to the behavior in the insert tests. After a contraction the number of cas-
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linearly, as expected, while those for tiered vectors are significantly faster.
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cade operations required for deletion increases by a factor of four and gradually
decreases as more elements are removed. The full results are shown in Figure 7.
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Fig. 7. The running times for deletion. The performance of tiered vectors is slightly
inferior to standard vectors for small-sized lists, but is consistently superior for lists of
more than 4096 elements.

Random Test. The following test demonstrates the time taken to insert
one hundred elements randomly into a tiered vector, Java Vector, and JGL
Array. The testing procedures are similar to the access test. During testing the
vectors received the same set of random numbers to insert, though a different
set of random numbers was generated for each test. Random numbers ranged
from zero to the number of elements contained in the vector prior to testing.
The results are given in Figure 8.
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