Competitive Tree-Structured Dictionaries

MICHAEL T. GOODRICH*

Abstract formance. We describe a simple tree structure that achieves
In this note we describe a general technique for making tré&lance without rotations, by using a potential energympara
structured dynamic dictionaries adapt to be competitivta weter stored at each node and partial rebuilding [7]. Our meth
the most efficient implementation, by usipgtential energy 0ds are somewhat reminiscent of scapegoat trees [2] and dy-
parameters and a simple partial rebuilding scheme. namic search trees of Overmars [7]. Our approach does not

Introduction. On-line algorithms deal with optimizing US€ any explicit balancing rules. Instead, it uses potelatia
the performance of operation sequences (e.g., see [4, B§)S on the nodes, which allow it to be adaptive, competitive
Such algorithms are desired tobeompetitive [4], for some @nd arguably simpler than previous approaches.
parameter: > 0, wherec is an upper bound on the ratio of ~ An energy-balanced tree is a binary search tre€ such
the costs of the solution defined by the on-line algorithifiat €ach node maintains a parameigrwhich is the num-
and an oracle’s algorithm. In this paper we are interestg@r Of elements stored in the subtree rooted @tcludingv
in dictionary data structures that are competitive in taine [tS€lf). More importantly, each nodein 7" also maintains a
sense. potential energy parameter,. Insertions and deletions are

Our Results. We present a simple adaptive tree-basé@ndled as in st_a_ndqrd (unbalanped) binary search trets, wi
dictionary structure that is balanced and competitive. Offf€ small modification. Every time we perform an update
approach is based onpatential energy parameter stored atoPeration, whlch_traverses a path from the rooTaQ some
each node in the tree. As updates and queries are perforrf@d€w in T', we incremenp, by 1 for each node in this
the potential energy of tree nodes are increased or decreaR@th. If there is no node in this path such that, > n, /2,
Whenever the potential energy of a node reachtessshold then we are done. OtherW|se_, tebe the highest node i
level, we rebuild the subtree rooted at that node. We sh&eh thatp, > n, /2. We rebuild the subtree rooted atas
that, in spite of its conceptual simplicity, such a schemedscomplete binary tree, and we zero out the potential fields
constant-ratio competitive with a static oracle usingriori Of €ach node in this subtree (includingtself). This is the
knowledge of the operation distribution. entire algorithm for performing updates.

Related Prior Work. Besides general work for on-lineTyeorem 1. Theworst-case height of the energy-balanced
algorithms (e.g., see [4, 9]) and data structures that use Raarch tree is O(logn), and the amortized time for perform:
tial rebuilding [7], there has been some prior work on methyy an insert or deletein such atreeisalso O(logn).
ods for adapting data structures to the way in which they &gyof. 1t is enough to show that,, < n,/4, for any node
being used. Most previous data structure competitive analy\yith sibling w. So suppose not. Then, since the last
ses have been directed at simple linked-lists structuri#s, Wepalance av andw’s parent,z, (when the size of and
“move-to-front” heuristics applied [9]. Work on other adap,s subtrees were equal) the number of deletionsvis
tive data structures includes splay trees [10], which pem® g btree plus the number of insertions«iis subtree must
sophisticated move-to-root heuristic, but perform mang+o hayve been at leasin, /4. That is,p, > 3n,/4. At this
tions with each access. There is also the randomized binggint in time we haven, = ny, +n, < 5n,/4. Hence,
search tree of Seidel and_ Aragon [8], which performs rap: > 3n,/4 > (3/5)n.. But this cannot occur, since we
dom structural changes with each access and can adapt i};8flid have rebuilt the subtree atas soon ag, > n./2.
expected, probabilistic sense based on data structure usag

Energy-Balanced Binary Search Trees. A dictionary Biased Energy-Balanced Search Trees. Our potential
holds pairs of ordered keys and elements, subject to upd&igrgy approach can be further extended to adapt a dictio-
and query operations. A common way of implementing thyry to biased distributions of accesses and updates. We
dictionary ADT is to use a binary search tree, which maigygment the tre@ in this case so that each nodestores
tains balance by local rotation operations. Typically,lsugn access count, a,,, which counts the number of times that
rotations are fast, but if the tree has auxiliary structures the element stored athas been accessed. Each time a node
tations are often slow. Standard binary search trees, Sichccessed in a search we increment its access count. We
as AVL trees [1], red-black trees [3], scapegoat trees [2], 5o now increment the potential energy parameter of each
weight-balanced trees [6], maintain balance, but do nqidgode on the path from to the root. We keep the insertion
themselves based on the distribution of accesses and deﬁiaorithm the same, but now whenever we delete a node
Splay trees [10], on the other hand, adapt (in an asymptq{jg increment the potential energy of each node on the path
sense), but perform a large number of rotations with each &gm » to the root bya,. Let 4, denote the cumulative ac-
cess. Finally, randomized binary search trees [8], havel gQ@ss counts for all nodes in the subtree rootediatT. We

expected behavior but offer no worst-case guarantees en ggra repuilding step any time the potential energy of a node
]]]] rises to be more than a quarter of its access value, i.e., when
*Dept. of Computer Science, Johns Hopkins Univ., Baltimdvi)

21218. goodrich. jhu.edu. This work was supported by ARO MURIpv = Av/4' In this adapted bmary search tree we rebwld
Grant DAAH04-96-1-0013 and NSE Grant CCR-9732300. the subtree so that nodes are nearly balanced by their ac-

cess counts, that is, we try to balance children by thgir THEOREM 3. The energy-balanced search tree achieves
values. Specifically, there are several top-down appraachmortized performance for update operations at each node
(e.g., see [9)]), as well as a a simple linear-time bottom-uphat is O(log A/a,), which is within a constant factor of

greedy approach that can guarantee that for any nouiéh
parentz, A, > 34, /2. For any non-root node, we use4,

the performance achievable by the biased-tree oracle.
Proof. LetS be a sequence efdictionary operations and let

to denote the size of the subtree rooted alus the weight T be the static tree built by the biased-tree oracle. Consider

of the item stored at’s parentz (so A4, = A, + A,, where
w denotew’s sibling).

LEMMA 1. For any node v with sibling w, 4,, > A, /8.

subsequenck, of S formed by all operations that access or
update the element at a given nadd.et A; denote the total
access counts of all nodes present in the dynamic adaptable
energy-balanced tree (f6f) after we perform the-th opera-

Proof. Suppose, for the sake of proving a contradiction, thgn in S,. Note that the amortized running time for perform-

Ay < A,/8. Then, since the last rebalancewatind w’s

ing thei-th operation inS, using the energy-balancedtree is

parent,z, (whenA!, > A’ /2, whereA! and A/, denote the proportional to the future depth ofin the energy-balanced
old values of4,, and 4, respectively) the total weight oftree, which will be at mosO(log 4;/i). Thus, the amor-
deletions inw’s subtree plus the number of insertions ariized time required for our performing all operationsSp

accesses im’s subtree, plus accesses ending’atparent,
must have been at lea3#,/8. Thatis,p, > 34,/8. At

this point in time we have thati, = A, + 4, < 94,/8.

Hence, we have that, > 34,/8 > A,/3. But this cannot
occur, since we would have rebuilt the subtree ats soon

asp, > A,/4.=
This lemma immediately implies the following.

THEOREM 2. An element having current accessfrequency a
is stored at depth O(log A/a), where A is the current total
access frequency of all nodes.

LEMMA 2. Let A; denote the total access counts of all
nodes present in the dynamic biased energy-balanced tree
(for S) after we perform the i-th operation in S,. Then
S logA; /i is O(mlog A/m), wherem = |S,| and A is
the total access countsfor all elementsreferencedin S.
Proof. Let us assume for the sake of analysis thais a
power of2, i.e., thatm = 2F, for somek. Note that

m m ~ m ~

A; A A\ (m
D log Tt <) lg T =) log (a) ()
i=1 i=1 =1

m m
Elogm+élogi mogm+.210gi
= 1= =

is proportional to at mos}_ " | log A; /i, whereas the total
time required of the implementation of the biased-tree ora-
cle is proportional tonlog A /a, = mlog A/m, wherem =
|Sy|. By Lemma 2, however, we have that!", log A; /i
is O(mlogfi/m), which implies that the time performance
of the energy-balanced approach 8p is at most a con-
stant factor more than the time performance achievable by
the biased-tree oracle.

Thus, biased energy-balanced search trees are efficient,
competitive, and simple.

References

[1] G. M. Adel'son-Vel'skii and Y. M. Landis. An algorithm
for the organization of informationDoklady Akademii Nauk
SSSR, 146:263-266, 1962. English translatiorSoviet Math.
Dokl., 3, 1259-1262.

[2] I. Galperin and R. L. Rivest. Scapegoat trees.Phac. 4th
ACM-SAM SODA, pages 165-174, 1993.

[3] L. J. Guibas and R. Sedgewick. A dichromatic frame-
work for balanced trees. IRroc. 19th Annu. |[EEE Sympos.
Found. Comput. Sci., Lecture Notes Comput. Sci., pages 8-21.
Springer-Verlag, 1978.

[4] M. S. Manasse, L. A. McGeoch, and D. D. Sleator. Com-
petitive algorithms for on-line problems. Rroc. 20th Annu.
ACM Sympos. Theory Comput., pages 322—-333, May 1988.

K. Mehlhorn. A best possible bound for the weighted path

. (5]
Thus, to establish the lemma we need only bound the the |ength of binary search treesSAM J. Comput., 6(2):235—

last term above (the summation term). Note that
m 2k 2k 2k
m 2k 2k ,
;logT = Elongﬁlogmz;k—Uong
= = 1= 1=

k [

Z-H_ kzi ok —
72 =2 2].522 = 2m.

j=1 j=1

INA

An oracle, which we call théiased-tree oracle, know-

239, 1977.

[6] J. Nievergelt and E. M. Reingold. Binary search trees of
bounded balances AM J. Comput., 2:33—-43, 1973.

[7] M. H. Overmars. The Design of Dynamic Data Srructures,
volume 156 ofLecture Notes Comput. Sci. Springer-Verlag,
Heidelberg, West Germany, 1983.

[8] R. Seidel and C. R. Aragon. Randomized search trees.
Algorithmica, 16:464—-497, 1996.

[9] D. D. Sleator and R. E. Tarjan. Amortized efficiency ot lis
update and paging rule€ommun. ACM, 28:202-208, 1985.

[10] D. D. Sleator and R. E. Tarjan. Self-adjusting binargrsé

ing the sequence in advance could construct a static tree trees.J. ACM, 32(3):652—686, 1985.
based on known access counts, so that the running time for

each access or update at a neds O(log A/a,), whered,
denotes the total access count for the element at node

