
Competitive Tree-Structured Dictionaries
M ICHAEL T. GOODRICH

�
Abstract

In this note we describe a general technique for making tree-
structured dynamic dictionaries adapt to be competitive with
the most efficient implementation, by usingpotential energy
parameters and a simple partial rebuilding scheme.

Introduction. On-line algorithms deal with optimizing
the performance of operation sequences (e.g., see [4, 9]).
Such algorithms are desired to be�-competitive [4], for some
parameter� � �, where� is an upper bound on the ratio of
the costs of the solution defined by the on-line algorithm
and an oracle’s algorithm. In this paper we are interested
in dictionary data structures that are competitive in this same
sense.

Our Results. We present a simple adaptive tree-based
dictionary structure that is balanced and competitive. Our
approach is based on apotential energy parameter stored at
each node in the tree. As updates and queries are performed,
the potential energy of tree nodes are increased or decreased.
Whenever the potential energy of a node reaches athreshold
level, we rebuild the subtree rooted at that node. We show
that, in spite of its conceptual simplicity, such a scheme is
constant-ratio competitive with a static oracle usinga priori
knowledge of the operation distribution.

Related Prior Work. Besides general work for on-line
algorithms (e.g., see [4, 9]) and data structures that use par-
tial rebuilding [7], there has been some prior work on meth-
ods for adapting data structures to the way in which they are
being used. Most previous data structure competitive analy-
ses have been directed at simple linked-lists structures, with
“move-to-front” heuristics applied [9]. Work on other adap-
tive data structures includes splay trees [10], which perform a
sophisticated move-to-root heuristic, but perform many rota-
tions with each access. There is also the randomized binary
search tree of Seidel and Aragon [8], which performs ran-
dom structural changes with each access and can adapt in an
expected, probabilistic sense based on data structure usage.

Energy-Balanced Binary Search Trees. A dictionary
holds pairs of ordered keys and elements, subject to update
and query operations. A common way of implementing the
dictionary ADT is to use a binary search tree, which main-
tains balance by local rotation operations. Typically, such
rotations are fast, but if the tree has auxiliary structures, ro-
tations are often slow. Standard binary search trees, such
as AVL trees [1], red-black trees [3], scapegoat trees [2], or
weight-balanced trees [6], maintain balance, but do not adapt
themselves based on the distribution of accesses and updates.
Splay trees [10], on the other hand, adapt (in an asymptotic
sense), but perform a large number of rotations with each ac-
cess. Finally, randomized binary search trees [8], have good
expected behavior but offer no worst-case guarantees on per-

�
Dept. of Computer Science, Johns Hopkins Univ., Baltimore,MD

21218. ����� 	
� �
�� ����. This work was supported by ARO MURI
Grant DAAH04-96-1-0013 and NSF Grant CCR-9732300.

formance. We describe a simple tree structure that achieves
balance without rotations, by using a potential energy param-
eter stored at each node and partial rebuilding [7]. Our meth-
ods are somewhat reminiscent of scapegoat trees [2] and dy-
namic search trees of Overmars [7]. Our approach does not
use any explicit balancing rules. Instead, it uses potential la-
bels on the nodes, which allow it to be adaptive, competitive,
and arguably simpler than previous approaches.

An energy-balanced tree is a binary search tree� such
that each node maintains a parameter�� , which is the num-
ber of elements stored in the subtree rooted at� (including�
itself). More importantly, each node� in � also maintains a
potential energy parameter,� � . Insertions and deletions are
handled as in standard (unbalanced) binary search trees, with
one small modification. Every time we perform an update
operation, which traverses a path from the root of� to some
node� in � , we increment� � by � for each node� in this
path. If there is no node� in this path such that� � � �� ��,
then we are done. Otherwise, let� be the highest node in�
such that� � � �� ��. We rebuild the subtree rooted at� as
a complete binary tree, and we zero out the potential fields
of each node in this subtree (including� itself). This is the
entire algorithm for performing updates.

THEOREM 1. The worst-case height of the energy-balanced
search tree is � ���� � , and the amortized time for perform-
ing an insert or delete in such a tree is also � ���� � .
Proof. It is enough to show that�! " �� �#, for any node
� with sibling � . So suppose not. Then, since the last
rebalance at� and � ’s parent,$, (when the size of� and
� ’s subtrees were equal) the number of deletions in� ’s
subtree plus the number of insertions in� ’s subtree must
have been at least%�� �#. That is, � & � %�� �#. At this
point in time we have�& ' �! (�� ")�� �#. Hence,
� & � %�� �# � �%�) �& . But this cannot occur, since we
would have rebuilt the subtree at$ as soon as� & � �& ��.

Biased Energy-Balanced Search Trees. Our potential
energy approach can be further extended to adapt a dictio-
nary to biased distributions of accesses and updates. We
augment the tree� in this case so that each node� stores
anaccess count, *� , which counts the number of times that
the element stored at� has been accessed. Each time a node
is accessed in a search we increment its access count. We
also now increment the potential energy parameter of each
node on the path from� to the root. We keep the insertion
algorithm the same, but now whenever we delete a node� ,
we increment the potential energy of each node on the path
from � to the root by*� . Let +� denote the cumulative ac-
cess counts for all nodes in the subtree rooted at� in � . We
do a rebuilding step any time the potential energy of a node
rises to be more than a quarter of its access value, i.e., when
� � � +� �#. In this adapted binary search tree we rebuild
the subtree so that nodes are nearly balanced by their ac-

cess counts, that is, we try to balance children by their+�
values. Specifically, there are several top-down approaches
(e.g., see [5]), as well as a a simple linear-time bottom-up
greedy approach that can guarantee that for any node� with
parent$, +& � %+� ��. For any non-root node� , we use �+�
to denote the size of the subtree rooted at� plus the weight
of the item stored at� ’s parent$ (so+& ' +� (�+! , where
� denotes� ’s sibling).

LEMMA 1. For any node � with sibling � , �+! � +� ��
.

Proof. Suppose, for the sake of proving a contradiction, that�+! " +� ��
. Then, since the last rebalance at� and � ’s

parent,$, (when �+ �! � + �� ��, where �+ �! and+ �� denote the
old values of �+! and +� respectively) the total weight of
deletions in� ’s subtree plus the number of insertions and
accesses in� ’s subtree, plus accesses ending at� ’s parent,
must have been at least%+ � ��

. That is,� & � %+� ��
. At

this point in time we have that+& ' �+! (+� " �+� ��
.

Hence, we have that� & � %+� �� � +& �%. But this cannot
occur, since we would have rebuilt the subtree at$ as soon
as� & � +& �#.

This lemma immediately implies the following.

THEOREM 2. An element having current access frequency *
is stored at depth � ���� + �* , where + is the current total
access frequency of all nodes.

LEMMA 2. Let + � denote the total access counts of all
nodes present in the dynamic biased energy-balanced tree
(for �) after we perform the �-th operation in �� . Then� ��	
 ��� + � �� is � �� ��� �+�� , where � ' ��� � and �+ is
the total access counts for all elements referenced in � .
Proof. Let us assume for the sake of analysis that� is a
power of�, i.e., that� ' �
 , for some�. Note that���	
 ���

� �� � ���	
 ���
��� � ���	
 ���

� ��� � ��� �
� ���	
 ���

��� � ���	
 ��� �� � � ���
��� � ���	
 ��� �� �

Thus, to establish the lemma we need only bound the the
last term above (the summation term). Note that���	
 ��� �� � � ��	
 ��� !
� � � ��	
 ��� !
! "

#$% �& � � ��	
 ' ()��� �*
�
�+	
 , !
-

+ � !

�+	
 ,!

+ � ! . !
 � !� �
An oracle, which we call thebiased-tree oracle, know-

ing the sequence in advance could construct a static tree
based on known access counts, so that the running time for
each access or update at a node� is � ���� �+� �*� , where�*�
denotes the total access count for the element at node� .

THEOREM 3. The energy-balanced search tree achieves
amortized performance for update operations at each node
� that is � ���� �+ � �*� , which is within a constant factor of
the performance achievable by the biased-tree oracle.
Proof. Let � be a sequence of� dictionary operations and let
� be the static tree built by the biased-tree oracle. Considera
subsequence�� of � formed by all operations that access or
update the element at a given node� . Let + � denote the total
access counts of all nodes present in the dynamic adaptable
energy-balanced tree (for�) after we perform the�-th opera-
tion in � � . Note that the amortized running time for perform-
ing the�-th operation in�� using the energy-balanced tree is
proportional to the future depth of� in the energy-balanced
tree, which will be at most� ���� + � �� . Thus, the amor-
tized time required for our performing all operations in��
is proportional to at most

���	
 ��� + � �� / whereas the total
time required of the implementation of the biased-tree ora-
cle is proportional to� ��� �+� �*� ' � ��� �+�� / where� '�� � �. By Lemma 2, however, we have that

���	
 ��� + � ��
is � �� ��� �+�� , which implies that the time performance
of the energy-balanced approach on�� is at most a con-
stant factor more than the time performance achievable by
the biased-tree oracle.

Thus, biased energy-balanced search trees are efficient,
competitive, and simple.

References

[1] G. M. Adel’son-Vel’skii and Y. M. Landis. An algorithm
for the organization of information.Doklady Akademii Nauk
SSSR, 146:263–266, 1962. English translation inSoviet Math.
Dokl., 3, 1259–1262.

[2] I. Galperin and R. L. Rivest. Scapegoat trees. InProc. 4th
ACM-SIAM SODA, pages 165–174, 1993.

[3] L. J. Guibas and R. Sedgewick. A dichromatic frame-
work for balanced trees. InProc. 19th Annu. IEEE Sympos.
Found. Comput. Sci., Lecture Notes Comput. Sci., pages 8–21.
Springer-Verlag, 1978.

[4] M. S. Manasse, L. A. McGeoch, and D. D. Sleator. Com-
petitive algorithms for on-line problems. InProc. 20th Annu.
ACM Sympos. Theory Comput., pages 322–333, May 1988.

[5] K. Mehlhorn. A best possible bound for the weighted path
length of binary search trees.SIAM J. Comput., 6(2):235–
239, 1977.

[6] J. Nievergelt and E. M. Reingold. Binary search trees of
bounded balance.SIAM J. Comput., 2:33–43, 1973.

[7] M. H. Overmars. The Design of Dynamic Data Structures,
volume 156 ofLecture Notes Comput. Sci. Springer-Verlag,
Heidelberg, West Germany, 1983.

[8] R. Seidel and C. R. Aragon. Randomized search trees.
Algorithmica, 16:464–497, 1996.

[9] D. D. Sleator and R. E. Tarjan. Amortized efficiency of list
update and paging rules.Commun. ACM, 28:202–208, 1985.

[10] D. D. Sleator and R. E. Tarjan. Self-adjusting binary search
trees.J. ACM, 32(3):652–686, 1985.

