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Abstract

We describe two deterministic algorithms for constructing

the arrangement determined by a set of (algebraic) curve

segments in the plane. They both use a divide-and-conquer

approach based on derandomized geometric sampling and

achieve the optimal running time O(n log n+ k), where n is

the number of segments and k is the number of intersections.

The �rst algorithm, a simpli�ed version of one presented

in [1], generates a structure of size O(n log log n + k) and

its parallel implementation runs in time O(log2 n). The

second algorithm is better in that the decomposition of the

arrangement constructed has optimal size O(n + k) and it

has a parallel implementation in the EREW PRAM model

that runs in time O(log3=2 n). The improvements in the

second algorithm are achieved by means of an approach

that adds some degree of globality to the divide-and-conquer

approach based on random sampling. The approach extends

previous work by Dehne et al.[7], Deng and Zhu [8] and

K�uhn [9], that use small separators for planar graphs in

the design of randomized geometric algorithms for coarse

grained multicomputers. The approach simpli�es other

previous geometric algorithms [1, 2], and also has the

potential of providing e�cient deterministic algorithms for

the external memory model.

1 Problem and Previous Work

We consider a classical problem in computational geom-
etry: computing the arrangement determined by a set
of curve segments in the plane. There has been a con-
siderable amount of work on this problem in the com-
putational geometry community, particularly for line
segments. Starting with a �rst e�cient algorithm by
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Bentley and Ottman [4], optimal output sensitive algo-
rithms algorithms were obtained using a deterministic
approach by Chazelle and Edelsbrunner [5] and using
randomized approaches by Clarkson and Shor [6] and
by Mumuley [10]. These optimal algorithms perform
O(n logn+ k) work, where n is the number of segments
and k is the number of pairwise intersections. They
can be adapted so that they are output sensitive even
when multiple intersection points are allowed (a point
where many segments intersect is counted only once).
On the other hand, unlike its randomized counterparts
in [6, 10], the deterministic algorithm in [5] can only
handle line segments. An alternative deterministic al-
gorithm by Amato et al.[1], which follows a divide-and-
conquer approach based on derandomization of geomet-
ric sampling, has the advantage of being parallelizable.
However, it can only handle line segments and pairwise
intersection points, and the decomposition of the ar-
rangement that it constructs has size O(n log logn+k),
as opposed to the optimal O(n+k). One more variation
on the problem is to report all the intersections while
using only a linear amount of work space. The solutions
in [6] and [1] can be adapted to achieve this. Alterna-
tively, Balaban [3] proposed an elementary deterministic
algorithm to achieve this; however, it does not construct
the arrangement, it does not seem to parallelize, and it
cannot handle multiple intersection points.

The algorithm in [1] uses an approach based on
random sampling that re�nes iteratively by using small
samples to divide the problem. This divide-and-conquer
approach and also the well-known random incremental
construction (RIC) approach date from work by Clark-
son and Shor [6]. Unfortunately, unlike the RIC ap-
proach, divide-and-conquer most often leads to non-
optimal algorithms, at least as far as the most basic
analysis can tell, because the dividing step creates spuri-
ous boundaries that increase the complexity of the con-
structed decomposition of the arrangement. In fact, the
literature is plagued with running times that are a factor
n� or logc n away from optimal. Some techniques have
been used to correct this and obtain optimal algorithms:
sparse cuttings, pruning and biased sampling. In partic-
ular, the algorithm in [1] achieves optimality through
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the use of a complicated pruning step that limits the
total size of the decomposition.

2 New Results

We describe two deterministic algorithms for construct-
ing the arrangement determined by a set of (algebraic)
curve segments in the plane. They both use a divide-
and-conquer approach based on derandomized geomet-
ric sampling and achieve the optimal running time
O(n logn+ k), where n is the number of segments and
k is the number of intersections.

Our �rst algorithm (Alg1) is a simpli�ed version
of the algorithm in [1]. It follows a plain divide-and-
conquer approach without the use of the pruning step
used in [1]. As a result, it works for curve segments in
addition to straight lines. The key is a more careful
analysis that shows that the increase of size due to
spurious boundaries is not too large. As the approach is
given to parallelization and derandomization, this leads
to a new work-optimal parallel algorithm that is simpler
than the one in [1].

Our second algorithm (Alg2) introduces an ap-
proach that combines the advantages of the random
incremental approach, which maintains a canonical de-
composition of the complete arrangement, and of the
divide-and-conquer approach, which recurses on each
subproblem independently. We apply the approach to
the segment intersection problem through the use of
small separators for planar graphs. The resulting algo-
rithm achieves optimal storage space O(n + k), in con-
trast to Alg1 and the previous algorithm in [1] which
uses O(n log logn + k) space. The approach is moti-
vated by the use of graph separators in the design of
some geometric algorithms for coarse grained multicom-
puters by Dehne et al.[7] (3-d convex hulls), by K�uhn
[9] (2-d Voronoi diagrams), and by Deng and Zhu [8]
(Voronoi diagrams of line segments). The idea of the
approach is to cluster subproblems (using a graph de-
composition induced by small size separators) obtained
through random sampling, so that the number of spuri-
ous boundaries is minimized. As opposed to the previ-
ous algorithms, [7, 8, 9], we combine the bene�t of this
clustering with the global information that can be de-
duced from the analysis of random sampling (while they
use only a local bound, namely, that each subproblem
is at most of certain size; we also make use of a global
bound, namely, a bound on the sum of the sizes of all
the subproblems).

The graph separator approach of Alg2 also yields a
parallel algorithm that is faster than previous ones: we
achieve a running timeO(log3=2 n) in the EREWPRAM
model, in contrast to Alg1, and to the algorithm in [1],
which have a running times of O(log2 n). It also pro-

vides an e�cient deterministic algorithm for computing
a (1=r)-cutting of optimal size for an arrangement of
segments.

The divide-and-conquer with partial clean-up ap-
proach also simpli�es other algorithms (3-d convex hulls,
2-d abstract Voronoi diagrams, 3-d diameter, single face
in an arrangement of segments [1, 2]), and leads to the
same time speed-up for the corresponding parallel al-
gorithms. These results will appear in a companion
paper. We expect that the approach will �nd further
applications. Speci�cally, in the design of deterministic
geometric algorithms in the external memory model.

A complete version of this paper is available from
the authors' web sites.
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