
Linear-Time Triangulation of a Simple Polygon
Made Easier Via Randomization

N a n c y M. A m a t o * Michael T. Goodr ich t Edga r A. R a m o s ~

A b s t r a c t

We describe a randomized algorithm for computing
the trapezoidal decomposition of a simple polygon.
Its expected running time is linear in the size of the
polygon. By a well-known and simple linear time re-
duction, this implies a linear time algorithm for trian-
gulating a simple polygon. Our algorithm is consid-
erably simpler than Chazelle's (1991) celebrated op-
timal deterministic algorithm and, hence, positively
answers his question of whether a simpler random-
ized algorithm for the problem exists. The new algo-
rithm can be viewed as a combination of Chazelle's
algorithm and of non-optimal randomized algorithms
due to Clarkson et al. (1991) and to Seidel (1991),
with the essential innovation that sampling is per-
formed on subchains of the initial polygonal chain,
rather than on its edges. It is also essential, as in
Chazelle's algorithm, to include a bottom-up prepro-
cessing phase previous to the top-down construction
phase.

1 I n t r o d u c t i o n

Polygon triangulation is a classic problem in compu-
tational geometry, as it was one of the first problems
studied in the field [15]. Furthermore, there are sev-

*Texas A & M Universi ty, College Stat ion, TX. E-mail :
amat o@cs. tamu. edu

t T h e Johns Hopkins Universi ty, Bal t imore , MD. E-mail :
goodrich@jhu, edu

SMax-P lanck- Ins t i tu t fiir Informat ik , Saarbriicken, Ger-
many. E-mai l : ramos~mpi-sb.mpg.de

Pelmission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the lull citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Computational Geometry 2000 Hong Kong China
Copyright ACM 2000 1-58113-224-7/00/6...$5.00

Figure 1: A triangulated simple polygon

eral other problems in computational geometry deal-
ing with polygons that have efficient solutions that
begin with polygon triangulation as a preprocessing
step (e.g., see [18, 20]). Thus, there has been consid-
erable interest in finding efficient algorithms for this
problem.

1.1 R e l a t e d P r i o r W o r k

Garey et al. [15] were the first to provide a non-
trivial algorithm for the polygon triangulation prob-
lem. Their algorithm runs in O(nlogn) time and is
based on an elegant plane-sweeping paradigm. Asano
et al. [2] show that this bound is in fact optimal for
polygons that may contain holes. For simple poly-
gons without holes, the lower bound of Asano et al.
does not hold, however. This fact, and the impor-
tance of the polygon triangulation problem, in turn
prompted several researchers to work on methods for
beating O(n log n) time for this problem.

Fournier and Montuno [14] and Chazelle and In-
cerpi [6] showed, even prior to the Asano et al. lower
bound result, that to triangulate a simple polygon in
linear time it is sufficient to produce a trapezoidal de-
composition (trapezoidation) of a simple polygon. In
addition, Yap [31] showed that a similar result holds
in a parallel computing model. A trapezoidation is
formed by shooting a vertical ray through each vertex
of the polygon, stopping each ray as soon as it hits an-
other segment on the polygon. Since this early work

201

showing the importance of trapezoidation for trian-
gulation, every published triangulation algorithm has
concentrated on improving the running time of pro-
ducing a trapezoidation of a simple polygon. For ex-
ample, Tarjan and Van Wyk [30] and Kirkpatrick et
al. [21] showed that the trapezoidation step can be
performed in O(n log log n) time, resulting in a similar
running time for the polygon triangulation problem.
Using randomization, Clarkson et al. [10], Clarkson
et al. [8, 7], and Seidel [28] gave simple randomized
algorithms that run in O(n log* n) expected time. Fi-
nally, in a much celebrated and anticipated result,
Chazelle [4] showed that one could, in fact, triangu-
late a polygon in linear time. Goodrich [16] subse-
quently showed that a similar result can be proven
for a parallel computation model. Unfortunately, the
trapezoidation methods utilized by these optimal de-
terministic algorithms are quite complex. Indeed,
this conceptual complexity has led many researchers,
including Chazelle [4] himself, to ask whether there
is a simple randomized algorithm for triangulating a
polygon in linear time. To our knowledge, no simple
linear-time randomized algorithm has been presented
previously.

1 .2 O u r R e s u l t s

We describe a randomized algorithm for computing
the trapezoidation of a simple polygon. The ex-
pected running time of our algorithm is linear in the
size of the polygon. As already mentioned, from the
trapezoidation, a triangulation of the polygon can
be obtained in linear time using well-known meth-
ods [6, 14]. Thus, our algorithm provides a random-
ized algorithm for polygon triangulation that runs in
linear expected time. In addition, our algorithm is
considerably simpler than Chazelle's celebrated opti-
mal deterministic algorithm; hence, it addresses the
open problem posed by Chazelle and others as to the
existence of a simple randomized triangulation algo-
rithm that runs in linear expected time.

The general approach of our algorithm for comput-
ing a trapezoidation of a simple polygon P follows
that of the non-optimal randomized algorithms by
Clarkson et al. [8, 7] and Seidel [28]. That is, we com-
pute the trapezoidation of a successively finer sample
from P, using an algorithm for arbitrary edges (thus
with nonlinear running time), in O(log* n) rounds.
The fact that the edges come from a simple polygo-
nal chain is used to efficiently perform the compu-
tation of the conflict lists of the trapezoidation of
the sample, once in each round, by walking along the
original polygonal chain in the trapezoidation. Un-
fortunately, an approach that maintains the lists of

edge conflicts for the trapezoidation of the sample is
doomed to spend at least linear time per round. To
avoid this, we decompose the original polygonal chain
into smaller subchains, sample from the resulting set
of subchains and, taking advantage of the coherence
between edges in the polygonal chain, maintain lists
of subchain conflicts for the resulting subproblems,
rather than edge conflicts.

A technical difficulty in this approach is the defini-
tion of the subproblems defined by a set of subchains.
For the approach to work, one needs a decomposi-
tion with a size that is proportional to the number
of subchains involved, and with faces (subproblems)
of bounded complexity. The later requirement is orig-
inated in the need to be able to derive appropriate
bounds for the sizes of the conflict lists, and in the
need to have a decomposition that can be traversed ef-
ficiently as one walks along the polygonal chain. This
concept also appears in Chazelle's algorithm; follow-
ing him, we call this bounded-complexity property
conformality. Fortunately, our problem is simpler;
we describe a simple procedure that computes a con-
formal decomposition in time linear in the number of
edges in the set of subchalns. This is actually sub-
linear in the size of the input chain because it is per-
formed for a small sample. In order to traverse the
decomposition efficiently, we need a data structure
for each subchain that answers intersection queries
between a vertical edge, called a portal, and the sub-
chain. Thus, as in Chazelle's algorithm, we need a
preprocessing phase that constructs these data struc-
tures prior to the actual construction phase. These
phases proceed bottom-up and top-down respectively.
Randomization also plays an important role in the
preprocessing phase. Chazelle has argued that such a
combination of bottom-up and top-down approaches
is indispensable.

A final technicality is the proof of appropriate sam-
pling bounds for the sizes of the chain-conflict lists of
our conformal decomposition: such bounds are known
under locality or monotonicity properties that our de-
composition does not satisfy [1, 9, 11, 22, 24]. For-
tunately, we can prove appropriate bounds using the
fact that, although the faces in the decomposition do
not satisfy a locality property, they are chosen from
a relatively small "pool" of candidates that satisfy a
locality property.

This paper is organized as follows. First, for com-
parison purposes, we present a detailed outline of a
non-optimal randomized algorithm (Sec. 2). We then
describe our procedure to compute a conformal de-
composition for a set of chains (Sec. 3) and our linear
time algorithm (Sec. 4). Finally, we obtain appropri-
ate sampling bounds (Sec. 5) for analyzing our algo-

202

rithm (Sec. 6). We conclude with some remarks and
state some open problems (Sec. 7).

2 A Non-opt ima l Algori thm

For the purpose of comparison with our algorithm,
and as a warm-up, we outline a non-optimal random-
ized algorithm which is an adaptation from those in
[8, 7] and [28]. Let go be a simple polygonal chain,
S be the corresponding set of polygon edges, and let
n =]S[. We make the nondegeneracy assumption
that no two vertices have the same horizontal coordi-
nate; this can be simulated symbolically [13, 32, 33],
e.g., through lexicographic ordering. For R C_ S, let
T(R) denote the usual (vertical) trapezoidal decom-
position or trapezoidation of the plane induced by R
(obtained by introducing vertical visibility rays from
the endpoints of edges in R).

Figure 2: The trapezoidation of a simple polygon.

For A 6 T(R), let SIa denote the conflict list of
A, that is, the set of those edges in S that intersect
(the interior of) A, and let nA = ISIAI. We adopt the
following sampling model: For p with 0 <_ p < 1, a
p-sample R from S is obtained by taking each s 6 S
into R with probability p independently.

2.1 Algor i thm Outl ine

The algorithm constructs the trapezoidation of a suc-
cessively finer random sample in O(log* n) rounds.
Formally, let us define a global probability pl =
1/log (i) n for round i in the computation, and let Ri
be a pi-sample from S chosen in this round (so each
s 6 S is taken with probability Pi independently).
Furthermore, let R + = [.Jj<~ Rj. Note that R + is a
p+-sample from S where p~ < ~j<ipj = O(pi). In
the i-th round, given T(R+_I) and its conflicts with
respect to S (that is, SIA for A 6 T(R+_I)) the algo-
rithm constructs T(R +) and its conflicts with respect
to S as summarized in Fig. 3.

Step 1.a, for a A 6 T(R+_I), involves a simple scan

Non-Optimal-Trapezoidation (i-th round)

Input: T(R+_I) and its conflicts w.r.t. S
Output: T(R +) and its conflicts w.r.t. S

1. For each A 6 T(R+_I)

a. Determine R/IA

{ T(Riv, U {el, e2}) restricted to A,
b. T~ ~ where el,e2 are the edges that

bound A

2. Merge all the TA, A 6 T(R+_I), into T(R +)
3. Compute Sla for all A 6 T(R+), by "walking"

along to in Ti

Figure 3: Non-optimal trapezoidation procedure.

i l i . i

].] : : : i

ii i! i !

(a)

i i i ii ! i > i
! ! i i ii i i! i

i'<i

(b)

Figure 4: The three dotted edges are added to the
trapezoidation determined by the two other edges:
(a) Local trapezoidations after Step 1, and (b) trape-
zoidation after merging in Step 2.

of the conflict list and hence takes time O(nA).l Step
1.b computes T(RiIAU{el, e2}) restricted to A, where
el, e~ are the (non-vertical) edges bounding A. This
takes time O(rA logrA), where rA = [RilA[, using one
of several algorithms for computing a trapezoidation
with this complexity, e.g., either the randomized algo-
rithm by Clarkson and Shor [9] or the one by Mulmu-
ley [23]. Step 2 involves "stitching" together pieces of
trapezoids in T(R +) that are "chopped" by vertical-
rays in T(R+I). In other words, vertical-rays that
are no longer necessary are removed. See Fig. 4. It
takes total time linear in the sizes of the TA's, and
hence, the time required is dominated by that of Step
1. Since each trapezoid in T(R +) has at most four
neighbors, then, assuming that an appropriate data
structure is used, Step 3 can be performed in time
proportional to the size of g0, which is n, plus the
total number of segment-trapezoid conflicts found.

1Alternatively, one can maintain for each s 6 S the list of
trapezoids it intersects, and then the scan is not necessary.

203

2.2 S a m p l i n g B o u n d a n d A n a l y s i s

The algorithm can be analyzed with the use of the fol-
lowing sampling bound. Let R be a p-sample from S.
Then, for any function f such that f(x) = O(eX/2),

E [~AeT(R) f(pnA)] =O(r), (1)

where r = pn is the expected size of R (see [9, 24] or
Section 5). Using f(x) = x in Eqn. (1), the expected
total size of the conflict lists is O(n). This implies
a bound of O(n) for the expected time required by
all steps in a round, except Step 1.b. Denoting the
expectation with respect to the first i samples by E<i,
the total expected time required by Step 1.b is

O(rA logrA)[E<i

ZX~T(R+_~) J

Z 0 ((pinA) 1og(pinA)) = E<i-1
cxeT(R+l)

-) . O (n) = O (n) ,

where we have used both f(x) = xlogx and f(x) = x
in Eqn. (1). Thus, since the number of rounds is
O(log* n), the total expected time required by the
algorithm is O(n log* n).

3 Conformal Decomposit ion

Our algorithm considers subchains of the original
polygonal chain, rather than individual edges, and
applies sampling to subchains. In order to effectively
deal with such samples, we need a method for defin-
ing subproblems of constant descriptive complexity.
Consider a set L of ~ chains with a corresponding set
S of n edges. Let K C_ L be a subset of chains of L
and let R C_ S be the corresponding set of edges. For
convenience, we write T(K) to denote the trapezoi-
dation T(R). We suppose that we are given a pla-
nar subdivision representation (e.g., see [3, 19, 26]) of
T(K). This planar subdivision has O([R[) faces and
each face has at most 2 edges and 4 vertical rays on
its boundary. For our application, we need a planar
subdivision with O([K[) faces, each of which is con-
formal [4], that is, bounded by portions of at most

(a) (b)

Figure 5: (a) Subdivision after Step 2, and (b) sub-
division after Step 3.

O(1) chains in K and at most O(1) vertical rays deter-
mined by their vertices. We obtain this subdivision
retraction by selecting certain rays of T(K). More
precisely, our candidate rays are those ray-pairs (one
ray upward and one ray downward) incident to a lo-
cally extreme vertex of a chain (a vertex without in-
cident polygonal edges either on its left or on its right
side).

If we start with the set of chains K and intro-
duce all of these ray-pairs, the plane is divided into
faces bounded by at most two chains and at most
two ray-pairs which we call chain-trapezoids; how-
ever, the number of faces may be more than the de-
sired bound O(IKI). Let us therefore consider the
augmented adjacency graph ~(K) of this decomposi-
tion defined as follows: the nodes correspond to both
chain-trapezoids and (locally extreme) ray-pairs, and
there is an arc between a chain-trapezoid and a ray-
pair if they are incident (Fig. 5(a) illustrates a portion
of this graph). Note that the degree of a trapezoid
node is two and the degree of a ray-pair node is three.
This graph can be easily obtained from the usual
adjacency graph G(K) of T(K). 2 The procedure
conformal, in Fig. 7, selects O(IKI) ray-pairs which
induce a conformal decomposition of size O(IKI).

The procedure selects first all the extreme ray-
pairs, that is, those originating from the leftmost
and righmost vertices of each chain. The faces of
the resulting subdivision T are simply connected (see
Fig. 5(a)). Step 3 selects other ray-pairs in a "non-
local" manner, so as to obtain a subdivision whose
faces are conformed (see Fig. 5(b)). More precisely,
each face is bounded by at most two chains and at
most two ray-pairs. Note that the portion of a chain
bounding one of these faces does not need to be mono-
tone, and also that one of the bounding chains itself
can also determine one or both bounding ray-pairs.

2It is not really necessary to determine ~(K) explicitly, it
is sufficient to use G(K). However, the introduction of ~(K)
simplifies the description of the algorithm.

204

d

Figure 6: Some examples of chain-trapezoids. A
chain-trapezoid is determined by up to four distinct
chains, but can be determined by a single one as in the
bottom-left example. Also, becuase ray-pairs from
endpoints are not necessarily selected, the situation
in the bottom-right example can happen.

See Fig. 6.
This algorithm clearly runs in O([R]) time: given

input T(K) , all steps can be performed by simple
traversals of 6(K) , ~(K), and the Tf'S. Moreover,
the number of selected ray-pairs is O(]KI). It is clear
that T has O([K]) selected ray-pairs; furthermore,
since we select only ray-pairs with real-degree 3 in
each tree 7-f, this in turn implies that at most O([K])
additional rays are selected in Step 3.

Let T(K) be the collection of all the conformal
faces. Therefore, we have the following:

L e m m a 3.1 Let K be a set of chains and let R C_ S
be the corresponding set of edges, and suppose that
we are given a planar subdivision representation of
the trapezoidation T(R) of the edges in R. Then we
can construct in O(IRI) time a conformal subdivision
7-(g) containing o (Ig l) faces.

We refer to the selected (single) rays as portals,
to the conformal faces as chain-trapezoids (as they
are defined by chains rather than by edges), and
to the conformal decomposition 7"(K) as the chain-
trapezoidal decomposition or chain-trapezoidation.

4 The Linear-Time Algori thm

Our new algorithm can be viewed as a refinement of
the non-optimal algorithm of the previous section, in
which sampling is applied to subchains of the orig-
inal chain *0 rather than to edges. More precisely,
the chain ~0 is divided into a set L of subchains of
length ,~, and then a p-sample K C_ L is obtained by
taking each e 6 L into K with probability p inde-
pendently. For each chain-trapezoid A in the chain-

conformal (K, T(K))

Input: A set of chains K and the trapezoidation
T(K) of its edges.

Output: Conformal decomposition T(K), and its
adjacency graph.

1. Obtain the augmented adjacency graph ~(K)
from T(K).

2. Select the extreme ray-pairs of each chain. Let
be the planar subdivision (which is simply con-
nected) induced by the chains in K and these
selected ray-pairs. (See Fig. 5(a).)

3. For each face f of T, do the following:

(a) Let the tree r/ be the subgraph of ~(K)
corresponding to f (it includes leaves corre-
sponding to ray-pairs that bound f). (See
Fig. 8.)

(b) Let the real-degree of a vertex in TI be the
number of incident edges corresponding to
branches that contain already selected ray-
pairs as leaves.

(c) Select any ray-pair with real-degree 3.

4. Construct T(K), the decomposition induced by
all the selected ray-pairs, and its adjacency
graph. (See Fig. 5(b).)

Figure 7: Conformal decomposition procedure.

'1 o . i '~

, ! " i ,

Figure 8: The tree 7i for the upper middle face in
Fig. 5. The nodes corresponding to chain-trapezoids
are represented by small thick circles, and the nodes
corresponding to ray-pairs are represented by black
circles at the corresponding locally extreme vertices.

205

trapezoidation "F(K), let LI~ denote the set of sub-

chains in L that intersect (the interior of) A. Let
n = ILl, nT, = ILI£1. In analogy with Eqn. (1), one
would conjecture a bound

E T (K)

(2)

In particular, the expected total chain-conflict size
would be O(~t) = O(n/A); thus, it can be made ap-
propriately sublinear by choosing)~ sufficiently large.
This is a first step in obtaining a linear time algo-
rithm. Unfortunately, we cannot proof such a bound;
however, in Sect. 5, we proof a bound that is sufficient
for our purpose.

At the same time, our algorithm can also be
viewed as a simplification of Chazelle's algorithm,
as it considers a subdivision of the input chain into
successively finer subchains, which we call a grada-
tion. However, while Chazelle's algorithm computes
the chain-trapezoidation of all the subchains in each
level starting with the coarser level, our algorithm
does the same but for a random sample of the sub-
chains at each level. As the subchains become finer,
the random sample also becomes finer (the proba-
bility approaches 1). At the last level, the chain-
trapezoidation of the sample coincides with the trape-
zoidation of the complete chain, the desired result. In
this section, we first define precisely the gradation of
subchains and its corresponding probabilities, then
we give an outline of the two phases of the algorithm,
and finally describe the top-down construction phase
and the bottom-up preprocessing phase.

4 .1 G r a d a t i o n o f S u b c h a i n s

The sampling in our algorithm is performed on a gra-
dation of subchains with O(log* n) levels defined as
follows (Chazelle uses O(logn) levels). Let g0 be the
initial simple polygonal chain of size n. We decom-
pose go into collections Li of subchalns of length)~i,
i = 0 , . . . , k , starting with L0 = {e0} and A0 = n,
and with Li i > 1, obtained by decomposing each
chain g E Li-1 into a set L~ of subchains each of size
Ai = log 2 Ai-1, and ending with k = O(log* n) so that
)~k = O(1). Thus, the subchains in the i-th gradation
are Li = UteL~_~ Lt. We denote the total number of
subchains in Li by ni = ILil = n/)~i.

Instead of attempting to compute 7-(Li) directly
(the analog of what Chazelle's algorithm does), our
algorithm further simplifies the problem by taking a
random sample Ki of subchains from Li of a size such
that one can afford to compute the trapezoidation of

Lli ~ . I I - . I I I I I

L2 "'" " /: :I I i ' " l

L3 f : : : : " ' l

Figure 9: Gradation of subchains.

Ki using an inefficient algorithm [9, 15, 23]. Specif-
ically, for each i > 1, we choose a global probability
Pi = 1/log 3)~-1, and let Ki be a pi-sample from Li.
In the i-th round, it is more convenient to deal with
the set of subchains K + that consists of the subchains
in Ki and the subchains in Li contained in all the pre-
vious samples Kj, j < i. That is, K + = KiU{glg E L i
and g C g~ where g~ E K j , j < i}. Note that the ex-
pected number of the later subchains is

Aj

j < i j < i

That is, the expected size of K + is dominated by the
expected size of Ki. As a result, from the analysis
in Section 5, it will follow that adding the subchains
of previous samples does not affect substantially the
randomness of the sample Ki.

4.2 Overview of the Algori thm

As mentioned previously, our polygon trapezoida-
tion algorithm consists of two phases. The main
phase proceeds top-down constructing the decom-
positions 7"(K~) iteratively. For each chain trape-
zoid ~ E 7"(K+), the algorithm maintains its chain-
conflict list Lifzx C_ Li, that is, the set of subchains

in Li that intersect (the interior of) ~. Maintaining
chain-conflict lists, rather than edge-conflict lists, is
essential to the efficiency of our algorithm. At the
beginning of the i-th round, we have 7"(K+_1) and

the chain-conflict lists Li_ll ~ for each A E 7"(K+_1),

then the algorithm adds Ki to T(K+_I) to obtain

T(K+), and computes the new chain-conflict lists by
following the chain e0 without actually scanning every
edge. In a preprocessing bottom-up phase, the algo-
rithm constructs for each chain g ELi , i = 1 , . . . , k, a
data structure T)(g) that supports portal-chain inter-
section queries: given a portal p, determine whether
the chain g intersects p. These queries are needed for
the efficient computation of chain-conflict lists during
the construction phase. These data structures also
support ray-shooting queries (given a point x, deter-
mine the lowest point in g hit by a vertical ray upward

206

Top-Down (i-th round)

Input: T(Ki+_i) and its conflicts w.r.t. Li-1
Output: T(K~) and its conflicts w.r.t. Li

1. For each ~ e T(K/+_i)

a. Determine Kil ~

{ T(Kil S U {el, (z}) restricted to ~,
b. T£ ~ where gl, ~2 are the chains that

bound

2. Merge all the T£, ~ e T(K~+_i), into T(Ki +)
3. Obtain T(K~-) using conformal(K~ +, T(Ki+))
4. Compute LilsS for all A E T(K~-), by "hopping"

along ni in T(K/+)

Figure 10: Top-down phase procedure.

from x) which can then be used for testing whether a
query point is contained in a chain-trapezoid (perform
ray-shooting queries on the two bounding chains and
determine if the result corresponds to hitting them
from inside the chain-trapezoid).

4 . 3 T o p - D o w n C o n s t r u c t i o n P h a s e

Let us now formally describe how our algorithm per-
forms the top-down constructionphase. In the i-th
round, given the decomposition T(K~') and its con-
flict lists with respect to Li-x, the algorithm adds
the subchains in K~- to T(K~-_i) as summarized, in
Fig. 10.

Step 1.a determines the conflict list Kil ~ by check-

ing for each g E L~_ll ~ and ~ E L~ n K~, whether

g~ intersects A: if so either g~ intersects one of the
portals of ~, or its endpoints are inside ~. Both
queries are solved by the same data structures 79
constructed during the preprocessing phase. How-
ever, note that the point location query is on chains
in Li-1 and, consequently, it is more expensive (we
could afford to construct a faster standard point lo-
cation data structure for ~ , but it is not necessary).
Let r'~,~ = IKil~[. Step 1.b computes the trapezoi-

dation T(Kit ~ U {gl,g2}) restricted to ~, where gl

and g2 are the two chains bounding z~. This uses a
simple algorithm with running time O(ri, ~ log ri,~)
[9, 15, 23], where r~,~ = O((~i, ~ + 1)Ai) is the num-
ber of edges involved in all these chains (the plus 1
accounts for gl and g2. Step 2, with a simple traver-

sal of all the T~'s, "stitches" together trapezoids of

T(K~-) "chopped" by the portals of T(K~-_i); this
takes time linear in the total size of the T~. The
procedure con:formal in Step 3 was described in Sec-
tion 3; it takes time linear in the size of T(K~-) and
returns the (conformal) chain-trapezoidation 'T(K~-)
(including its adjacency graph). In Step 4, the con-
flict lists Lil ~ for A e T(K~) are found chain by

chain, using the adjacency graph of T(K~) and the
data structures D(g) to "hop" along Li in T(K~-), as
described next.

Hopping. If a chain is already in K~-, then it is
part of the boundary for some chain-trapezoids and
it can automatically be recorded as part of their con-
flict lists. So, consider some g E Li \ K~- and sup-
pose that we know a chain trapezoid ~0 E T(K~-)
that contains the first endpoint e of g. Note that
the chain-trapezoids in Ti that conflict with g are
connected. Thus, weperform a breadth-first-search
traversal of the adjacency graph of T(K~-), starting
with A0. When a chain-trapezoid ~ E T(K~') is vis-
ited, it is labeled as a conflict and each of the portals
that s e.parates A from an unvisited chain-trapezoid
~' E T(K~-) is tested for conflict with g using D(g).
If g conflicts with the portal, the traversal visits A ~.
Note that ~ can zig-zag arbitrarily within the set of
chain-trapezoids that it intersects. See Fig. 11.

Figure 11: Computing the chain-conflicts for a chain.
Note that only one conflict per portal is found, and
that the order the conflicts are discovered (indicated
by numbers) does not necessarily reflect their occur-
rences on the chain., The portals not queried are
shown lighter.

This procedure performs 0(1) portal-chain conflict
queries per conflict actually found. The location Of
the first endpoint e is given by the location of the
second endpoint of the preceding chain g~ (known al-

207

ready if g~ E K+). The location of g's second endpoint
e ~ can be determined by performing a point location
query for each chain-trapezoid found to be in con-
flict with g. This is necessary since the conflicts were
computed not by a linear scan of g, but rather by
"hopping" between portals.

Running Time. In Sec. 6, using the sampling
bounds obtained in the next section, we show that
given the data structures D(g) with query time
O(log 3+~ ,ki), for g E Li, the top-down construction
phase is completed in expected time O(n).

4.4 B o t t o m - U p P r e p r o c e s s i n g P h a s e

In the preprocessing phase, the algorithm constructs
data structures for portal-chain conflict queries, to be
used to hop along the chains in the top-down phase.
Recall the gradation of subchains Li, i = O,. . . ,k,
defined above and that for g E Li-1, L~ is the set
ofsubchains of g i n Li. Let K[= L~AKi. Note
that since Ki is a pi-sample from Li, then K[is a
pi-sample from L~. 3

For each g in L i - t , i = 1 , . . . , k , we construct a
data structure D(E) that consists of:

(i) T(K/t) and a corresponding point location struc-
ture with query time O(logAi_l);

(ii) for each ~ e T (K [) , the chain-conflict list L il~x"

We can use for the construction of 7-(K[) either
the randomized algorithm by Clarkson and Shor [9]
or the one by Mulmuley [23], which also result in point
location data structures with logarithmic query time
as needed in (i). Alternatively, other planar point
location data structures can be used [12, 17, 25, 27,
29].

A portal-chain conflict query for an arbitrary por-
tal p and chain g • Li-1 first uses D(g)'s point loca-
tion data structure T (K [) to locate the endpoints of
p. If p's endpoints are contained in different chain-
trapezoids in 7"(K[), then p must intersect g, and
a conflict if reported. Otherwise, p is entirely con-
tained in some A E T (K [) , and the query continues
recursively in the data structures D(gl), for each and
every subchain g' that bounds ~ or in ~ ' s conflict
list L~]£, which includes the subchains that bound ~ .

See Fig. 13. This query procedure is summarized in
Fig. 12. The query procedure for ray-shooting, which
determines the lowest intersection point, is similar
and we omit it.

c o n f l i c t ? (p , g, i - 1)

Input: A portal p and a chain g in Li-1.
Output: Yes or No

1. Determine ~, ~ ' • T[which contain the end-
points of p

2. If ~ and ~ are different then return Yes
3. For each g' that bounds ~ or in L l ~ do il A

if confl ic t?(p, E ~, i) = Yes then return Yes
4. Return No

Figure 12: Portal-chain query procedure.

9

• • .

Figure 13: Two cases in the portal-chain conflict
query: The portal endpoints are in different or in
the same chain-trapezoid.

The computation of conflict lists for 7-(K[) dur-
ing the construction of D(g) also uses "hopping" and,
hence, c o n f l i c t ? inductively. The bot tom-up pre-
processing phase is summarized in Fig. 14.

Running T i m e . In Sec. 6, using the sampling
bounds obtained in the next section, we show that
the construction of the data structures D(g) is com-
pleted in expected O(n) time. Moreover, we show
that, even though we recurse on each subchain in
a conflict list, the expected query time for a chain
g E L i is O(log 3+~)~i), where e > 0 is an arbi t rary
small fraction. Thus, we can summarize our results
in the following.

Theorem 4.1 Our randomized two-phase algorithm
constructs the trapezoidation o/ a simple polygon of
size n in expected O(n) time.

5 Sampling Bounds

To analyze the running time of our algorithm, we need
bounds on the sizes of the subproblems resulting by
taking a random sample from a set of chains and then

3This phase could use a sampling independent of that in
the construction phase, but this is not necessary.

208

Bottom-Up (i-th round)

Input: :D(~) for each ~ E Lj-1, j > i
Output: T)(~) for each ~ E Li-1

For each ~ E Li-1 do

1. Compute T(K~) and a corresponding point loca-
tion structure

2. Compute T(K~) using conformal(K~, T(K~))

3. Compute Lil ~ for all ~, e T(K[) by "hopping"
along L~ in T(K[)

Figure 14: Bottom-up phase procedure.

constructing its chaln-trapezoidation. Let K be a p-
sample from L, and recall that for a chain-trapezoid
A E T(K) , L17~ denotes the list of conflicts of A in L,
and that ~ = ILls]. Unfortunately, we cannot prove
the bound in Eqn. (2). Such a bound can be proved in
the framework of configuration spaces, when certain
locality [9, 24] or monotonicity [11, 1] properties hold
for the decomposition induced by the sample (see [22]
for a survey), but neither of these properties hold for
our chain-trapezoidation. Fortunately, we can prove a
weaker bound that is only a factor O(f(log A)) larger,
and that suffices to verify that our algorithm has ex-
pected linear running time. The proof of the bound
uses a standard trick [9, 5]: one obtains a nontrivial
bound for a p-sample in terms of a trivial bound for a
(p/2)-sample. First, we need a fact about the chain-
trapezoidation that limits the amount of non-locality
in the definition of the chaln-trapezoidation.

Recall that a chain-trapezoid is bounded by at most
two chains and at most two ray-pairs, each one orig-
inating from another chain (but possibly a bounding
chain). We say that these at most four chains deter-
mine the chain-trapezoid. Let T*(L) be the set of
all chain-trapezoids determined by L, that is, those
chain-trapezoids determined by a subset of at most
four chains in L (but note that some other chains in
L can conflict with such trapezoids). Let 7-C(K) be
the set of all candidate chain-trapezoids determined
by K and with empty conflict list with respect to
K. Note that 7"C(K) is bigger than 7"(K) as there
are candidate chain-trapezoids determinedby K that
were not chosen in our construction of T(K). For

E T* (L), let 5(&) C_ L denote the set of those up
to four chains that determine ~. For A E T* (L), we
have the locality property:

ZET"C(K) iff 6 (Z) _ C K a n d L I z A K = 0 . (3)

Though our chain-trapezoidation lacks locality, or
even monotonicity, the following lemma states that
we choose it out of a relatively small "pool" of can-
didates that satisfy the locality property.

L e m m a 5.1 Let K be a set of chains each of length
at most A. Then,]Tc(g)l = o(Iglx2) .

Proof . In T(K), let a region be the union of the
trapezoids corresponding to a connected subgraph of
6(K). For each A e T(K) consider the maximum
region R$ of T(K) that contains & and is bounded

by the same one or two chains that bound &. Note
that R$ may not be conformal. Any candidate chain-
trapezoid is a subregion of R£ for some &. Since
clearly the number of subregions of any R$ is O($2),

and the size of T(K) is O(]K]), then it follows that
the size of TC(K) is o(Igl~2). []

We use this result now to prove bounds for the
chain-conflict list sizes in the chain-trapezoidal de:
composition of a random sample of chains.

L e m m a 5.2 Let L be a set of F~ chains of length $,
and let n = A~ be the total number of edges. Let
K C L be a p-sample, F = p~ its expected size, and
let T(K) be its chain-trapezoidal decomposition. For

E T(K) , we write ~7, = ILI~I. Let f be a positive
nondecreasing function such that f (O(x)) = O(f (x)).
Then

E[G~(K)Z f (Pna)] = O(F-f(log~k)) (4)

Proof . Let K ~ C_ L be a (p/2)-sample. Recall that
TC(K) is the set of candidate chain-trapezoids for K,
and that for these chain-trapezoids the locality prop-
erty in Eqn. (3) holds. Thus,

Prob{& e CO(K)}

_- p~(7,) (1 - p)~a

1 - p (p/2) ~(7') (1 - p/2) ~z~

< 16. e -pnz'/2. Prob(& e 7-c(g')),

using 5(&) <_ 4 and (1 - p) / (1 - p / 2) < 1 - p / 2 <
e -p/2. Using this upper bound, we obtain

209

= Z f(J~N)" Prob{A e CO(K)}
AeT*(L)

= O(E[I¢~(K')I])
= O(F~2),

using Lemma 5.1. Let T > 0 be a parameter. Then,
using again the upper bound above,

E [_ ~_ /(p~)

= Z I (N ~) " Prob{X e ¢C(K)}
~E¢*(L)

~£>2(log r)/p

_< 1 6 - ~ f(pgN), e-Pra/2.Prob{A e TC(K')}

_< 16. ~ f (p~x) .Prob{A ~ T~(K')}

/,eT*(L)

~e~°(g)

T

K" is a (p/4)-sample. Finally, using r = A 2, where

[
~(g)

£e$-(K)
L ~ > 20? ~)

~eCe(K)

f(p~)

L~z-< 2{ l°lal~ ~')

f(pgy,) +/(2log r)- E[IT(K)I]

O (F" ~-fi~) + O(f(21og r) " ~ = O(f(log A) " ?).

[]

For the analysis of the query time of the ray-
shooting data structure, we also need a bound for
the expectation of the conflict list size of the chain-
trapezoid that contains a fixed point x.

L e m m a 5.3 Let K C_ L be a p-sample, and ;~or a
fixed point x, let Ax be the chain-trapezoid in T(K)
that contains x. Then

= o o

Proof. A similar proof as for the previous lemma ap-
plies. Only note that the number of candidate chain-
trapezoids in TC(K) that contain x is O(A2), and so

Z Prob{A e CO(K)}
7,~$-* (L)

xe~

[]

6 Running Time Analysis
First, we note that the sampling bound of Lemma
5.2 holds for K + even though it contains, in addition
to the true random pi-sample Ki, all the subchains
of previous samples Kj, j < i. This is because, as
noted in Section 4, the size is dominated by Ki and
so, from the proof of the lemma, the right hand side
of Eqn. (4) is not affected.

In the analysis below, two specific sums appear that
can be bounded using Eqn. (4):

E [Z nT,] =O(~ . logA) , (5)

and for any a > O,

E [~e~(~) ~ l ° g (a ~)]

: (6)

6.1 P r e p r o c e s s i n g P h a s e

First, we verify the query time. The expected query
time Q(Ai) is the sum of the time needed for a point
location query, plus the expected time needed for all
the recursive queries. Thus, we have

Q(~-I) = O(log Ai-1) + O((1/pi)logAi). Q(Ai)
= O(logAi_l) + O((logAi_l) 3 logAi)- Q(Ai)
= O(log 3+e)~i--1),

210

where e is any positive fraction. We have used Lemma
5.3 to bound the expected number of chain-conflicts
as O((1/pi)loghi). Note that it is valid to use the
bound for a fixed point, as the random choices in the
i-th and later rounds are independent of the random
choices in earlier rounds. Next, we estimate the ex-
pected construction time for ~ E L i . From the pre-
vious description, using Eqn. (5), the expected time
is

O ((pihi-1)log(piAi-1) + (~ loghi) "Q()~i))

= 0 \ log ~Ai_~ log \ log ~Ai_l +

hi-x • log(log 2 Ai-~) • log3+~ (log e Ai- l))
log ~ Ai-~

I hi-) = o

where the first term accounts for the construction of
T(K[) , and the second term accounts for O(1) portal-
chain intersection queries per chain-conflict. Adding
over all g ~ Li-~, the construction time in the (i - 1)-
st level is O(n/logAi_~), and adding over all i, the
total construction time is O(n).

6 .2 C o n s t r u c t i o n P h a s e

Consider the i-th round, and let ~ E "T(K+). For
the purpose of analysis, let us write ni,~ = ILilsI
and r~,~ = IKil~l. Recall that ni = ILil = n/hi.
Note that the expected value of r~,~ is bounded by

~-~ In Step 1.a, for each g E Li_ll ~, Pi " n i _ l , X ")~ •

checking whether g' E L~ n Ki intersects ~ takes ex-
pected time is O(log 3+e hi - l) , using the data struc-
ture 7) for the chains bounding A. Thus, using
Eqn. (5), the total expected time for this step is big-O
of

Ai-1 . log3+~ ,~i-1] E<i-1 Z Pi " ni_l ,7~ " hi

7,d-(K~+_O J

= O i" (ni- l log.Xi- l)" ~

= O(log 1--~ne.~i-1)"

(Here, the term log a+~ hi-1 could be reduced to
loghi - i + log a+~ ,~i, if we construct a point location
data structure for each ~ E "T(K+_0.) In Step 1.b,
TT, is computed using an algorithm with running time
O(ri, ~ logri,7~) where ri, ~ = O((~,~ + 1)hi). Using

Eqn. (6), the total expected time is big-O of (to ab-
breviate, we are dropping the 1 in the bound for ri,~;
a more complete calculation leads to the same result)

E_<i E

E_<i-1 Z ni-l,~" log (Pi" ~i--1"
~e~(K~+ 1)

O (pi • hi-1 • ~i-1 • log hi-1 •

l o g (piAi-~ log A i - 1))
\ P i - 1

= O(n'pi'l°g2hi-1)=O log-Ai-1 "

The conformal decomposition in Step 3 is constructed
as described in Section 3 and requires expected time
big-O of

= O(pi. i- h 0 = O log3-~ i_ l .

In Step 4, the conflict lists for regions z~ E "T(K~-)
with subchains in Li are found using the data struc-
tures 73, O(1) queries per conflict determined, so the
expected time is

(n) O(~i.logAi'Q(Ai))=O ~-~i • log hi • Ai

(o)
= O n- hi logAi_l "

The sum of all these contributions over all the rounds
is O(n).

ri, ~ logri, 5 = O (Pi ")~i-1)"

7 C o n c l u d i n g R e m a r k s

We have presented a randomized algorithm for com-
puting the trapezoidation of a simple polygon, and
hence a triangulation, that runs in expected time
that is linear with the number of edges. The algo-
rithm is considerably simpler than Chazelle's algo-
rithm. On the other hand, it is comparatively more
complicated than the non-optimal randomized algo-
rithm and, since for any practical value of n, log* n is
a small constant, our algorithm is not likely to be of
practical value.

We conclude by mentioning some questions that
remain open. Is the conjectured tighter sampling
bound for our conformal decomposition true? Is it

211

possible to combine our polygon trapezoidation algo-
rithm with a segment intersections algorithm to ob-
tain an algorithm that can report the k intersections
of a chain of n segments in time O(n + k)? Can
our linear time algorithm be parallelized? Can the
approach of sampling on subchains lead to efficient
algorithms for other problems on simple polygons ?
Finally, does a deterministic algorithm simpler than
Chazelle's exist?

References
[1] P. K. Agarwal, M. de Berg, J. Matougek, and

O. Schwarzkopf. Constructing levels in arrangements
and higher order Voronoi diagrams. SIAM J. Comput.,
27:654-667, 1998.

[2] T. Asano, T. Asano, and R. Y. Pinter. Polygon triangula-
tion: Efficiency and minimality. J. Algorithms, 7:221-231,
1986.

[3] B. G. Baumgart. A polyhedron representation for com-
puter vision. In Proc. AFIPS Natl. Comput. Conf., vol-
ume 44, pages 589-596. AFIPS Press, Alrington, Va.,
1975.

[4] B. Chazelle. Triangulating a simple polygon in linear
time. Discrete Comput. Geom., 6(5):485-524, 1991.

[5] B. Chazelle and J. Friedman. A deterministic view of
random sampling and its use in geometry. Combinatorica,
10(3):229-249, 1990.

[6] B. Chazelle and J. Incerpi. Triangulation and shape-
complexity. ACM Trans. Graph., 3(2):135-152, 1984.

[7] K. L. Clarkson, R. Cole, and R. E. Tarjan. Erratum:
Randomized parallel algorithms for trapezoidal diagrams.
lnternat. J. Comput. Geom. Appl., 2(3):341-343, 1992.

[8] K. L. Clarkson, R. Cole, and R. E. Tarjan. Randomized
parallel algorithms for trapezoidal diagrams. Internat. J.
Comput. Geom. Appl., 2(2):117-133, 1992.

[9] K. L. Clarkson and P. W. Shor. Applications of random
sampling in computational geometry, II. Discrete Corn-
put. Geom., 4:387-421, 1989.

[10] K. L. Clarkson, R. E. Tarjan, and C. J. Van Wyk. A fast
Las Vegas algorithm for triangulating a simple polygon.
Discrete Comput. Geom., 4:423-432, 1989.

[11] M. de Berg, K. Dobrindt, and O. Schwarzkopfi On lazy
randomized incremental construction. Discrete Comput.
Geom., 14:261-286, 1995.

[12] H. Edelsbrunner, L. J. Guibas, and J. Stolfi. Optimal
point location in a monotone subdivision. SIAM J. Corn-
put., 15(2):317-340, 1986.

[13] H. Edelsbrunner and E. P. Mficke. Simulation of simplic-
ity: A technique to cope with degenerate cases in geomet-
ric algorithms. ACM Trans. Graph., 9(1):66-104, 1990.

[14] A. Fournier and D. Y. Montuno. Triangulating simple
polygons and equivalent problems. ACM Trans. Graph.,
3(2):153-174, 1984.

[15] M. R. Garey, D. S. Johnson, F. P. Preparata, and R. E.
Tarjan. Triangulating a simple polygon. Inform. Process.
Lett., 7(4):175-179, 1978.

[16] M. T. Goodrich. Planar separators and parallel polygon
triangulation. J. Comput. Syst. Sci., 51(3):374-389, 1995.

[17] M. T. Goodrich, M. Orletsky, and K. Ramaiyer. Meth-
ods for achieving fast query times in point location data
structures. In Proc. 8th ACM-SIAM Sympos. Discrete
Algorithms, pages 757-766, 1997.

[18] L. J. Guibas, J. Hershberger, D. Leven, M. Sharir, and
R. E. Tarjan. Linear-time algorithms for visibility and
shortest path problems inside triangulated simple poly-
gons. Algorithmica, 2:209-233, 1987.

[19] L .J . Guibas and J. Stolfi. Primitives for the manipulation
of general subdivisions and the computation of Voronoi
diagrams. ACM Trans. Graph., 4(2):74-123, Apr. 1985.

[20] J. Hershberger. Optimal parallel algorithms for triangu-
latedsimple polygons. Internat. J. Comput. Geom. Appl.,
5:145-170, 1995.

[21] D. G. Kirkpatrick, M. M. Klawe, and R. E. Tarjan. Poly-
gon triangulation in O(n log log n) time with simple data
structures. In Proc. 6th Annu. ACM Sympos. Comput.
Geom., pages 34-43, 1990.

[22] J. Matou~ek. Derandomization in computational geome-
try. J. Algorithms, 20:545-580, 1996.

[23] K. Mulmuley. A fast planar partition algorithm, I. J.
Symbolic Comput., 10(3-4):253-280, 1990.

[24] K. Mulmuley. Computational Geometry: An Introduction
Through Randomized Algorithms. Prentice Hall, Engle-
wood Cliffs, N J, 1993.

[25] F.P. Preparata. A new approach to planar point location.
SIAM J. Comput., 10(3):473-482, 1981.

[26] F .P . Preparata and M. I. Shamos. Computational Geom-
etry: An Introduction. Springer-Verlag, New York, NY,
1985.

[27] N. Sarnak and R. E. Tarjan. Planar point location using
persistent search trees. Commun. ACM, 29(7):669-679,
July 1986.

[28] R. Seidel. A simple and fast incremental randomized algo-
rithm for computing trapezoidal decompositions and for
triangulating polygons. Comput. Geom. Theory Appl.,
1(1):51-64, 1991.

[29] R. Seidel. On the exact query complexity of planar point
location. In Abstracts 14th European Workshop Comput.
Geom., pages 7-8, 1998.

[30] R. E. Tarjan and C. J. Van Wyk. An O(n loglog n)-time
algorithm for triangulating a simple polygon. SIAM J.
Comput., 17:143-178, 1988. Erratum in 17 (1988), 106.

[31] C. K. Yap. Parallel triangulation of a polygon in two calls
to the trapezoidal map. Algorithmica, 3:279-288, 1988.

[32] C. K. Yap. A geometric consistency theorem for a
symbolic perturbation scheme. J. Comput. Syst. Sci.,
40(1):2-18, 1990.

[33] C. K. Yap. Symbolic treatment of geometric degeneracies.
J. Symbolic Comput., 10:349-370, 1990.

212

