
A Multi-dimensional Approach to
Force-Directed Layouts of Large Graphs?

Pawel Gajer1, Michael T. Goodrich1, and Stephen G. Kobourov2

1 Department of Computer Science
Johns Hopkins University

Baltimore, MD 21218
2 Department of Computer Science

University of Arizona
Tucson, AZ 85721

Abstract. We present a novel hierarchical force-directed method for
drawing large graphs. The algorithm produces a graph embedding in an
Euclidean space E of any dimension. A two or three dimensional dra-
wing of the graph is then obtained by projecting a higher-dimensional
embedding into a two or three dimensional subspace of E. Projecting
high-dimensional drawings onto two or three dimensions often results
in drawings that are “smoother” and more symmetric. Among the other
notable features of our approach are the utilization of a maximal indepen-
dent set filtration of the set of vertices of a graph, a fast energy function
minimization strategy, efficient memory management, and an intelligent
initial placement of vertices. Our implementation of the algorithm can
draw graphs with tens of thousands of vertices using a negligible amount
of memory in less than one minute on a mid-range PC.

1 Introduction

Graphs are common in many applications, from data structures to networks,
from software engineering to databases. Typically, small graphs are drawn ma-
nually so that the resulting picture best shows the underlying relationships. The
task of drawing graphs by hand becomes more challenging as the complexity
of the graphs increases. Graph drawing tools have been the focus of the graph
drawing community for at least the last two decades, see [5,6] for a comprehen-
sive reviews of the field. Numerous algorithms have been developed for drawing
special classes of graphs such as trees and planar graphs. There are fewer general
purpose graph drawing algorithms, however. Force-directed methods are the me-
thods of choice for drawing general graphs. Substantial interest in force-directed
methods stems from their conceptual simplicity, applicability to general graphs,
and aesthetically pleasing drawings.

With few exceptions, most existing automated systems have trouble dealing
with graphs of thousands of vertices. In this paper we present a new algorithm
? This research partially supported by NSF under Grant CCR-9625289, and ARO

under grant DAAH04-96-1-0013.

J. Marks (Ed.): GD 2000, LNCS 1984, pp. 211–221, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

212 P. Gajer, M.T. Goodrich, and S.G. Kobourov

which allows for drawing simple undirected graphs with tens of thousands of
vertices in under a minute. Even larger graphs can be displayed using this al-
gorithm in conjunction with a fisheye view [14,19,22] or a multi-level display
algorithm [7] which would allow us to accommodate graphs with more vertices
than the number of pixels of the display device. However, the effectiveness of
fisheye and multi-level views depends on a good recursive clustering, which in
turn depends on a good initial embedding of the graph. Creating a good embed-
ding for large graphs has been prohibitively expensive using existing algorithms.
Our algorithm allows us to create excellent initial embeddings in very reason-
able times; hence, it can be used either by itself or as a preprocessing step to
the above large-graph layout methods. The key features of the algorithm are:
(1) intelligent initial placement of vertices; (2) multi-dimensional drawing; (3) a
simple recursive coarsening scheme; (4) fast energy function minimization; (5)
space and time efficiency.

The rest of this paper is organized as follows: In Section 2 we review previous
work in visualization of large graphs and force-directed algorithms for automated
graph drawing. In Section 3 we describe our algorithm and in Section 4 we present
some concluding remarks.

2 Previous Work

2.1 Visualization of Large Graphs

Visualizing large graphs presents unique problems which require non-orthodox
solutions. Drawings that display the entire graph have the advantage of showing
global graph structure. For large graphs such drawings become impractical as
the limited resolution of display devices makes details hard to discern. Parti-
ally drawing graphs allows for display of larger graphs but fails to convey their
global structure. Two other approaches to visualization of large graphs are of
particular interest: fisheye views and multi-level displays. Fisheye views [14,19,
22] show an area of interest quite large and detailed while showing other areas
successively smaller and in less detail. Multi-level views allow us to view large
graphs at multiple abstraction levels. A natural realization of such multiple level
representations is a 3D drawing with each level drawn on a plane at a different
z-coordinate, and with the clustering structure drawn as a tree in 3D.

The multi-level display algorithms are introduced by Eades and Feng [9]
in the context of visualization for clustered graphs. Compound and clustered
graphs are studied in [10,11,20,23]. Creating a graph clustering based on binary
space partitions and using it to display large graphs was introduced by Duncan,
Goodrich, and Kobourov [7]. The quality of the resulting multi-level drawings
depends on the initial embedding of the graph in the plane.

2.2 Force-Directed Algorithms

The force-directed placement algorithm of Quinn and Breur [21] and the spring
embedder of Eades [8] are among the first practical algorithms for graph drawing.

A Multi-dimensional Approach to Force-Directed Layouts 213

In the latter algorithm the graph is modeled as a physical system of rings and
springs. Classical force-directed methods start from a random embedding of a
graph and utilize standard optimization methods to find a minimum of an energy
function of their choice. The use of an energy function E is a characteristic
feature of force-directed layout algorithms. It is used to assign to each embedding
ρ : G → R

n of a graph G in some Euclidean space R
n (typically n = 2 or n = 3)

a non-negative number E(ρ). Force-directed methods are based on the premise
that minima of reasonably chosen energy functions produce aesthetically pleasing
graph drawings. The main differences between force-directed algorithms are in
the choice of energy function and the methods for its minimization. Examples
of force-directed algorithm include the algorithms of Kamada and Kawai [18],
Davidson and Harel [4], Fruchterman and Reingold [13], and Frick et al [3,12].

The main problem with most standard force-directed algorithms is their in-
ability to draw large graphs. Even the best classical algorithms can draw graphs
with a maximum of only several hundred vertices. When presented with a com-
putationally expensive graph algorithm, a standard approach is to associate with
the graph a hierarchy of graphs. The needed computation is done starting with
the smallest graph in the hierarchy, then proceeding to larger and larger graphs
and using at each stage the results of the previous computation. This strategy
has been brought to the area of force-directed graph drawing from particle phy-
sics [1,2] in the multi-scale algorithm of Hadany and Harel [16]. In [17] Harel
and Koren introduce several simplifications to the algorithm resulting in faster
drawings and allowing for larger graphs.

However, as one of the underlying steps of the algorithm in [17], all-pairs
shortest paths are computed, which is both time and space expensive. The qua-
dratic space complexity incurred by the matrix of distances between vertices of
the graph is another problem when we draw large graphs. Other computatio-
nally expensive procedures include the clustering procedure for a construction of
a hierarchy of graphs and the Newton-Raphson optimization method for scaling
the displacement vectors. Finally, the algorithm in [17] creates drawings in 2D
and as it is based on the Newton-Raphson method, extending it to 3D consi-
derably slows down the algorithm. The algorithm described in the next section
addresses the above problems and introduces several new features.

3 The Algorithm

3.1 Algorithm Overview

The pseudo-code for the algorithm can be seen in Fig. 1. In the first stage we
create a filtration of the set of vertices of the given graph and set up the schedu-
ling function nbrs(), described in Sections 3.2 and 3.3, respectively. The main
for-loop runs through all levels of the filtration, starting at Vk. At stage i for each
vertex v ∈ Vi − Vi+1 we find sets Ni(v), Ni−1(v), . . . , N0(v) and find an initial
position pos[v] of v. The vertex neighborhood Ni(v) is a set of nbrs(i) closest
to v elements of Vi. The method for determining Ni(v), Ni−1(v), . . . , N0(v) and
for determining the initial positions are in Sections 3.3 and 3.4, respectively.

214 P. Gajer, M.T. Goodrich, and S.G. Kobourov

Main Algorithm
create a filtration V : V0 ⊃ V1 ⊃ . . . ⊃ Vk ⊃ ∅
set up scheduling function nbrs()
for i = k to 0 do

for each v ∈ Vi − Vi+1 do
find vertex neighborhood Ni(v), Ni−1(v), . . . , N0(v)
find initial position pos[v] of v

repeat rounds times
for each v ∈ Vi do

compute local temperature heat[v]
disp[v]← heat[v] · −→FNi(v)

for each v ∈ Vi do
pos[v]← pos[v] + disp[v]

add all edges e ∈ E

Fig. 1. After creating the vertex filtration and setting up the scheduling function the
algorithm processes each filtration set, starting with the smallest one. Here pos[v] is a point
in R

n corresponding to vertex v and rounds is a small constant. In the refinement stage
heat[v] is scaling factor for the displacement vector disp[v], which in turn is computed
over a restriction Ni(v) of the vertices of G.

The refinement stage is repeated rounds times, where rounds is a small
constant. Within the refinement stage, the displacement vector disp[v] of v
is set to a local Kamada-Kawai force vector. Here local means that the force
vector −→

FNi
(v) is computed over v’s vertex neighborhood Ni(v) rather than over

all vertices in G. The displacement vector is scaled by a local temperature factor
heat[v]. In Section 3.5 we describe the process of calculating heat[v].

3.2 Vertex Set Filtrations

Faced with the problem of drawing a large graph, it is natural to associate with
it a hierarchy of graphs and produce a drawing starting with the smallest graph
in the hierarchy, and drawing larger and larger graphs using at each stage the
previous drawing. Two important properties of such a hierarchy are its depth
and the distribution of vertices. A constant depth hierarchy implies that as we
go from one level to the next, more than a constant fraction of the vertices are
added and this makes the drawing of the old level insufficient for placement of
new vertices. On the other hand, a linear depth hierarchy is too time consuming
to traverse. Thus, logarithmic depth is highly desirable. The effectiveness of this
scheme is also dependent on the uniformity of the distribution of the vertices at
all levels of the hierarchy. The hierarchy of graphs can be thought of as containing
different levels of abstraction of the underlying graph. Uniform distribution of
the vertices implies more accurate levels of abstraction which in turn implies
better drawings on each level.

Hadany and Harel [16] create a hierarchy of graphs based on the cluster
number, the degree number, and the homotopic number. Harel and Koren [17]

A Multi-dimensional Approach to Force-Directed Layouts 215

V0 V2 V3 4VV1

Fig. 2. An example of a MIS filtration. Here the underlying graph G = (V, E) is a rectan-
gular mesh of size 10×10. The dark vertices are included in the filtration. Here V = V0, V1

is a standard maximal independent set, V2 is a maximal subset of V1 so that the distances
between its elements are at least 21 + 1 = 3, and so on.

use a simpler method to create the hierarchy of graphs, which relies on a 2-
approximation of the k-centers problem. The algorithm of [17] begins by produ-
cing a graph centers (GC) filtration V = V0 ⊃ V1 ⊃ . . . ⊃ Vk ⊃ ∅ of the set V
of vertices of the graph G, with |Vi| = c · xk−i, where x > 1 and c = |Vk| is a
constant. A cluster of vertices closest to each center is created for each center
and on every level. A set of weighted edges is computed between elements of Vi,
so that the weights correspond to the number of edges between the elements of
the corresponding clusters. Thus the GC filtration together with the edges forms
a hierarchy of graphs.

While having proper graphs on each level is necessary in many applications
utilizing graph hierarchies, in the context of graph drawing we can save time and
space by using just a filtration of the vertex set. Note that in a filtration there
are no edges but only vertices. As we already pointed out, logarithmic depth and
“uniform” filtrations are best for graph drawing purposes. We have developed
and tested one specific such filtration that we call a maximal independent set
(MIS) filtration and we use it in this algorithm.

Recall that S ⊂ V is an independent set of a graph G = (V, E) if no two
elements of S are connected by an edge of G. Equivalently, S is an independent
set of G if the graph distance between any two elements of S is at least two.
The graph distance between two vertices is defined as the length of the shortest
path between them in the graph. A maximal independent set filtration of G is
a family of sets V = V0 ⊃ V1 ⊃ . . . ⊃ Vk ⊃ ∅, such that each Vi is a maximal
subset of Vi−1 for which the graph distance between any pair of its elements is
at least 2i−1 + 1, see Fig. 2.

There are several advantages of MIS filtrations over GC filtrations. First, the
number of vertices in the sets Vis in the case of MIS filtrations is controlled by
the geometry of the graph, whereas in the graph centers filtration the sizes are
arbitrarily set by the user. Moreover, we can build a MIS filtration using little
time and space, whereas graph centers filtrations require knowledge about the
distances between all pairs of vertices and the all-pairs shortest path is a serious
time and space bottleneck when dealing with large graphs.

MIS filtrations can be constructed as follows. Suppose we constructed an
order i independent set Vi of G. To construct Vi+1 let V ∗ = Vi be an auxiliary

216 P. Gajer, M.T. Goodrich, and S.G. Kobourov

set of vertices from which we will draw elements of Vi+1. Take a random element
v0 ∈ V ∗ out of V ∗, and place it in Vi+1. Next remove all elements of V ∗ whose
graph distance to v0 is less than or equal to 2i. This distance factor is important
in ensuring that vertices are well distributed and in guaranteeing small depth of
the filtration. Choose another element v1 of V ∗, and remove from V ∗ the chosen
vertex and all vertices whose distance to v1 is less than or equal to 2i. Place v1
in Vi+1. Repeat this procedure until V ∗ is empty. Note that the set V1 produced
by this procedure is an ordinary maximal independent set of G. An example of
a maximal independent set filtration is shown in Fig. 2.

The construction of a MIS filtration stops at level k so that 2k > δ(G), where
δ(G) is the diameter of G. Therefore, each MIS filtration has depth O(log δ(G)).
MIS filtrations provide excellent distribution of the vertices by construction, a
property needed for high quality filtrations.

3.3 Finding Vertex Neighborhoods Ni(v)

One of the key ideas of the hierarchical force-directed graph layout method is that
at each stage of the construction a force-directed position refinement method is
applied to a given layer Vi of a filtration only locally. More precisely, for a given
energy function E and v ∈ Vi, the gradient of E at pos[v] is computed not for E
but for the restriction of E to some neighborhood Ni(v) of v in Vi. Utilization
of a good filtration of V and a local position refinement strategy are the key
means of escaping a quadratic lower bound for space and time complexity of the
classical force-directed methods.

This section describes a procedure of constructing Ni(v) sets and the defi-
nition of the scheduling function nbrs(). Intuitively, at each stage of the hier-
archical graph drawing strategy we should be getting a better and better ap-
proximation of the final drawing of the graph. Ideally, at the last stage, when
we perform a force-directed local refinement of the position of each vertex v of
the graph, it should be enough to take N0(v) to be the set of adjacent vertices
of v. The time complexity of this last stage calculation is c · ∑

v∈V N0(v) =
c · n · avgDeg(G), where avgDeg(G) is the average degree of G. We would like to
make c ·n ·avgDeg(G) an upper bound for the complexity of calculations at each
stage of graph drawing construction. Therefore, we set nbrs(i) = Θ(avgDeg(G)·n

|Vi|).
Suppose V is a logarithmic depth filtration of the set V of vertices of G. The

calculation of the sets Ni(v), Ni−1(v), . . . , N0(v) is performed for each element
v ∈ V only once, when it is added to a set of already placed vertices, see Fig. 1.
We require that Nk(v) contains Θ(nbrs(k)) elements for each k = i, i−1, . . . , 0.
Therefore, the space complexity of this strategy is bounded above by

k∑
i=0

|Vi − Vi+1| (nbrs(1) + nbrs(2) + · · · + nbrs(i)) . (1)

Since Vi+1 ⊂ Vi, we have |Vi − Vi+1| = |Vi| − |Vi+1|, and after simplifications
(1) takes the form

A Multi-dimensional Approach to Force-Directed Layouts 217

k∑
i=0

|Vi|nbrs(i) ≤ c0

k∑
i=0

|Vi|avgDeg(G) · n

|Vi| = c0

k∑
i=0

avgDeg(G) · n =

= c0avgDeg(G) · (k + 1)n. (2)

Similarly we can show that there exists a positive constant c1 so that equa-
tion (1) is greater than c1avgDeg(G) · (k + 1)n. Thus, the storage complexity
of the above strategy for finding Ni(v), Ni−1(v), . . . , N0(v) for all v ∈ V is
Θ(avgDeg(G)kn). If G is of bounded degree, then Θ(avgDeg(G)kn) = Θ(kn),
where k = log n for a GC filtration, and k = log δ(G) for a MIS filtration.

Let the depth of a vertex, depth(v), with respect to V be the largest d,
such that v ∈ Vd. The sets Ni(v), Ni−1(v), . . . , N0(v) are created by repeated
application of a breadth-first search algorithm. A new vertex with depth d is
placed in each of Nj(v), for j ≤ d, if Nj(v) is not full already. The process stops
when all Nj(v)s are full. Note that the running time of this procedure is bounded
above by

k∑
i=1

|Vi|(1 · nbrs(1) + 2 · nbrs(2) + · · · + i · nbrs(i)). (3)

As in the case of the expression (1), (3) is equal to

k∑
i=0

i|Vi|nbrs(i) ≤ c0

k∑
i=0

i|Vi|avgDeg(G) · n

|Vi| = c0

k∑
i=0

iavgDeg(G) · n =

= c0avgDeg(G) · (k + 1)k
2

n. (4)

Similarly we can show that there exists a positive constant c1 so that equation

(3) is greater than c1avgDeg(G)· (k + 1)k
2

n. The time complexity of this strategy

for finding Ni(v), Ni−1(v), . . . , N0(v) for all v ∈ V is Θ(avgDeg(G)k2n). If G is
of bounded degree, then Θ(avgDeg(G)k2n) = Θ(k2n), where k = log n for a GC
filtration, and k = log δ(G) for a MIS filtration.

3.4 Initial Placement of Vertices

Most graph drawing algorithms begin by placing all the vertices of the graph
randomly in the plane or in 3D. In this algorithm we have adopted a different
approach in that we add vertices to the current drawing one at a time and only
after we have found a suitable place for them. Here we describe the process in
two dimensional space, but in practice it can be done in any Euclidean space
E. Recall that in the first step of the algorithm we compute a filtration V =
V0 ⊃ V1 ⊃ . . . ⊃ Vk ⊃ ∅. If necessary, we modify the last one or two sets of the
filtration so that the last one has exactly three elements, Vk = {u, v, w}.

218 P. Gajer, M.T. Goodrich, and S.G. Kobourov

+t

t -

t -
1

+t 1

t -
2

+t3
t -

3
+t2

u

v
t

w

vu

Fig. 3. Initial placement for a new vertex t; darkly shaded vertices have already been
placed. (a) Given two vertices in R

2, there are up to two possible places for t, based on its
graph distance to u and v. (b) Using three vertices in R

2 results in a better placement.

We start the process of drawing G by placing u, v, and w as follows: we find
a triangle with endpoints given by pos[u], pos[v], pos[w], so that dR2(u, v) =
dG(u, v), dR2(v, w) = dG(v, w), dR2(w, u) = dG(w, u), where dR2(u, v) is the
Euclidean distance between pos[u] and pos[v], and dG(u, v) is the graph distance
between u and v.

In general, after refining the positions of the vertices in Vi, we need to find
initial positions for the vertices in Vi−1 −Vi. Once all vertices in Vi−1 are placed
their positions are refined, and we proceed to the next level. This two-stage
process continues until all vertices have been drawn. A natural way to place a
new vertex given the placement of several others is to use the graph distance
from the new vertex to several of its closest neighbors that have already been
placed. We base our placement strategy on this simple idea.

Suppose that we are looking for a place for a new vertex t ∈ Vi−1 − Vi.
Furthermore, suppose that we know two vertices u, v ∈ Vi which have already
been placed. Then using their position vectors, pos[u] and pos[v], and the graph
distances dG(u, t) and dG(v, t), it is straightforward to find a position pos[t] of t in
the plane so that dR2(u, t) = dG(u, t), dR2(v, t) = dG(v, t), as shown in Fig. 3(a).
This idea can be generalized so that three or more already placed vertices are
used to determine the location of new vertices. For each vertex t ∈ Vi−1 − Vi we
find its three closest neighbors u, v, w ∈ Vi, see Fig. 3(b). Since u, v and w have
already been placed we can obtain a suitable place for t by solving the following
system of equations for u, v, w, and t

(x − xu)2 + (y − yu)2 = dG(u, t)2

(x − xv)2 + (y − yv)2 = dG(v, t)2

(x − xw)2 + (y − yw)2 = dG(w, t)2,

where pos[u] = (xu, yu), pos[v] = (xv, yv), pos[w] = (xw, yw), pos[t] = (x, y).
Since this system of equations is over-determined and may not have any soluti-
ons, we solve the following three pairs of equations instead:

{
dR2(u, t) = dG(u, t)
dR2(v, t) = dG(v, t)

{
dR2(v, t) = dG(v, t)
dR2(w, t) = dG(w, t)

{
dR2(u, t) = dG(u, t)
dR2(w, t) = dG(w, t)

A Multi-dimensional Approach to Force-Directed Layouts 219

Solving these three systems of quadratic equations we obtain up to six different
solutions. We choose the three closest to each other, call them t+1 , t+2 , t+3 , and
place t are their barycenter: pos[t] = (t+1 + t+2 + t+3)/3, see Fig. 3(b).

3.5 Local Temperature Calculations

A common problem with most force-directed algorithms is determining the sca-
ling factor of the displacement vector at each phase. Clearly, in the early ite-
rations vertices should move farther than in the last iteration, but coming up
with a schedule for scaling the displacement vector that works well for most
graphs is generally difficult. One of the reasons for this difficulty is that initially
the vertices are placed at random and as a result can be arbitrarily far from
their final position. As a result of the intelligent placement of vertices in our
algorithms, this is much less of a problem. The local temperature heat[v] of v
is simply a scaling factor of the displacement vector disp[v] of v. One particu-
lar implementation is considered in detail in [15] but regardless of the specifics
of the implementation, the time complexity for updating the local temperature
for each v is constant and thus the total time complexity for local temperature
calculations is linear.

3.6 Multi-dimensional Drawing

One of the major advantages of a simple local temperature calculation is that
unlike the Newton-Raphson and the majority of other classical optimization
methods, it works with minor changes in any dimension. In order to obtain an
embedding of a graph in R

n, we can simply make pos[v] an n dimensional vector.
A problem with drawings in dimensions higher than three is that they cannot
be trivially displayed. An obvious solution to this problem is to find a projection
from R

n into R
3 or R

2.
Consider the case in which a four dimensional drawing is projected down to

three dimensions. The projection method described below generalizes to higher
dimensions as well. We begin by taking a random vector e′

0 in R
4 and normalizing

it e0 = e′
0

‖e′
0‖ . Next we find three vectors e′

1, e
′
2, e

′
3 ∈ R

4 so that e0, e′
1, e

′
2, e

′
3

are linearly independent in R
4. We find these vectors by repeatedly choosing a

random vector and checking if it is independent from the previous ones until we
have four vectors. We then use the Gram-Schmidt orthogonalization process to
produce an orthonormal basis e0, e1, e2, e3 of R

4 using e0, e′
1, e

′
2, e

′
3. The three

vectors e1, e2, e3 span a 3 dimensional subspace S of R
4 which is perpendicular

to the vector e0. The orthogonal projection ρ : R
4 → S from R

4 onto S in the
direction of the vector e0 is given by the formula ρ(v) = v − (e0, v) ∗ e0, where
(e0, v) is the scalar product between e0 and v. Yet to display v on the screen
using OpenGL, we need the coordinates (v1, v2, v3) of the projection ρ(v) of v
onto S with respect to the basis vectors e1, e2, e3. We get these by a simple
scalar product calculation v1 = (e1, v), v2 = (e2, v), v3 = (e3, v).

The above procedure easily generalizes to higher dimensions. Our experi-
ments with 4D drawings yield better results than regular three dimensional dra-
wings. In particular, note the problems with the drawings of the Moebius bend

220 P. Gajer, M.T. Goodrich, and S.G. Kobourov

Fig. 4. (a-b) Moebius bands on 600 and 1500 vertices drawn in 3D. Note the rough
twists.(c-d) The same graphs but drawn in 4D and projected in 3D.

directly in 3D in Fig. 4(a-b) and the improved drawings when the same graphs
are drawn in 4D and projected to 3D in Fig. 4(c-d).

3.7 Space and Time Complexity

Main Theorem. If G is a graph of bounded degree and V is a GC filtration or
a MIS filtration of the set V of vertices of G, then the time complexity of our
algorithm, after constructing V, is Θ(n · k2) and the space required is Θ(n · k),
where k = log n if V is a GC filtration, and k = log δ(G) if V is a MIS filtration.

Proof. The proof of the theorem follows from the fact that after building a
filtration V, all parts of the algorithm take linear time and space, except the
procedure for finding Ni(v), Ni−1(v), . . . , N0(v) for each element v of V . Thus
both time and space complexity of the algorithm is determined by the time and
space complexity of the procedure for finding Ni(v)s. In Section 3.3, we showed
that the time required for finding the sets Ni(v) is Θ(n · k2) and the space
required is Θ(n · k), which concludes the proof.

4 Conclusion

We have presented a novel algorithm for drawing large graphs. The algorithm
employs a vertex filtration together with intelligent placement of vertices and fast
energy minimization. The algorithm produces drawings in two, three, and higher
dimensions in sub-quadratic time and space. While the algorithm works very
well for sparse graphs and graphs of low degree, it does not produce high quality
drawings for all graphs. In particular, well-connected graphs pose significant
challenges as the vertex filtrations become very shallow.

References

1. A. Brandt. Multilevel computations of integral transforms and particle interactions
with oscillatory kernels. Computer Physics Communications, 65:24–38, 1991.

2. A. Brandt. Multigrid methods in lattice field computations. Nucl. Phys. B, 26:137–
180, 1992. Proc. Suppl.

3. I. Bruß and A. Frick. Fast interactive 3-D graph visualization. In Graph Drawing
(Proc. GD ’95), pages 99–110, 1995.

A Multi-dimensional Approach to Force-Directed Layouts 221

4. R. Davidson and D. Harel. Drawing graphics nicely using simulated annealing.
ACM Trans. Graph., 15(4):301–331, 1996.

5. G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Algorithms for drawing
graphs: an annotated bibliography. Computational Geometry: Theory and Appli-
cations, 4:235–282, 1994.

6. G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice Hall, Englewood Cliffs, NJ, 1999.

7. C. A. Duncan, M. T. Goodrich, and S. G. Kobourov. Balanced aspect ratio trees
and their use for drawing very large graphs. In Proceedings of the 6th Symposium
on Graph Drawing, pages 111–124, 1998.

8. P. Eades. A heuristic for graph drawing. Congressus Numerantium, 42:149–160,
1984.

9. P. Eades and Q. Feng. Multilevel visualization of clustered graphs. In Proceedings
of the 4th Symposium on Graph Drawing (GD ’96), pages 101–112, 1996.

10. P. Eades, Q. Feng, and X. Lin. Straight-line drawing algorithms for hierarchi-
cal graphs and clustered graphs. In Proceedings of the 4th Symposium on Graph
Drawing (GD ’96), pages 113–128, 1996.

11. Q. Feng, R. F. Cohen, and P. Eades. How to draw a planar clustered graph. In
Procs. of the 1st Annual International Conference on Computing and Combinato-
rics (COCOON ’95), pages 21–31, 1995.

12. A. Frick, A. Ludwig, and H. Mehldau. A fast adaptive layout algorithm for undi-
rected graphs. In R. Tamassia and I. G. Tollis, editors, Graph Drawing (Proc. GD
’94), LNCS 894, pages 388–403, 1995.

13. T. Fruchterman and E. Reingold. Graph drawing by force-directed placement.
Softw. – Pract. Exp., 21(11):1129–1164, 1991.

14. G. W. Furnas. Generalized fisheye views. In Proceedings of ACM Conference on
Human Factors in Computing Systems (CHI ’86), pages 16–23, 1986.

15. P. Gajer and S. G. Kobourov. GRIP: Graph dRawing with Intelligent Placement.
In To appear in Proceedings of the 8th Symposium on Graph Drawing, 2000.

16. R. Hadany and D. Harel. A multi-scale algorithm for drawing graphs nicely.
In Proc. 25th International Workshop on Graph Teoretic Concepts in Computer
Science (WG’99), 1999.

17. D. Harel and Y. Koren. A fast multi-scale method for drawing large graphs.
Technical Report MCS99-21, The Weizmann Institute of Science, Rehovot, Israel,
1999.

18. T. Kamada and S. Kawai. Automatic display of network structures for human
understanding. Technical Report 88-007, Department of Information Science, Uni-
versity of Tokyo, 1988.

19. K. Kaugars, J. Reinfelds, and A. Brazma. A simple algorithm for drawing large
graphs on small screens. In Graph Drawing (GD ’94), pages 278–281, 1995.

20. S. C. North. Drawing ranked digraphs with recursive clusters. In Graph Drawing
93, Proceedings of the First International Workshop on Graph Drawing, Sept. 1993.

21. N. Quinn and M. Breur. A force directed component placement procedure for prin-
ted circuit boards. IEEE Transactions on Circuits and Systems, CAS-26(6):377–
388, 1979.

22. M. Sarkar and M. H. Brown. Graphical fisheye views. Communications of the
ACM, 37(12):73–84, 1994.

23. K. Sugiyama and K. Misue. Visualization of structural information: Automatic
drawing of compound digraphs. IEEE Transactions on Systems, Man, and Cyber-
netics, 21(4):876–892, 1991.

	Introduction
	Previous Work
	Visualization of Large Graphs
	Force-Directed Algorithms

	The Algorithm
	Algorithm Overview
	Vertex Set Filtrations
	Finding Vertex Neighborhoods $N_i(v)$
	Initial Placement of Vertices
	Local Temperature Calculations
	Multi-dimensional Drawing
	Space and Time Complexity

	Conclusion

