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In this paper we give parallel algorithms for a number 
of problems defined on polygons and point sets. All 
of our algorithms have optimal T(n) * P(n) products, 
where T(n) is the time complexity and P(n} is the 
number of processors used, and are for the EREW 
PRAM or CREW PRAM models. In addition, our 
algorithms provide parallel analogues to well known 
phenomena from sequential computational geometry, 
such as the fact that problems for polygons can often- 
times be solved more efficiently that point-set prob- 
lems, and that one can solve nearest-neighbor prob- 
lems without explicitly constructing a Voronoi dia- 
gram. 

1 .  I n t r o d u c t i o n  

We present a number of new algorithms for parallel 
computat ional  geometry [1,2,3,4,7,9,10]. Our goal is 
to find algorithms that  run as fast as possible and 
are efficient in the following sense: if P(n) is the pro- 
cessor complexity, T{n) the parallel t ime complexity, 
and Seq(n) the t ime complexity of the best known 
sequential algorithm for the problem under consider- 
ation, then T(n} * P(n) = O(Seq(n)). If the product  
T(n) * P(n) achieves the sequential lower bound for 
the problem, then we say the algorithm is optimal. 
All of our algorithms are optimal in this sense and 
are for the EREW or CREW PRAM models. The 
weaker of these two is the E R E W  PRAM model, the 
synchronous shared memory model in which simulta- 
neous reads or writes are not allowed. In the CREW 
PRAM we allow for simultaneous reads. Specifically, 
our results are the following: 
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i. Kernel of a simple polygon: O(logn) time us- 
ing O(n/log n) processors in the CREW PRAM 
model. 

. All-nearest neighbors for a set of points in the 
plane: O(logn) time using O(n) processors in 
the EREW PRAM model. 

. All-nearest neighbors for the vertices of a con- 
vex polygon: O{log n) time using O{n/log n) 
processors in the EREW PRAM model. 

4.  Convex hull of a set of points in the plane: 
O(logn) time using O(n) processors in the 
CREW PRAM model {using a "cascading 
calipers" technique). 

Our algorithms for problems 1 and 3 show that  
there is a parallel analogue to a famous phenomenon 
of sequential computat ional  geometry, namely, that  
many problems with n ( n l o g  n) lower bounds when 
defined for arbi t rary point sets can be solved in O(n) 
t ime when the points are the vertices of a polygon. 
Our kernel algorithm (problem 1) is based on the dis- 
covery of a new way of characterizing the kernel of a 
simple polygon P in terms of the 'Ccurvature" of P.  
This idea also leads to a new O(n)- t ime sequential al- 
gorithm for this problem. Our algorithm for problem 
3 is based on a composite of parallel merging, parallel 
prefix, and broadcasting techniques. 

Our algorithm for problem 2 shows that ,  just 
as in the sequential case, one can optimally solve 
the all-nearest neighbor problem without explic- 
itly constructing a Voronoi diagram (for which the 
best-known para lh l  algorithm runs in non-optimal 
O(log 2 n) t ime using O(n) processors [1,2]). Our al- 
gorithm is based on the novel use of the cascading 
divide-and-conquer technique [2]. 

Finally, our convex hull algorithm (for problem 
4) is based on a generalization of cascading divide- 
and-conquer technique which provides a non-trivial 
parallel analogue to Toussaint's "rotat ing calipers" 
paradigm [18]. 

We present our algorithms, one per section, in 
the discussion which follows, and conclude with some 
final remarks and open problems in Section 6. 
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2 .  K e r n e l  o f  a S i m p l e  P o l y g o n  

Let P = (eo, e2 , . . . ,en- t )  be a listing of the edges 
of a simple polygon P (with eo and en-x sharing 
a common endpoint). Each edge of P is given an 
orientation so that  the interior of P is on its left. 
We let H(ei) denote the half-plane to the left of the 
line containing el. Given any list Q of oriented edges 
co, ..., era-x, we define the kernel of Q, denoted K(Q),  
to be the intersection of all the half-planes determined 
by the edges in Q, i.e., K(Q) m - t  = hi= o H(el). Our 
problem is the following: given an oriented simple 
polygon P,  construct K(P} .  

Wagener [19] has shown that  one can construct 
the convex hull of a simple polygon in O(logn) time 
using O ( n / l o g n )  processors in the C R E W  PRAM 
model. Since one can compute the common intersec- 
tion of n half-planes by dualization to the convex hull 
problem [11,16], one may at first think that  this prob- 
lem and the kernel problem have a primal-dual rela- 
tionship. This is not the case, however, because the 
dualization methods, even when extended to poly- 
gons [11], do not map simple polygons into simple 
polygons. It is not surprising, then, tha t  our algo- 
r i thm for the kernel problem is quite different from 
the convex hull algorithm of Wagener. 

We begin our discussion with a few definitions. 
Let P[¢~, ey] denote the subchain of P from ei to ei, 
inclusive (edge subscripts are modulo n). Note that  
since each edge has an orientation, P[ei, ey] is well 
defined and is different from P[ey, ei]. Given two ad- 
jacent edges el and ei+l define the angle between ei 
and ei+l, denoted o~i,i+1, to be the signed angle ei 
makes with ei+t when they are translated (as vec- 
tors) so as to share a common start  vertex, where the 
angle is positive if we move in a counterclockwise an- 
gle in going from ei to ei+l (again, all subscripts are 
modulo n). We generalize this definition as follows: 
Given a subchain P[ei, ell we define the curvature of 
Pies, ¢y], denoted vii,y, to be the sum of all the edge 
angles from ei to e i .  This can be expressed symboli- 
cally as 

y-1 

~i,y ~ E Qtk,k+ 1. 
k=i 

For completeness, we define a~,i = 0 for all i E 
{0, 1, ..., n - -  1}. 

If there are two edges ei and e i on P such that  
aid >_ 3~', then we say that  P is a spiral polygon. 
The next lemma establishes an important  property 
of spiral polygons. 

Le rn rna  2.1: I f  P is a spiral polygon, then K ( P )  is 
empty. 

P r o o f :  Suppose P is a spiral polygon, yet K ( P )  is 
non-empty. Since K { P )  is non-empty, then P is star- 

shaped. That  is, for each point p E K ( P )  the bound- 
ary of P is completely visible from p and the vertices 
of P,  as listed around the boundary of P,  are sorted 
radially around p. But, by hypothesis, there is some 
part of the boundary of P,  say P[ei, ey], with a cur- 
vature of at least 31r. This contradicts one of the 
following, however: (1) that  P[ei, ey] is sorted radi- 
ally around p or (2) that  all of P[ei, ell is visible from 
p. (See Figure 1.) [] 

We can trivially test if P is a spiral polygon in 
O(logn) time using O(n 2) processors (by comput- 
ing all the aid values). But, since we only have 
O(n/ log  n) processors at our disposal, our method 
for determining if P is a spiral polygon needs to be 
a little more involved. We begin by computing C~o,i 
and ai,o for all i E {0, 1, ..., n - 1}. This can easily be 
done in O(log n) time using O(n / log  n) processors by 
two simple parallel prefix computations. Recall that  
a parallel prefix computation is just a reduction of 
a problem to the problem of computing all the pre- 

k fix sums ck = ~ i = 1  al of a sequence (al,  a2, ..., am), 
where the + operation is associative. (See [9] for a 
survey of this and other parallel techniques.) We also 
compute four additional quantities: 

fi = o_<~_<~_lo~o,y, 

bi = max ~y,O, 
i<i<n 

low = min n0,i. 
o< i_<n- * 

Again, all subscripts are modulo n. As with the c~0,i's 
and ~i,o'S, these quantities can easily be computed in 
O(log n) time using O(n / log  n) processors. The next 
lemma characterizes spiral polygons in terms of these 
quantities. 

L e m m a  2.2: P is a spiral polygon if  and only if  (1) 
bl + f~ _> 3~r for some i, or (~) f , - 1  - low _> 31r. 

P r o o f :  The ~if" part of the proof is obvious. So, 
for the "only if" part, suppose P is a spiral polygon. 
Then there is some subchain P[ei, ey] which has a 
curvature of at least 31r. That  is, ~i,y _> 3~r. There are 
two cases. Case 1:e0 is in P[ei, ey]. In this case, since 
~i,y >_ 3~r, bi + fy _> 3~'. But this implies that  there 
is some k such that  bk + fk >_ 3~r. Case 2:e0 is not in 
P[ei, ey]. In this case, f n - t  - low >_ 31r. If this were 
not so, there would be no way that  c~i,y _> 31r, since i 
must be less than j in this case. This establishes the 
lemma. [] 

Let Q1 be the lexicographically-first maximal in- 
creasing subsequence of (e0, ..., en-1), using the fi 's 
as weights, and let Q2 be the lexicographically-first 
maximal increasing subsequence of (co, en-1, ..., ex), 
using the bi's as weights. Recall that  a lexicograph- 
ically-fLrst maximal increasing subsequence is defined 
by placing the first i tem in the list in the set, then 
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scanning through the list adding an item to the set 
each time its label is bigger than the biggest label en- 
countered thus far. The following lemma establishes 
an even stronger relationship between KiP ) and the 
curvature properties of P. 

L e m m a  2.8: If P is not a spiral polygon, then 
K iP  ) = KiQ~ ) ~ K{Q~). 

Proof.. Since Qt and Q2 are subsets of P, KiP ) _C 
K(Qi) n K{Q2). So, we have yet to show that 
K(Qx) N K(Q2) _c K(P). Clearly, if K(Q:) N 
K(Q2) = ¢, then we are done; so suppose K(Q1) N 
K(Q2) ~ ~. The proof is by contradiction. Suppose 
KiP  ) is properly contained in K(Q1)A K(Q2). Then 
there is an edge ei of P with ei ¢ Q1 u Q2 and such 
that  Hiei ) n K(Q,) n KiQ2 ) is a proper subset of 
K(Q1) A K(Q2). Let ej be the edge closest to ei in 
P such that  ] i  > f~ and with 3" < i. Since ei is not 
in Q1, the edge e i must exist. 
Claim: ei is not contained in H(ei). 
Proof  of claim: It is sufficient to show that  ff el inter- 
sects H(e j ) ,  then P is a spiral polygon (which would 
be a contradiction), so suppose e~ intersects H(ej). 
We begin the proof of our claim by noting that  the 
only point of intersection of ej+l  and H(ey) is the 
common vertex ej and e5+1 share. If this were not 
the case, then ej would not be the closest edge to ei 
such that  ] i  > ]i and 3" < i. Let et be the first edge 
in P[ej ,  ¢i] which intersects H ie j ) ,  and let v be a ver- 
tex on P[ej, el] such that  there is a line T parallel to 
e~" and tangent to P[e~., eli at v with all of P[ej, e~] 
on the same side of T as H(e~'). Since P[ey, e,] is a 
finite chain beginning and ending in H(e~.), the ver- 
tex v and line T must exist. Let e,n and em+l be 
the edges of P[ej, et] incident to v. The intersection 
of H(em) and H(em+l) lies on the opposite side of 
T as H(ei). If this were not so (i.e., the intersection 
of Hle,n ) and H(e,~+l) lies on the same side of T 
as H(e j ) ) ,  then in going from em to em+l one makes 
a left turn. But,  since T is parallel to ey, this im- 
plies that  f m >  ] j ,  which contradicts the definition 
of ej. Thus, the intersection of Hle,~ ) and H(em+s) 
lies on the opposite side of T as H(ey). But this 
forces Pier, ej] to have a cumulative amount  of turn- 
ing greater than 3~r. Which, in turn, implies that  P 
is a spiral polygon. (See Figure 2.) [End of proof of 
claim.] 

Let ek be the edge closest to ei in P such that  
bk > bl and i < k. As with e~, ek must exist, because 
e# is not in Q2. By an argument similar to the proof 
of the above claim we have that  el is not contained in 
H{e~). These two facts imply that  the edge ei is not 
contained in H(ey) N H(e~). But this implies that  
H(e;) a H(e,) H(e ) = Hie;) In other 
words, H(ei) ~ K(Qx) ~ KiQ2 ) is not a proper subset 
of K(Q~) ~ K(Q2), which of course is a contradiction. 
Therefore, K(P) = KiQ~ ) n K(Q~). [] 

The above lemmas immediately give us the outline 
of our algorithm for constructing K(P): test if P i~ 
a spiral polygon, and, if it is not a spiral polygon, 
construct K(Q1) and K(Q2) and their intersection. 

We have already described how to test if P is 
a spiral polygon or not. So suppose P is not a 
spiral polygon. We begin by constructing Q1 and 
Q2. This can be done by yet another  parallel pre- 
fix computation in O(log n) time using O(n/log n) 
processors (by computing, for each edge e~ in the 
list in question, the maximum prefix (or suffix) la- 
bel of the edges preceding ei). Note that the lists 
Qi and Q2 are sorted by slopes. In addition, the 
list Q1 (resp., Q2) can.easily be divided into O(1) 
lists such that  the range of label values in each list 
is at most r (this takes at most O(logn)  time using 
O(n/log n) processors). By appropriately translating 
the origin for the edges in each of these lists so that  
it is contained in their common intersection we can 
then compute K(Qi) and K(Q2) in O(logn) time 
using O(n/logn} processors in the CREW PRAM 
model. The method is to use the dualization method 
of [11,16] to dualize to the problem of constructing 
the convex hull of a sorted point set, which can be 
solved in O(log n) time using O(n/log n) processors 
in the CREW PRAM model [10,19]. We conclude the 
algorithm by then computing the intersection of the 
two convex polygons K(Q,) and K(Q2) in O(log n) 
time using O(n/logn) processors by using parallel 
merging [6] to implement the sequential algorithm of 
Shamos [17]. We summarize with the following theo- 
rem. 

T h e o r e m  2.4: Given an n-edge simple polygon P 
one can construct the kernel of P in O(logn)  time 
using O(n/logn) processors in the CREW PRAM 
model. [] 

3. All-Nearest Neighbors for a Point 
Set 

Given a set S of n points in the plane, the problem 
is to find the nearest neighbor point of each point 
in S. For any point q let At(q) denote q's nearest 
neighbor. Our algorithm runs in O(log n) time us- 
ing O(n) processors. We describe how to implement 
our algorithm in O(n) space in the CREW PRAM 
model and then outline how it could be implemented 
in O(nlogn) space in the EREW PRAM model. 

Our algorithm is based on two non-trivial applica- 
tions of the cascading divide-and-conquer technique 
of Atallah, Cole, and Goodrich [2 I. We briefly review 
this technique as it applies to our problem. 
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$.1.  A R e v i e w  o f  C a s c a d i n g  D i v i d e - a n d -  
C o n q u e r  

Suppose we are given a complete binary tree T such 
that  there is an i tem (from some universe) stored at 
each leaf. For each node v of T we recursively de- 
fine sets A1,u, A2,u, ..., Ak,e in terms of sets stored 
at the children of v (these definitions depend on the 
application). Initially, the Ai,,,'s are only constructed 
for the leaf nodes v of T. Let v be an internal node 
in T with children u and w. Given a sorted array 
A and a function f ,  we use the notat ion f (A)  to 
denote the array defined by applying f to each el- 
ement of A, i.e., f(A)[i] = f(A[i]).  We say such 
a function is monotone on A if A[i I < A[i] implies 
f(A[i]) _< f(A[j]) .  We place a restriction on the ar- 
ray definitions, namely, tha t  for any internal node v 
the definition of each Ai,~ have the following form: 

A,.o = U u U 
iez(u) iez(t~) 

where I(u) and I(w) are subsets of {1, 2, ..., k}, and 
ft, and f~ are monotone.  The functions fu and fw 
can be thought  of as "identity changing ~ rules, and 
can often be used to avoid using set difference oper- 
ations in the definition of any A~,~. It is often very 
useful to also allow each element of an A~,u to have a 
label associated with it. So, for each element Ai,~ [k] 
let L~,~ [k] be the corresponding label (which may ac- 
tually be a vector of labels). For any element a and 
set B let rod(a ,  B) (resp., s.cc( , B)) denote the 
predecessor (resp., successor) of a in B if a is not in 
B, and simply a, if a E B. Let rank{a, B) denote the 
rank of pred(a, B) in B, and let Fi, t, be a shorthand 
for the array fv (Ay, u ). We place a restriction on the 
label definitions, as well, namely, tha t  the definition 
of Li,u [k] for any node v be expressed as the sum of 
labels of the form 

1. 

2. Ly, wirank(A,,~,[k], Fd, w)] , or 

3. Li,,[rank(A,,,[k], Ai,,)] , 

so long as there are no circular definitions ( j  is a 
free variable) and the plus (+) operation can be com- 
puted in O(1) t ime using a single processor. If the 
definitions of value arrays Ai,e and label arrays Li,v 
have these forms, then we say that  they are cascad- 
ing. If we also allow for the definition of Li,e [k] to 
include labels of the form L~.,,[rank(ALu[k],Aj, e)], 
where, given Ay,,,, any such L ~ label can be computed 
O(log n + [IAi, v liP]) t ime using p processors in the 
E R E W  PRAM model, and introducing such labels 
allows us to define the L labels so that  any array lo- 
cation can be accessed by at most one processor at a 
time, then we say the labels are EREW-computable. 

Atallah, Cole, and Goodrich [2] prove the following 
theorem: 

T h e o r e m  3.1: [2]: Given a complete binary tree T 
with cascading definitions for sets Ai,~ and labels Li,~ 
defined for each node v in T, then Ai,~, and Li,t, can 
be constructed for each node v in T, level by level, 
in O(logn)  time and O(n) space using O(n) proces- 
sors in the CREW P R A M  model (if A~,e and Li,v 
are required for all levels simultaneously, then this of 
course requires O(nlogn) space). I f  the labels are 
EREW-computable, then all the Ai,u "8 and Li,u 's can 
be constructed in O(log n) time and O(nlog n) space 
using O(n) processors in the E R E W  P R A M  model. • 

Having reviewed this powerful technique, let us 
re turn to the problem at hand. 

3.2. Al l  N e a r e s t - N e i g h b o r  A l g o r i t h m  

Let us give a brief overview of the two phases of 
our algorithm. In phase one we will determine, for 
each q E S, an approximation to N(q), the nearest- 
neighbor ball centered at q. Specifically, we will de- 
termine a ball around each q, which we call the neigh- 
borhood ball about  q, whose radius is the distance be- 
tween q and the closest point q has %ncountered" 
during the cascading merge procedure. During the 
second phase we construct for each point q a list C(q) 
which contains points of S which may have q as their 
nearest neighbor. We call C(q) the candidate list for 
q. It is easy to show that  for any point q there can be 
at most six other points qt such tha t  q is the nearest 
neighbor of qt. Thus, C(q} need never contain more 
than six points. Our algorithm constructs all possible 
C{q) lists and then performs a post-processing step 
to eliminate any pairs which are not nearest-neighbor 
pairs. The details follow. 

In Phase I we construct,  for each q i n  S, the 
neighborhood ball centered at q, denoted B(q). For 
simplicity, let us assume that  the points have dis- 
tinct z-coordinates; one can easily modify our algo- 
r i thm for the general case. We begin by sorting the 
points in S into increasing order by z-coordinates; 
let S = (ql, q2, ..., qn) denote this list. This can be 
done in O(logn)  t ime using O(n) processors in the 
EREW  PRAM model [8]. We then build a complete 
binary tree T which has the points ql, q2, ..., q• as 
leaves (listed from left to right). For each node v in 
T let Y(v) denote the points stored in descendents 
of v sorted by y-coordinates, and let depth(v) denote 
the depth of v (with the root  being at depth 0). With 
each point q in Y(v) we store a label b(q). At the end 
of the cascading procedure the label b(q) will store 
the name of the point which is closest to q of all the 
points which q has %ncountered." Specifically, for 
each leaf node v, which, say, stores the point ql, we 
initialize b(qi) to be the closer of q~-I and qi+l to 
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qi. For each internal node v, with children u and w, 
we define b(q) for each q • Y(v) to be the closer of 
the old value of b(q) and the point in {pred(q, Y(u)),  
succ(q, Y(u)), pred(q, Y(w)), succ(q, Y(w))) closest 
to q. 

Note that  the definitions of Y(v} and b(q) can 
easily be writ ten so as to be cascading. Moreover, 
since the value of the label b(q) depends only on the 
old value of b(q) and the points in {pred(q,Y(u)), 
succ(q,Y(u)), pred(q,Y(w)), succ(q,Y(w))}, it is 
EREW-computabh .  Thus, we have the following: 

L e m m a  8.2: Given a list of points S = (ql, q2, ..., q,) 
the label b(qi) can be computed for each point ql • S 
in O(logn)  time and O(n) space using O(n) proces- 
sors in the CREW PRAM model, or in O(log n) time 
and O(nlogn) space using O(n) processors in the 
EREW P R A M  model. [] 

We define B{q), the neighborhood ball centered at 
q, to be the region in ~2 consisting of all points q* 
such that  d(q, q') < d(q, b(q)). In Phase 2 we refine 
each B(q) into N(q), the nearest-neighbor ball cen- 
tered at q. Since the points in S all have distinct 
z-coordinates, we can part i t ion the leaves of T by 
placing a vertical dividing line between ql and qi+l 
for i = 1, 2, ..., n -  1. With each node v in T we as- 
sociate a slab IIv which is the region bounded by the 
two vertical dividing lines which separate the points 
stored in the descendents of v from the rest of the 
points in S. For each node v in T let left(v) (resp., 
right(v)) denote the left (resp. right} vertical bound- 
dry of the slab IIv. We define the following lists for 
each node v • T: 

L(v) = {q • Y(v) : B(q) n l e f t ( v )  # ¢} 
R(v) = {q • Y(v) : B(q) a r i g h t ( v )  ~ ¢} 

Tha t  is, L{v) {resp., R(v)) consists of the points 
whose neighborhood ball intersects the left (resp., 
right) boundary of the slab /Iv. Our method for 
refining the B(q) 's  into N(q) 's  (i.e., Phase 2) in- 
volves a second application of the cascading divide- 
and-conquer method.  In this second merge we not 
only compute Y{v) for each node v but  also L(v) and 
R(v}, all sorted by increasing y-coordinates. Unfor- 
tunately, L(v) and R(v} may be proper subsets of 
Y(v). Thus, in order for us to find cascading defini- 
tions of L(v) and R(v) we will need to use some kind 
of re-naming scheme, i.e., we need to employ identity- 
changing monotone functions in the recursive defini- 
tions of L(v) and R(v). For each q in S we define l(q) 
(reap., r(q)) to be the depth of the lowest node v of 
T (i.e., the node nearest the root) such that  v is an 
ancestor of the leaf storing q and B(q) intersects the 
left (reap., right) vertical boundary line for v. In ad- 
dition, for each node v in T and each point q in Y(v) 
we maintain a label lnext(q) which stores the point q' 

which has the smallest y-coordinate from among all 
those points in {q~ : y(ql) > y(q) and l(q I) < l(q)). 
Informally, l(q) (resp., r(q)) determines the level in 
T such that ,  for all points which cascade to levels 
above this level and are not in Y(q) q cannot have 
any of them as a neares t  neighbor. We define a 
pointer rnext(q) for each q in Y(v) similarly. For 
any node v in T with left child u and right child w 
we define functions ft, and fw as follows: f~ (q) = q if 
r(q) < depth(u) and fu (q) = rnext(q) otherwise; and 
fw{q) = q if l(q) < depth(w) and fw(q) = lnext(q) 
otherwise. These functions enable us to give cascad- 
ing definitions of R(v), L(v). 

L e m m a  8.8: Let v be an internal node of T with left 
child u and right child w. Then we have the following 
(cascadino) definitions of L(v) and R(v): 

L(v) = L(u) u f . (L(w))  
R(v) = A ( R ( u ) ) u R ( w )  

P r o o f :  The functions ]u and f~ are clearly mono- 
tone. The proof of the lemma is based on a simple 
induction argument,  which is omitted. [] 

We must also show that  the lnezt and rnext labels 
have cascading definitions. 

L e m m a  8.4: Let v be an internal node of T with 
left child u and right child w. Suppose q • Y(u), and 
let q' = 8ucc(q, f,.(L(w))). Then the following is a 
cascading definition of lnext [the definition of rnext 
is similar). 

Inext(q) = 

Inezt(q} if y(Inezt(q)} < y(q'} (I) 
Inezt(q) if l(q') = l(q) 

and y(lne~t(q)) < y(lne~t(q')) (2) 
q' ifl(q') < l(q) 

and y(q'} < y(lnezt(q}} (3) 
Inext(q'} if  l(qt) = l(q) 

and y(InextCq')) < y(InextCq)) (4) 

P r o o f :  Follows immediately from the definitions of 
the Inext labels and ql. (See Figure 3.) [] 

These definitions are EREW-computable  as well, 
since the l(q) and r(q) values can be computed a pri- 
ori. Actually, in the EREW case we needn't  bother 
with the lnext and rnext pointers, since we can con- 
struct R(v) and L(v) directly from Y(v) and the l(q) 
and r(q) values (by a simple data-compression com- 
putation).  

These definitions enable us to construct the L(v)'s 
and R(v) 's  in a cascading fashion, and we use these 
lists to construct candidate lists C(q) for each point 
q, which contain the (at most 6 7 points which may 
have q as their nearest neighbor. Let SW(q) de- 
note the region of ~= consisting of all points qt such 
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that z(q') < z(q) and y(q') < y(q), i.e., all points 
which are south-west of q. Define SE(q), NW(q), 
and NE(q) similarly. For each point q in r(~) we 
define four pointers (labels}: 

sw(q) = point w / m a x ,  y-coor, in SW(q) NY(v )  
SO(q) = point w /  max. y-coot, in SE(q) n Y(v) 

.w(q) = point w/  rain. y-coor, in NW(q) n Y(o) 
.e(q) = point w/  rain. y-coor, in lYE(q) n Y ( d  

These labels all have cascading definitions. We use 
these labels and the L and R lists to maintain C(q) 
during the cascading. In this case, if q comes from 
Y(w), we can compute the new list C(q) at v given 
the old list C(q) at w and at most four points in Y(u).  
(The definition is similar if q comes from Y(u).)  

L e m m a  $.5: Let v be a node in T with left child 
u and right child w and let q be a point in 
Y(v). If q • Y(u), then the only points in Y(w) 
such that q could possibly be their nearest-neighbor 
are prod(q, L(w)), 8w(pred(q, L(w))), succ(q, L(w)), 
and ~ ( s u e c ( q , L ( ~ ) ) ) .  (See Figure ~.) If 
q e r ( w ) ,  then the only points in Y(w) such 
that q could possibly be their nearest-neighbor are 
pred(q, R(u)), se(pred(q, R(u))) ,  suet(q, R(u)), and 
ne(,ucc(q,R(u))).  

P r o o f :  WLOG, we prove for q 6 Y(u) that  the only 
points p in Y(w) with y(p) >_ y(q) such that  q could 
be the nearest neighbor of p are succ(q, L(w)) and 
nw(suce(q, L(w))). Let £ be the vertical line sepa- 
rating Y(u)  and Y(w) and let the origin, denoted o, 
be placed at the intersection of l and the horizon- 
tal line containing suet(q, L(w)). Furthermore, let 
Po = (zo, Yo) = (zo,O) = succ(q,L(w)) and pl = 
(~g1,~/1) = nw(succ(q,L(w))). Suppose there is a 
point P2 = (z2, Y2) such that  the circle C centered at 
P2 with radius min{d(p2, Pl), d(ps,po)} contains the 
origin o. This is a necessary condition for P2 to con- 
tain q. Since C contains the origin and p2 is above po 
by definition, z2 _< zo and y2 >_ yo. Note also, then, 
tha t  y2 >_ yl ,  by the definition of Pl. Since Po is in 
L(w) by definition, B(po) contains the origin. In ad- 
dition, the radius of B(po) is at most d(po, Pl), since 
pl must have been one of the points encountered by 
Po in phase 1 of our algorithm. Thus, Zl _< Yl. This 
in turn implies tha t  z l  < 92, since zl  _< yl -< y2 and 
one of these inequalities must be strict. Therefore, 
d(p~, p~) = V(~ - x~)~ + (y~ - y~)~ < ~ = 
d(p2, o). But this means that C cannot contain the 
origin, which is a contradiction. • 

Thus, while performing the cascading merging 
procedure the generic update step is that we have an 
old C(q) list and are given at most four new points 
to consider. Since [C(q)J < 6, there can be at most 
a total  of ten points in this collection, from which 
we must determine which ones can possibly have q 

as their nearest neighbor. These points can be de- 
termined by solving the all-nearest neighbor problem 
for this collection of at most 10 points with a single 
processor in O(1) steps. Thus, we have the following: 

Lemma 3.6: Given a set S = {ql, q2,...,q,} of 
points in the plane, we can compute C(ql) for each 
q, in O(Iogn) time and 0(,~) space using 0(,~) pro- 
cessors in the CREW P R A M  model, or in O(log n) 
time and O(nlog~)  space using 0(,~) processors in 
the E R E W  P R A M  model. • 

Let N be the set of all pairs (q,q') such that 
q 6 C(q'). Since In'l <_ 6 .  w e  c a n  sort the pairs in 
N lexicographically in O(log n) time and O(n) space 
using O(n) processors in the EREW PRAM model. 
We complete the algorithm by performing a simple 
bottom-up minimum-finding computation to find the 
nearest neighbor point of each point in S. Thus, we 
have the following theorem: 

T h e o r e m  3.7: Given a set S of n points in the plane 
we can compute the nearest-neighbor in S of each 
point in S in O(logn) time and O(n) space using 
O(n) processors in the CREW P R A M  model, or in 
O(log . )  time and O ( n l o g . )  space using 0(~)  pro- 
cessors in the E R E W  P R A M  model. • 

4. AlL]Nearest  N e i g h b o r  P r o b l e m  for  a 
Convex  P o l y g o n  

In this section we show how to find the nearest- 
neighbor vertex of each vertex on a convex polygon 
in O(logn) time using O(n/logn) processors in the 
EREW PRAM model. 

Let P = (Vl,V2, ..., v,) be the clockwise listing of 
the vertices of a convex polygon. A polygonal chain C 
has the semi-circle property if when vi and vy are two 
farthest vertices in C, then all the vertices of C are 
contained in a circle with diameter d(vi, vy). Let va 
and vc be two farthest vertices of P,  and let Vb !reap. 
Vd) be a vertex which is farthest to the left tresp. 
right) of the line (vs, vc). Lee and Preparers [14] 
show that  the vertices va, Vb, vc, and vd partition 
P into four polygonal chains C1 = (v~, ..., Vb), C2 = 
(Vb, ..., Vc), Cs = (vc, ..., vd), and C4 = (Vd, ..., Us), 
such that each chain has the semi-circle property. 
They also show that the nearest-neighbor vertex in 
Ci of any vertex vj in Ci is either ~i-I or Vj+l. 

One can determine v= and vc by using par- 
allel merging [6] to implement the algorithm of 
Shamos [17] in O(logn) time using O(n/logn) pro- 
cessors (see [9] for details). It is an easy matter to 
then find the vertices Vb and Vd in O(log n) time using 
O(n/log n) processors by a simple maximum-finding 
algorithm. We can then solve the all nearest-neighbor 
problem for each of the polygonal chains in O(log n) 
time using O(n/logn) processors, since the nearest- 
neighbor vertex in the chain Ci of each vertex vj in 
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Ci is either vy-1 or vj+1 [14]. The rest of the compu- 
tation is as follows: we first "merge" the subproblem 
solutions to C1 and C2 (resp. C3 and C4), and then 
merge the two subproblem solutions separated by the 
line (va, re). 

Let us concentrate on the generic merge step. We 
are given two sets of points $1 and S~ separated by 
a line L such that  we have solved the all neaxest- 
neighbor problem for each set. In addition, we axe 
given $1 and $2 listed in sorted order along L. With- 
out loss of generality, we assume that  L is a vertical 
line and the points in $1 and Sz axe listed by non- 
decreasing y-coordinates. For simplicity, we also as- 
sume the y-coordinates axe distinct; our results are 
easily modified for the general case. 

Let di(p) denote the distance from a point p to 
its nearest-neighbor in Si, and let 2~{p} denote the 
di(p)-ball centered at p. It is known [5] tha t  each 
point on L can intersect at most four Ni (p)'s for any 
i E {1, 2}. Since we assumed that  the all neaxest- 
neighbor problem has already been solved for $1 and 
$2, we can construct, for i E {1, 2}, the sorted list 
S~ which consists of all the points in Si whose dl (p)- 
ball intersects L by compressing out all the points 
whose di(p)-ball doesn't  intersect L. This can be 
done in O(logn)  time using O(n/logn) processors 
in the ER EW  PRAM model by a parallel prefix com- 
putat ion [12,13]. 

To merge the solutions to the two subproblems 
we need to find for each point q in S~ a point p in 
$1 such that  p is the closest of all points contained 
in N2 (q), if there are such points p. We begin by 
merging the list $i with the list S~. For each p in $i, 
this gives us the predecessor of p in S~, which we de- 
note by pred(p, S~). Since any point on L intersects 
at most four N2(q)'s, any point p in $I intersects at 
most four Nz(q)'s as well. Moreover, the only q's in 
S~ whose d2(q)-ball could possibly contain p must be 
within four positions of pred(p, S~) in S~. If we had 
O(n) processors at our disposal and we were work- 
ing in the CREW {concurrent-read) PRAM model, 
it would be a simple matter to complete this merg- 
ing procedure. But using only O(n/log n) processors 
in the EREW PRAM model it must be a little more 
involved, because for any point q in S~ there may be 
many p's in $i that we wish to compare q to. 

Recall that for each point p we wish to examine 
up to eight points in S~. Our computation consists 
of eight rounds, where in each round we examine one 
of the eight points in S~ for each p in $i. For each 
p E $1 we examine the points in S~ associated with p 
in order by increasing y-coordinates. We will also be 
maintaining a label closest{q) for each point q E S~, 
which identifies the point p in $1 which is closest to q 
from all points in $1 compared to q so far. Initially, 
closest{q} is oo for all q in S~. 

Let us concentrate on the computat ion for a sin- 
gle round. Let Sq denote the set of all points p in 

$i such that q is the point in S~ we wish to exam- 
ine for p in this round. Since we examine the points 
in S~ associated with each p in $i by increasing y- 
coordinates, the points in Sq comprise a contiguous 
subaxray of $i. Thus, we can use a parallel prefix 
computation to determine the subarray Sq in $i for 
all q in $2 {some Sq'S may be empty} in O(log n) 
time using O(n/logn) processors. We can then per- 
form a broadcast and find-minimum operation to find 
a point in Sq which is closest to q. We then let 
closest(q) be the closer of this point and the previ- 
ous closest{q} value. This broadcast and minimum- 
finding step can also be performed in O{log n} time 
using O(n/log n) processors, and completes the com- 
putation for this round. When the eight rounds 
have completed, we will have solved the all nearest- 
neighbor problem for each q in $2, since we will have 
compared q to all points p in $I which axe contained 
in N2 (q) (recall tha t  if q e $2 - S~, then this is true 
vacuously). We then repeat  this procedure to solve 
the all nearest-neighbor problem for each 19 in $1, by 
merging S~ with $2. Thus, we have established the 
following: 

T h e o r e m  4.1: Given a convez polygon P the 
nearest-neighbor vertez of each vertez on P can be 
determined in O(log n} time using O(n/  log n) proces- 
sors in the E R E W  P R A M  model s which is optimal. 

5. A Cascading Algorithm for Convex 
Hull Construction 

In this section we describe our algorithm for con- 
structing the convex hull of a set of points. Our al- 
gorithm runs in O(log n) time using O(n) processors 
in the CREW PRAM model. There has been con- 
siderable prevous work on this problem, resulting in 
a number of algorithms running in O{log n) time us- 
ing O(n) processors [1,3,4,10,19]. The algorithm we 
present in this section has the same complexity as 
these algorithms, but differs from them in that it is 
based on the elegant ``rotating calipers" (or "merg- 
ing slopes") technique of Toussaint [18], and in fact 
provides the first non-trivial parallel analogue to that 
technique. {By substituting known parallel merging 
methods for the sequential one used in the convex hull 
algorithm by Toussaint, one can trivially get an al- 
gorithm running in O{log 2 n) time using O{n/logn) 
processors [6].) 

Given a set of n points in the plane, the convex 
hull problem is to construct a representation of the 
smallest convex set {a polygon} which contains all 
these points. One can divide this problem in two by 
considering the boundary of the convex hull to consist 
of two pieces, an upper hull and a lower hull. The 
upper hull is that piece visible from above (i.e., +oo} 
and the lower hull is that piece visible from below. 
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Consider the problem of constructing the upper 
hull of a set of n points {the problem of constructing 
the lower hull is clearly similar). For simplicity, we 
assume tha t  the points have distinct x-coordinates, 
tha t  no three are co-linear, and that  the number of 
points is a power of two (it is straightforward to mod- 
ify our algorithm for the general case). Our algo- 
rithm, is based on the following divide-and-conquer 
approach [18]: Suppose we have a two disjoint upper 
hulls separated by a vertical line. We keep the edges 
of each hull sorted by slope. In order to find their 
common tangent we merge the two sets of edges. Sup- 
pose edges e and g come from the left hull and edge ] 
from the right, in the order e > f > g (by slopes). If 
the line containing ] is below the common vertex of 
e and g then f cannot  be on the hull. This eliminates 
exactly those edges tha t  do not belong on the hull, 
and leaves two contiguous lists of edges on each side 
of the dividing line. The common upper tangent is 
determined by creating an edge which joins the right- 
most vertex of the "surviving" hull on the left to the 
leftmost vertex of the surviving hull on the right. 

To do this by cascading merging we begin by 
sorting the input points by x-coordinates; let S = 
(ql, q2,...,q,~) denote this list. We construct a 
complete binary tree T such that  each leaf node 
vi contains the list Hd ----. (((z(q2~-l),--cx~),q2~-l), 
(q2,-1, q2i), <q2,, (x(q2i), --oo))), for i = I, 2, ..., n/2. 
In other  words, H~ is the upper hull determined by 
the edge (q2~-1, q2~). The main idea of this applica- 
tion of the cascading divide-and-conquer technique is 
to define an Hv list for each internal node v in such a 
way that  (1) Hv contains, sorted by slopes, the edges 
of the upper  hull of the edges stored in the descen- 
dents of u and {2) the construction of all the Hv's 
can be pipe-llned. Tha t  is, they are defined so that  
while performing the merge at some node v we can 
obtain some par t ia l  information that  can be passed 
immediately to v's parent  to allow v's parent to begin 
its merge. Our algorithm will consist of a sequence 
of 3 [log n] stages. For each internal node v, with left 
child u and right child w, at stage t we define Hv as 
follows: 

H, = S A M P u ( H , )  U SAMPeCH~), 

where SAMPv(A)  denotes v-sample of A and U de- 
notes the operat ion of merging two lists of edges 
sorted by slopes into a combined list sorted by slopes. 
The v-samph of a set A is defined to be the list con- 
sisting of every fourth element of A, so long as the 
height of v is greater than  t/3. When the height of v 
is t /3  we say that  v is full and define SAMPv  (A) to 
consist of every fourth element of A, as before, but  in 
the next  stage (t + 1) we define S A M P v  (A) to con- 
sist of every other  element of A, and in the stage after 
tha t  (t + 2) we define it to be all of A. Thus, initially 
{at t ime t = 0) only the leaf nodes are full. Then, 

after every 3 stages the level just above the previous 
full level becomes full. 

This is not quite enough, however, for the cur- 
rent definition of the Hu's does nothing more than 
merge all the edges stored in the leaves of T by sorted 
slopes. ~ e  modify the definition slightly, so that  at 
the moment  when a node v becomes full, then we will 
perform some extra computat ions to make Hv be the 
upper hull of all the edges which are stored in the 
descendants of v. Suppose u is a node in T with left 
child u and right child w and that  v has just become 
full. By induction, H ,  (resp. Hw) is the upper hull 
for u {w) stored by sorted slopes. Thus, by merging 
these two lists we can determine the common upper 
tangent of Hu and H,o. Specifically, let t be the com- 
mon upper  tangent of H ,  and Hw, let e (resp. f )  be 
the first edge in He (resp., Hw) which has slope less 
than t. Note that  He and Hw both  contain an edge 
with slope +oo and an edge with slope - c o ,  thus the 
edges e and f always exist. Let H~, denote the list 
H ,  with e replaced by t and every edge after e in He 
removed. Similarly, let H$ denote the list Hw with 
every edge before f removed. Given the rank of t 
in He and H,~, respectively, we can easily construct 
H "  and H "  in constant t ime using O([H,, I + [He,[) 
processors. 

Given two sorted lists A and B (from the same 
universe), if, for any two adjacent items e and f in 
A, the rank of e in B differs from the rank of f in 
B by at most a constant c, then we say that  A is a 
c-cover for B. In order for us to be able to perform 
each stage of our algorithm in constant time using a 
linear number of processors it must be the case that  
the llst Hv at time t be a c-cover of Hv at t ime t + 1. 
Atallah, Cole, and Goodrich [2] show that  this %- 
cover" property would surely b e  true if we were not 
deleting elements from H ,  and H,o and then adding 
an edge to Hu (to create H$ and H$) .  Thus, if we can 
show that  the He definitions have a c-cover property 
in spite of the deletions and additions, then we will 
have established that  each stage can be performed 
in O(1) time using O(n) processors. First, note that  
He is a 2-cover for H$, since in creating H$ from H,o 
we deleted a contiguous block of elements from H,, 
and then added at most one additional edge. We also 
have that  Hw is trivially a 1-cover for H$.  Thus, by 
transitivity, Hv is a 2-cover for H i = H i U H$.  This, 
in turn, implies tha t  Hv at t ime t will be a c-cover of 
H,, at t ime t + 1. (The interested reader may wish to 
examine the details of the proofs in [2] to show that ,  
in fact, Hv at t ime t is a 4-cover of He at t ime t + 1.) 
We summarize with the following theorem: 

T h e o r e m  5.1: Given a set S of n points in the plane 
one can construct the convez hull of S in O(logn)  
time using O(n) processors in the CREW P R A M  
model. • 
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6 .  Final  R e m a r k s  and  Open Prob lems  

This paper presents parallel analogues to some fa- 
mous notions from sequential computational geome- 
try. Namely, that the all-nearest neighbor problem 
can be solved without constructing a Voronoi dia- 
gram, that problems for polygons can often-times be 
solved faster than point-set problems, and that con- 
vex hulls can be constructed by performing divide- 
and-conquer with edge lists sorted by slopes. An- 
other interesting observation is that in developing an 
optimal parallel algorithm for the kernel problem we 
discovered some geometric relationships which result 
in a new optimal sequential algorithm (which is sim- 
pler than the previous best algorithm [15]}. We leave 
two open problems: 

1. Can the Voronoi diagram of n planar points be 
constructed in O(logn) time using O(n) pro- 
cessors in the CREW PRAM model? The cur- 
rent best algorithm runs in O(log 2 n) time us- 
ing O(n) processors [1,2] (we already know how 
to solve the all-nearest neighbors problem in 
O(logn) time using O(n) processors (in the 
EREW PRAM model)). 

2. Can the convex hull of n planar points plane be 
constructed in O(logn) time using O(n) pro- 
cessors in the EREW PRAM model? It is 
known that sorting can be done in O(log n) time 
using O(n) processors in the EREW PRAM 
model [8]. The close relationship between the 
convex hull problem and sorting is well known 
in sequential computational geometry, but in 
the parallel setting there is currently a gap be- 
tween their respective complexities. 
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Figure 1: A spiral polygon has ~.n empty kernel. Figure 3: The different cases for updating the lnext 
label. 
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Figure 2: If ei intersects H(ei) then P is a spiral Figure 4: The only points in Y(w) which could have 
polygon, q E Y(u) as their nearest neighbor. 
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