
O p t i m a l P a r a l l e l A l g o r i t h m s f o r P o l y g o n a n d P o i n t - S e t P r o b l e m s

A b s t r a c t

(P r e l i m i n a r y V e r s i o n)

Richard Cole 1

Courant Institute, New York Univ., New York, NY 10012

Michael T. Goodrich

Dept. of Computer Science, The Johns Hopkins University, Baltimore, MD 21218

In this paper we give parallel algorithms for a number
of problems defined on polygons and point sets. All
of our algorithms have optimal T(n) * P(n) products,
where T(n) is the time complexity and P(n} is the
number of processors used, and are for the EREW
PRAM or CREW PRAM models. In addition, our
algorithms provide parallel analogues to well known
phenomena from sequential computational geometry,
such as the fact that problems for polygons can often-
times be solved more efficiently that point-set prob-
lems, and that one can solve nearest-neighbor prob-
lems without explicitly constructing a Voronoi dia-
gram.

1 . I n t r o d u c t i o n

We present a number of new algorithms for parallel
computat ional geometry [1,2,3,4,7,9,10]. Our goal is
to find algorithms that run as fast as possible and
are efficient in the following sense: if P(n) is the pro-
cessor complexity, T{n) the parallel t ime complexity,
and Seq(n) the t ime complexity of the best known
sequential algorithm for the problem under consider-
ation, then T(n} * P(n) = O(Seq(n)). If the product
T(n) * P(n) achieves the sequential lower bound for
the problem, then we say the algorithm is optimal.
All of our algorithms are optimal in this sense and
are for the EREW or CREW PRAM models. The
weaker of these two is the E R E W PRAM model, the
synchronous shared memory model in which simulta-
neous reads or writes are not allowed. In the CREW
PRAM we allow for simultaneous reads. Specifically,
our results are the following:

1This research was supported in part by NSF grants DCR-
84-01633 and CCR-8702271, and by ONR grant N00014-85-K-
0046.
Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and / or specific permission.

© 1988 ACM 0-89791-270-5/88/0006/0201 $1.50

i. Kernel of a simple polygon: O(logn) time us-
ing O(n/log n) processors in the CREW PRAM
model.

. All-nearest neighbors for a set of points in the
plane: O(logn) time using O(n) processors in
the EREW PRAM model.

. All-nearest neighbors for the vertices of a con-
vex polygon: O{log n) time using O{n/log n)
processors in the EREW PRAM model.

4. Convex hull of a set of points in the plane:
O(logn) time using O(n) processors in the
CREW PRAM model {using a "cascading
calipers" technique).

Our algorithms for problems 1 and 3 show that
there is a parallel analogue to a famous phenomenon
of sequential computat ional geometry, namely, that
many problems with n (n l o g n) lower bounds when
defined for arbi t rary point sets can be solved in O(n)
t ime when the points are the vertices of a polygon.
Our kernel algorithm (problem 1) is based on the dis-
covery of a new way of characterizing the kernel of a
simple polygon P in terms of the 'Ccurvature" of P.
This idea also leads to a new O(n)- t ime sequential al-
gorithm for this problem. Our algorithm for problem
3 is based on a composite of parallel merging, parallel
prefix, and broadcasting techniques.

Our algorithm for problem 2 shows that , just
as in the sequential case, one can optimally solve
the all-nearest neighbor problem without explic-
itly constructing a Voronoi diagram (for which the
best-known para lh l algorithm runs in non-optimal
O(log 2 n) t ime using O(n) processors [1,2]). Our al-
gorithm is based on the novel use of the cascading
divide-and-conquer technique [2].

Finally, our convex hull algorithm (for problem
4) is based on a generalization of cascading divide-
and-conquer technique which provides a non-trivial
parallel analogue to Toussaint's "rotat ing calipers"
paradigm [18].

We present our algorithms, one per section, in
the discussion which follows, and conclude with some
final remarks and open problems in Section 6.

201

2 . K e r n e l o f a S i m p l e P o l y g o n

Let P = (eo, e2 , . . . ,en- t) be a listing of the edges
of a simple polygon P (with eo and en-x sharing
a common endpoint). Each edge of P is given an
orientation so that the interior of P is on its left.
We let H(ei) denote the half-plane to the left of the
line containing el. Given any list Q of oriented edges
co, ..., era-x, we define the kernel of Q, denoted K(Q),
to be the intersection of all the half-planes determined
by the edges in Q, i.e., K(Q) m - t = hi= o H(el). Our
problem is the following: given an oriented simple
polygon P, construct K(P} .

Wagener [19] has shown that one can construct
the convex hull of a simple polygon in O(logn) time
using O (n / l o g n) processors in the C R E W PRAM
model. Since one can compute the common intersec-
tion of n half-planes by dualization to the convex hull
problem [11,16], one may at first think that this prob-
lem and the kernel problem have a primal-dual rela-
tionship. This is not the case, however, because the
dualization methods, even when extended to poly-
gons [11], do not map simple polygons into simple
polygons. It is not surprising, then, tha t our algo-
r i thm for the kernel problem is quite different from
the convex hull algorithm of Wagener.

We begin our discussion with a few definitions.
Let P[¢~, ey] denote the subchain of P from ei to ei,
inclusive (edge subscripts are modulo n). Note that
since each edge has an orientation, P[ei, ey] is well
defined and is different from P[ey, ei]. Given two ad-
jacent edges el and ei+l define the angle between ei
and ei+l, denoted o~i,i+1, to be the signed angle ei
makes with ei+t when they are translated (as vec-
tors) so as to share a common start vertex, where the
angle is positive if we move in a counterclockwise an-
gle in going from ei to ei+l (again, all subscripts are
modulo n). We generalize this definition as follows:
Given a subchain P[ei, ell we define the curvature of
Pies, ¢y], denoted vii,y, to be the sum of all the edge
angles from ei to e i . This can be expressed symboli-
cally as

y-1

~i,y ~ E Qtk,k+ 1.
k=i

For completeness, we define a~,i = 0 for all i E
{0, 1, ..., n - - 1}.

If there are two edges ei and e i on P such that
aid >_ 3~', then we say that P is a spiral polygon.
The next lemma establishes an important property
of spiral polygons.

Le rn rna 2.1: I f P is a spiral polygon, then K (P) is
empty.

P r o o f : Suppose P is a spiral polygon, yet K (P) is
non-empty. Since K { P) is non-empty, then P is star-

shaped. That is, for each point p E K (P) the bound-
ary of P is completely visible from p and the vertices
of P, as listed around the boundary of P, are sorted
radially around p. But, by hypothesis, there is some
part of the boundary of P, say P[ei, ey], with a cur-
vature of at least 31r. This contradicts one of the
following, however: (1) that P[ei, ey] is sorted radi-
ally around p or (2) that all of P[ei, ell is visible from
p. (See Figure 1.) []

We can trivially test if P is a spiral polygon in
O(logn) time using O(n 2) processors (by comput-
ing all the aid values). But, since we only have
O(n/ log n) processors at our disposal, our method
for determining if P is a spiral polygon needs to be
a little more involved. We begin by computing C~o,i
and ai,o for all i E {0, 1, ..., n - 1}. This can easily be
done in O(log n) time using O(n / log n) processors by
two simple parallel prefix computations. Recall that
a parallel prefix computation is just a reduction of
a problem to the problem of computing all the pre-

k fix sums ck = ~ i = 1 al of a sequence (al, a2, ..., am),
where the + operation is associative. (See [9] for a
survey of this and other parallel techniques.) We also
compute four additional quantities:

fi = o_<~_<~_lo~o,y,

bi = max ~y,O,
i<i<n

low = min n0,i.
o< i_<n- *

Again, all subscripts are modulo n. As with the c~0,i's
and ~i,o'S, these quantities can easily be computed in
O(log n) time using O(n / log n) processors. The next
lemma characterizes spiral polygons in terms of these
quantities.

L e m m a 2.2: P is a spiral polygon if and only if (1)
bl + f~ _> 3~r for some i, or (~) f , - 1 - low _> 31r.

P r o o f : The ~if" part of the proof is obvious. So,
for the "only if" part, suppose P is a spiral polygon.
Then there is some subchain P[ei, ey] which has a
curvature of at least 31r. That is, ~i,y _> 3~r. There are
two cases. Case 1:e0 is in P[ei, ey]. In this case, since
~i,y >_ 3~r, bi + fy _> 3~'. But this implies that there
is some k such that bk + fk >_ 3~r. Case 2:e0 is not in
P[ei, ey]. In this case, f n - t - low >_ 31r. If this were
not so, there would be no way that c~i,y _> 31r, since i
must be less than j in this case. This establishes the
lemma. []

Let Q1 be the lexicographically-first maximal in-
creasing subsequence of (e0, ..., en-1), using the fi 's
as weights, and let Q2 be the lexicographically-first
maximal increasing subsequence of (co, en-1, ..., ex),
using the bi's as weights. Recall that a lexicograph-
ically-fLrst maximal increasing subsequence is defined
by placing the first i tem in the list in the set, then

202

scanning through the list adding an item to the set
each time its label is bigger than the biggest label en-
countered thus far. The following lemma establishes
an even stronger relationship between KiP) and the
curvature properties of P.

L e m m a 2.8: If P is not a spiral polygon, then
K iP) = KiQ~) ~ K{Q~).

Proof.. Since Qt and Q2 are subsets of P, KiP) _C
K(Qi) n K{Q2). So, we have yet to show that
K(Qx) N K(Q2) _c K(P). Clearly, if K(Q:) N
K(Q2) = ¢, then we are done; so suppose K(Q1) N
K(Q2) ~ ~. The proof is by contradiction. Suppose
KiP) is properly contained in K(Q1)A K(Q2). Then
there is an edge ei of P with ei ¢ Q1 u Q2 and such
that Hiei) n K(Q,) n KiQ2) is a proper subset of
K(Q1) A K(Q2). Let ej be the edge closest to ei in
P such that] i > f~ and with 3" < i. Since ei is not
in Q1, the edge e i must exist.
Claim: ei is not contained in H(ei).
Proof of claim: It is sufficient to show that ff el inter-
sects H(e j) , then P is a spiral polygon (which would
be a contradiction), so suppose e~ intersects H(ej).
We begin the proof of our claim by noting that the
only point of intersection of ej+l and H(ey) is the
common vertex ej and e5+1 share. If this were not
the case, then ej would not be the closest edge to ei
such that] i >]i and 3" < i. Let et be the first edge
in P[ej , ¢i] which intersects H ie j) , and let v be a ver-
tex on P[ej, el] such that there is a line T parallel to
e~" and tangent to P[e~., eli at v with all of P[ej, e~]
on the same side of T as H(e~'). Since P[ey, e,] is a
finite chain beginning and ending in H(e~.), the ver-
tex v and line T must exist. Let e,n and em+l be
the edges of P[ej, et] incident to v. The intersection
of H(em) and H(em+l) lies on the opposite side of
T as H(ei). If this were not so (i.e., the intersection
of Hle,n) and H(e,~+l) lies on the same side of T
as H(e j)) , then in going from em to em+l one makes
a left turn. But, since T is parallel to ey, this im-
plies that f m >] j , which contradicts the definition
of ej. Thus, the intersection of Hle,~) and H(em+s)
lies on the opposite side of T as H(ey). But this
forces Pier, ej] to have a cumulative amount of turn-
ing greater than 3~r. Which, in turn, implies that P
is a spiral polygon. (See Figure 2.) [End of proof of
claim.]

Let ek be the edge closest to ei in P such that
bk > bl and i < k. As with e~, ek must exist, because
e# is not in Q2. By an argument similar to the proof
of the above claim we have that el is not contained in
H{e~). These two facts imply that the edge ei is not
contained in H(ey) N H(e~). But this implies that
H(e;) a H(e,) H(e) = Hie;) In other
words, H(ei) ~ K(Qx) ~ KiQ2) is not a proper subset
of K(Q~) ~ K(Q2), which of course is a contradiction.
Therefore, K(P) = KiQ~) n K(Q~). []

The above lemmas immediately give us the outline
of our algorithm for constructing K(P): test if P i~
a spiral polygon, and, if it is not a spiral polygon,
construct K(Q1) and K(Q2) and their intersection.

We have already described how to test if P is
a spiral polygon or not. So suppose P is not a
spiral polygon. We begin by constructing Q1 and
Q2. This can be done by yet another parallel pre-
fix computation in O(log n) time using O(n/log n)
processors (by computing, for each edge e~ in the
list in question, the maximum prefix (or suffix) la-
bel of the edges preceding ei). Note that the lists
Qi and Q2 are sorted by slopes. In addition, the
list Q1 (resp., Q2) can.easily be divided into O(1)
lists such that the range of label values in each list
is at most r (this takes at most O(logn) time using
O(n/log n) processors). By appropriately translating
the origin for the edges in each of these lists so that
it is contained in their common intersection we can
then compute K(Qi) and K(Q2) in O(logn) time
using O(n/logn} processors in the CREW PRAM
model. The method is to use the dualization method
of [11,16] to dualize to the problem of constructing
the convex hull of a sorted point set, which can be
solved in O(log n) time using O(n/log n) processors
in the CREW PRAM model [10,19]. We conclude the
algorithm by then computing the intersection of the
two convex polygons K(Q,) and K(Q2) in O(log n)
time using O(n/logn) processors by using parallel
merging [6] to implement the sequential algorithm of
Shamos [17]. We summarize with the following theo-
rem.

T h e o r e m 2.4: Given an n-edge simple polygon P
one can construct the kernel of P in O(logn) time
using O(n/logn) processors in the CREW PRAM
model. []

3. All-Nearest Neighbors for a Point
Set

Given a set S of n points in the plane, the problem
is to find the nearest neighbor point of each point
in S. For any point q let At(q) denote q's nearest
neighbor. Our algorithm runs in O(log n) time us-
ing O(n) processors. We describe how to implement
our algorithm in O(n) space in the CREW PRAM
model and then outline how it could be implemented
in O(nlogn) space in the EREW PRAM model.

Our algorithm is based on two non-trivial applica-
tions of the cascading divide-and-conquer technique
of Atallah, Cole, and Goodrich [2 I. We briefly review
this technique as it applies to our problem.

203

$.1. A R e v i e w o f C a s c a d i n g D i v i d e - a n d -
C o n q u e r

Suppose we are given a complete binary tree T such
that there is an i tem (from some universe) stored at
each leaf. For each node v of T we recursively de-
fine sets A1,u, A2,u, ..., Ak,e in terms of sets stored
at the children of v (these definitions depend on the
application). Initially, the Ai,,,'s are only constructed
for the leaf nodes v of T. Let v be an internal node
in T with children u and w. Given a sorted array
A and a function f , we use the notat ion f (A) to
denote the array defined by applying f to each el-
ement of A, i.e., f(A)[i] = f(A[i]). We say such
a function is monotone on A if A[i I < A[i] implies
f(A[i]) _< f(A[j]) . We place a restriction on the ar-
ray definitions, namely, tha t for any internal node v
the definition of each Ai,~ have the following form:

A,.o = U u U
iez(u) iez(t~)

where I(u) and I(w) are subsets of {1, 2, ..., k}, and
ft, and f~ are monotone. The functions fu and fw
can be thought of as "identity changing ~ rules, and
can often be used to avoid using set difference oper-
ations in the definition of any A~,~. It is often very
useful to also allow each element of an A~,u to have a
label associated with it. So, for each element Ai,~ [k]
let L~,~ [k] be the corresponding label (which may ac-
tually be a vector of labels). For any element a and
set B let rod(a , B) (resp., s.cc(, B)) denote the
predecessor (resp., successor) of a in B if a is not in
B, and simply a, if a E B. Let rank{a, B) denote the
rank of pred(a, B) in B, and let Fi, t, be a shorthand
for the array fv (Ay, u). We place a restriction on the
label definitions, as well, namely, tha t the definition
of Li,u [k] for any node v be expressed as the sum of
labels of the form

1.

2. Ly, wirank(A,,~,[k], Fd, w)] , or

3. Li,,[rank(A,,,[k], Ai,,)] ,

so long as there are no circular definitions (j is a
free variable) and the plus (+) operation can be com-
puted in O(1) t ime using a single processor. If the
definitions of value arrays Ai,e and label arrays Li,v
have these forms, then we say that they are cascad-
ing. If we also allow for the definition of Li,e [k] to
include labels of the form L~.,,[rank(ALu[k],Aj, e)],
where, given Ay,,,, any such L ~ label can be computed
O(log n + [IAi, v liP]) t ime using p processors in the
E R E W PRAM model, and introducing such labels
allows us to define the L labels so that any array lo-
cation can be accessed by at most one processor at a
time, then we say the labels are EREW-computable.

Atallah, Cole, and Goodrich [2] prove the following
theorem:

T h e o r e m 3.1: [2]: Given a complete binary tree T
with cascading definitions for sets Ai,~ and labels Li,~
defined for each node v in T, then Ai,~, and Li,t, can
be constructed for each node v in T, level by level,
in O(logn) time and O(n) space using O(n) proces-
sors in the CREW P R A M model (if A~,e and Li,v
are required for all levels simultaneously, then this of
course requires O(nlogn) space). I f the labels are
EREW-computable, then all the Ai,u "8 and Li,u 's can
be constructed in O(log n) time and O(nlog n) space
using O(n) processors in the E R E W P R A M model. •

Having reviewed this powerful technique, let us
re turn to the problem at hand.

3.2. Al l N e a r e s t - N e i g h b o r A l g o r i t h m

Let us give a brief overview of the two phases of
our algorithm. In phase one we will determine, for
each q E S, an approximation to N(q), the nearest-
neighbor ball centered at q. Specifically, we will de-
termine a ball around each q, which we call the neigh-
borhood ball about q, whose radius is the distance be-
tween q and the closest point q has %ncountered"
during the cascading merge procedure. During the
second phase we construct for each point q a list C(q)
which contains points of S which may have q as their
nearest neighbor. We call C(q) the candidate list for
q. It is easy to show that for any point q there can be
at most six other points qt such tha t q is the nearest
neighbor of qt. Thus, C(q} need never contain more
than six points. Our algorithm constructs all possible
C{q) lists and then performs a post-processing step
to eliminate any pairs which are not nearest-neighbor
pairs. The details follow.

In Phase I we construct, for each q i n S, the
neighborhood ball centered at q, denoted B(q). For
simplicity, let us assume that the points have dis-
tinct z-coordinates; one can easily modify our algo-
r i thm for the general case. We begin by sorting the
points in S into increasing order by z-coordinates;
let S = (ql, q2, ..., qn) denote this list. This can be
done in O(logn) t ime using O(n) processors in the
EREW PRAM model [8]. We then build a complete
binary tree T which has the points ql, q2, ..., q• as
leaves (listed from left to right). For each node v in
T let Y(v) denote the points stored in descendents
of v sorted by y-coordinates, and let depth(v) denote
the depth of v (with the root being at depth 0). With
each point q in Y(v) we store a label b(q). At the end
of the cascading procedure the label b(q) will store
the name of the point which is closest to q of all the
points which q has %ncountered." Specifically, for
each leaf node v, which, say, stores the point ql, we
initialize b(qi) to be the closer of q~-I and qi+l to

204

qi. For each internal node v, with children u and w,
we define b(q) for each q • Y(v) to be the closer of
the old value of b(q) and the point in {pred(q, Y(u)),
succ(q, Y(u)), pred(q, Y(w)), succ(q, Y(w))) closest
to q.

Note that the definitions of Y(v} and b(q) can
easily be writ ten so as to be cascading. Moreover,
since the value of the label b(q) depends only on the
old value of b(q) and the points in {pred(q,Y(u)),
succ(q,Y(u)), pred(q,Y(w)), succ(q,Y(w))}, it is
EREW-computabh . Thus, we have the following:

L e m m a 8.2: Given a list of points S = (ql, q2, ..., q,)
the label b(qi) can be computed for each point ql • S
in O(logn) time and O(n) space using O(n) proces-
sors in the CREW PRAM model, or in O(log n) time
and O(nlogn) space using O(n) processors in the
EREW P R A M model. []

We define B{q), the neighborhood ball centered at
q, to be the region in ~2 consisting of all points q*
such that d(q, q') < d(q, b(q)). In Phase 2 we refine
each B(q) into N(q), the nearest-neighbor ball cen-
tered at q. Since the points in S all have distinct
z-coordinates, we can part i t ion the leaves of T by
placing a vertical dividing line between ql and qi+l
for i = 1, 2, ..., n - 1. With each node v in T we as-
sociate a slab IIv which is the region bounded by the
two vertical dividing lines which separate the points
stored in the descendents of v from the rest of the
points in S. For each node v in T let left(v) (resp.,
right(v)) denote the left (resp. right} vertical bound-
dry of the slab IIv. We define the following lists for
each node v • T:

L(v) = {q • Y(v) : B(q) n l e f t (v) # ¢}
R(v) = {q • Y(v) : B(q) a r i g h t (v) ~ ¢}

Tha t is, L{v) {resp., R(v)) consists of the points
whose neighborhood ball intersects the left (resp.,
right) boundary of the slab /Iv. Our method for
refining the B(q) 's into N(q) 's (i.e., Phase 2) in-
volves a second application of the cascading divide-
and-conquer method. In this second merge we not
only compute Y{v) for each node v but also L(v) and
R(v}, all sorted by increasing y-coordinates. Unfor-
tunately, L(v) and R(v} may be proper subsets of
Y(v). Thus, in order for us to find cascading defini-
tions of L(v) and R(v) we will need to use some kind
of re-naming scheme, i.e., we need to employ identity-
changing monotone functions in the recursive defini-
tions of L(v) and R(v). For each q in S we define l(q)
(reap., r(q)) to be the depth of the lowest node v of
T (i.e., the node nearest the root) such that v is an
ancestor of the leaf storing q and B(q) intersects the
left (reap., right) vertical boundary line for v. In ad-
dition, for each node v in T and each point q in Y(v)
we maintain a label lnext(q) which stores the point q'

which has the smallest y-coordinate from among all
those points in {q~ : y(ql) > y(q) and l(q I) < l(q)).
Informally, l(q) (resp., r(q)) determines the level in
T such that , for all points which cascade to levels
above this level and are not in Y(q) q cannot have
any of them as a neares t neighbor. We define a
pointer rnext(q) for each q in Y(v) similarly. For
any node v in T with left child u and right child w
we define functions ft, and fw as follows: f~ (q) = q if
r(q) < depth(u) and fu (q) = rnext(q) otherwise; and
fw{q) = q if l(q) < depth(w) and fw(q) = lnext(q)
otherwise. These functions enable us to give cascad-
ing definitions of R(v), L(v).

L e m m a 8.8: Let v be an internal node of T with left
child u and right child w. Then we have the following
(cascadino) definitions of L(v) and R(v):

L(v) = L(u) u f . (L(w))
R(v) = A (R (u)) u R (w)

P r o o f : The functions]u and f~ are clearly mono-
tone. The proof of the lemma is based on a simple
induction argument, which is omitted. []

We must also show that the lnezt and rnext labels
have cascading definitions.

L e m m a 8.4: Let v be an internal node of T with
left child u and right child w. Suppose q • Y(u), and
let q' = 8ucc(q, f,.(L(w))). Then the following is a
cascading definition of lnext [the definition of rnext
is similar).

Inext(q) =

Inezt(q} if y(Inezt(q)} < y(q'} (I)
Inezt(q) if l(q') = l(q)

and y(lne~t(q)) < y(lne~t(q')) (2)
q' ifl(q') < l(q)

and y(q'} < y(lnezt(q}} (3)
Inext(q'} if l(qt) = l(q)

and y(InextCq')) < y(InextCq)) (4)

P r o o f : Follows immediately from the definitions of
the Inext labels and ql. (See Figure 3.) []

These definitions are EREW-computable as well,
since the l(q) and r(q) values can be computed a pri-
ori. Actually, in the EREW case we needn't bother
with the lnext and rnext pointers, since we can con-
struct R(v) and L(v) directly from Y(v) and the l(q)
and r(q) values (by a simple data-compression com-
putation).

These definitions enable us to construct the L(v)'s
and R(v) 's in a cascading fashion, and we use these
lists to construct candidate lists C(q) for each point
q, which contain the (at most 6 7 points which may
have q as their nearest neighbor. Let SW(q) de-
note the region of ~= consisting of all points qt such

205

that z(q') < z(q) and y(q') < y(q), i.e., all points
which are south-west of q. Define SE(q), NW(q),
and NE(q) similarly. For each point q in r(~) we
define four pointers (labels}:

sw(q) = point w / m a x , y-coor, in SW(q) NY(v)
SO(q) = point w / max. y-coot, in SE(q) n Y(v)

.w(q) = point w/ rain. y-coor, in NW(q) n Y(o)
.e(q) = point w/ rain. y-coor, in lYE(q) n Y (d

These labels all have cascading definitions. We use
these labels and the L and R lists to maintain C(q)
during the cascading. In this case, if q comes from
Y(w), we can compute the new list C(q) at v given
the old list C(q) at w and at most four points in Y(u).
(The definition is similar if q comes from Y(u).)

L e m m a $.5: Let v be a node in T with left child
u and right child w and let q be a point in
Y(v). If q • Y(u), then the only points in Y(w)
such that q could possibly be their nearest-neighbor
are prod(q, L(w)), 8w(pred(q, L(w))), succ(q, L(w)),
and ~ (s u e c (q , L (~))) . (See Figure ~.) If
q e r (w) , then the only points in Y(w) such
that q could possibly be their nearest-neighbor are
pred(q, R(u)), se(pred(q, R(u))) , suet(q, R(u)), and
ne(,ucc(q,R(u))).

P r o o f : WLOG, we prove for q 6 Y(u) that the only
points p in Y(w) with y(p) >_ y(q) such that q could
be the nearest neighbor of p are succ(q, L(w)) and
nw(suce(q, L(w))). Let £ be the vertical line sepa-
rating Y(u) and Y(w) and let the origin, denoted o,
be placed at the intersection of l and the horizon-
tal line containing suet(q, L(w)). Furthermore, let
Po = (zo, Yo) = (zo,O) = succ(q,L(w)) and pl =
(~g1,~/1) = nw(succ(q,L(w))). Suppose there is a
point P2 = (z2, Y2) such that the circle C centered at
P2 with radius min{d(p2, Pl), d(ps,po)} contains the
origin o. This is a necessary condition for P2 to con-
tain q. Since C contains the origin and p2 is above po
by definition, z2 _< zo and y2 >_ yo. Note also, then,
tha t y2 >_ yl , by the definition of Pl. Since Po is in
L(w) by definition, B(po) contains the origin. In ad-
dition, the radius of B(po) is at most d(po, Pl), since
pl must have been one of the points encountered by
Po in phase 1 of our algorithm. Thus, Zl _< Yl. This
in turn implies tha t z l < 92, since zl _< yl -< y2 and
one of these inequalities must be strict. Therefore,
d(p~, p~) = V(~ - x~)~ + (y~ - y~)~ < ~ =
d(p2, o). But this means that C cannot contain the
origin, which is a contradiction. •

Thus, while performing the cascading merging
procedure the generic update step is that we have an
old C(q) list and are given at most four new points
to consider. Since [C(q)J < 6, there can be at most
a total of ten points in this collection, from which
we must determine which ones can possibly have q

as their nearest neighbor. These points can be de-
termined by solving the all-nearest neighbor problem
for this collection of at most 10 points with a single
processor in O(1) steps. Thus, we have the following:

Lemma 3.6: Given a set S = {ql, q2,...,q,} of
points in the plane, we can compute C(ql) for each
q, in O(Iogn) time and 0(,~) space using 0(,~) pro-
cessors in the CREW P R A M model, or in O(log n)
time and O(nlog~) space using 0(,~) processors in
the E R E W P R A M model. •

Let N be the set of all pairs (q,q') such that
q 6 C(q'). Since In'l <_ 6 . w e c a n sort the pairs in
N lexicographically in O(log n) time and O(n) space
using O(n) processors in the EREW PRAM model.
We complete the algorithm by performing a simple
bottom-up minimum-finding computation to find the
nearest neighbor point of each point in S. Thus, we
have the following theorem:

T h e o r e m 3.7: Given a set S of n points in the plane
we can compute the nearest-neighbor in S of each
point in S in O(logn) time and O(n) space using
O(n) processors in the CREW P R A M model, or in
O(log .) time and O (n l o g .) space using 0(~) pro-
cessors in the E R E W P R A M model. •

4. AlL]Nearest N e i g h b o r P r o b l e m for a
Convex P o l y g o n

In this section we show how to find the nearest-
neighbor vertex of each vertex on a convex polygon
in O(logn) time using O(n/logn) processors in the
EREW PRAM model.

Let P = (Vl,V2, ..., v,) be the clockwise listing of
the vertices of a convex polygon. A polygonal chain C
has the semi-circle property if when vi and vy are two
farthest vertices in C, then all the vertices of C are
contained in a circle with diameter d(vi, vy). Let va
and vc be two farthest vertices of P, and let Vb !reap.
Vd) be a vertex which is farthest to the left tresp.
right) of the line (vs, vc). Lee and Preparers [14]
show that the vertices va, Vb, vc, and vd partition
P into four polygonal chains C1 = (v~, ..., Vb), C2 =
(Vb, ..., Vc), Cs = (vc, ..., vd), and C4 = (Vd, ..., Us),
such that each chain has the semi-circle property.
They also show that the nearest-neighbor vertex in
Ci of any vertex vj in Ci is either ~i-I or Vj+l.

One can determine v= and vc by using par-
allel merging [6] to implement the algorithm of
Shamos [17] in O(logn) time using O(n/logn) pro-
cessors (see [9] for details). It is an easy matter to
then find the vertices Vb and Vd in O(log n) time using
O(n/log n) processors by a simple maximum-finding
algorithm. We can then solve the all nearest-neighbor
problem for each of the polygonal chains in O(log n)
time using O(n/logn) processors, since the nearest-
neighbor vertex in the chain Ci of each vertex vj in

206

Ci is either vy-1 or vj+1 [14]. The rest of the compu-
tation is as follows: we first "merge" the subproblem
solutions to C1 and C2 (resp. C3 and C4), and then
merge the two subproblem solutions separated by the
line (va, re).

Let us concentrate on the generic merge step. We
are given two sets of points $1 and S~ separated by
a line L such that we have solved the all neaxest-
neighbor problem for each set. In addition, we axe
given $1 and $2 listed in sorted order along L. With-
out loss of generality, we assume that L is a vertical
line and the points in $1 and Sz axe listed by non-
decreasing y-coordinates. For simplicity, we also as-
sume the y-coordinates axe distinct; our results are
easily modified for the general case.

Let di(p) denote the distance from a point p to
its nearest-neighbor in Si, and let 2~{p} denote the
di(p)-ball centered at p. It is known [5] tha t each
point on L can intersect at most four Ni (p)'s for any
i E {1, 2}. Since we assumed that the all neaxest-
neighbor problem has already been solved for $1 and
$2, we can construct, for i E {1, 2}, the sorted list
S~ which consists of all the points in Si whose dl (p)-
ball intersects L by compressing out all the points
whose di(p)-ball doesn't intersect L. This can be
done in O(logn) time using O(n/logn) processors
in the ER EW PRAM model by a parallel prefix com-
putat ion [12,13].

To merge the solutions to the two subproblems
we need to find for each point q in S~ a point p in
$1 such that p is the closest of all points contained
in N2 (q), if there are such points p. We begin by
merging the list $i with the list S~. For each p in $i,
this gives us the predecessor of p in S~, which we de-
note by pred(p, S~). Since any point on L intersects
at most four N2(q)'s, any point p in $I intersects at
most four Nz(q)'s as well. Moreover, the only q's in
S~ whose d2(q)-ball could possibly contain p must be
within four positions of pred(p, S~) in S~. If we had
O(n) processors at our disposal and we were work-
ing in the CREW {concurrent-read) PRAM model,
it would be a simple matter to complete this merg-
ing procedure. But using only O(n/log n) processors
in the EREW PRAM model it must be a little more
involved, because for any point q in S~ there may be
many p's in $i that we wish to compare q to.

Recall that for each point p we wish to examine
up to eight points in S~. Our computation consists
of eight rounds, where in each round we examine one
of the eight points in S~ for each p in $i. For each
p E $1 we examine the points in S~ associated with p
in order by increasing y-coordinates. We will also be
maintaining a label closest{q) for each point q E S~,
which identifies the point p in $1 which is closest to q
from all points in $1 compared to q so far. Initially,
closest{q} is oo for all q in S~.

Let us concentrate on the computat ion for a sin-
gle round. Let Sq denote the set of all points p in

$i such that q is the point in S~ we wish to exam-
ine for p in this round. Since we examine the points
in S~ associated with each p in $i by increasing y-
coordinates, the points in Sq comprise a contiguous
subaxray of $i. Thus, we can use a parallel prefix
computation to determine the subarray Sq in $i for
all q in $2 {some Sq'S may be empty} in O(log n)
time using O(n/logn) processors. We can then per-
form a broadcast and find-minimum operation to find
a point in Sq which is closest to q. We then let
closest(q) be the closer of this point and the previ-
ous closest{q} value. This broadcast and minimum-
finding step can also be performed in O{log n} time
using O(n/log n) processors, and completes the com-
putation for this round. When the eight rounds
have completed, we will have solved the all nearest-
neighbor problem for each q in $2, since we will have
compared q to all points p in $I which axe contained
in N2 (q) (recall tha t if q e $2 - S~, then this is true
vacuously). We then repeat this procedure to solve
the all nearest-neighbor problem for each 19 in $1, by
merging S~ with $2. Thus, we have established the
following:

T h e o r e m 4.1: Given a convez polygon P the
nearest-neighbor vertez of each vertez on P can be
determined in O(log n} time using O(n/ log n) proces-
sors in the E R E W P R A M model s which is optimal.

5. A Cascading Algorithm for Convex
Hull Construction

In this section we describe our algorithm for con-
structing the convex hull of a set of points. Our al-
gorithm runs in O(log n) time using O(n) processors
in the CREW PRAM model. There has been con-
siderable prevous work on this problem, resulting in
a number of algorithms running in O{log n) time us-
ing O(n) processors [1,3,4,10,19]. The algorithm we
present in this section has the same complexity as
these algorithms, but differs from them in that it is
based on the elegant ``rotating calipers" (or "merg-
ing slopes") technique of Toussaint [18], and in fact
provides the first non-trivial parallel analogue to that
technique. {By substituting known parallel merging
methods for the sequential one used in the convex hull
algorithm by Toussaint, one can trivially get an al-
gorithm running in O{log 2 n) time using O{n/logn)
processors [6].)

Given a set of n points in the plane, the convex
hull problem is to construct a representation of the
smallest convex set {a polygon} which contains all
these points. One can divide this problem in two by
considering the boundary of the convex hull to consist
of two pieces, an upper hull and a lower hull. The
upper hull is that piece visible from above (i.e., +oo}
and the lower hull is that piece visible from below.

207

Consider the problem of constructing the upper
hull of a set of n points {the problem of constructing
the lower hull is clearly similar). For simplicity, we
assume tha t the points have distinct x-coordinates,
tha t no three are co-linear, and that the number of
points is a power of two (it is straightforward to mod-
ify our algorithm for the general case). Our algo-
rithm, is based on the following divide-and-conquer
approach [18]: Suppose we have a two disjoint upper
hulls separated by a vertical line. We keep the edges
of each hull sorted by slope. In order to find their
common tangent we merge the two sets of edges. Sup-
pose edges e and g come from the left hull and edge]
from the right, in the order e > f > g (by slopes). If
the line containing] is below the common vertex of
e and g then f cannot be on the hull. This eliminates
exactly those edges tha t do not belong on the hull,
and leaves two contiguous lists of edges on each side
of the dividing line. The common upper tangent is
determined by creating an edge which joins the right-
most vertex of the "surviving" hull on the left to the
leftmost vertex of the surviving hull on the right.

To do this by cascading merging we begin by
sorting the input points by x-coordinates; let S =
(ql, q2,...,q,~) denote this list. We construct a
complete binary tree T such that each leaf node
vi contains the list Hd ----. (((z(q2~-l),--cx~),q2~-l),
(q2,-1, q2i), <q2,, (x(q2i), --oo))), for i = I, 2, ..., n/2.
In other words, H~ is the upper hull determined by
the edge (q2~-1, q2~). The main idea of this applica-
tion of the cascading divide-and-conquer technique is
to define an Hv list for each internal node v in such a
way that (1) Hv contains, sorted by slopes, the edges
of the upper hull of the edges stored in the descen-
dents of u and {2) the construction of all the Hv's
can be pipe-llned. Tha t is, they are defined so that
while performing the merge at some node v we can
obtain some par t ia l information that can be passed
immediately to v's parent to allow v's parent to begin
its merge. Our algorithm will consist of a sequence
of 3 [log n] stages. For each internal node v, with left
child u and right child w, at stage t we define Hv as
follows:

H, = S A M P u (H ,) U SAMPeCH~),

where SAMPv(A) denotes v-sample of A and U de-
notes the operat ion of merging two lists of edges
sorted by slopes into a combined list sorted by slopes.
The v-samph of a set A is defined to be the list con-
sisting of every fourth element of A, so long as the
height of v is greater than t/3. When the height of v
is t /3 we say that v is full and define SAMPv (A) to
consist of every fourth element of A, as before, but in
the next stage (t + 1) we define S A M P v (A) to con-
sist of every other element of A, and in the stage after
tha t (t + 2) we define it to be all of A. Thus, initially
{at t ime t = 0) only the leaf nodes are full. Then,

after every 3 stages the level just above the previous
full level becomes full.

This is not quite enough, however, for the cur-
rent definition of the Hu's does nothing more than
merge all the edges stored in the leaves of T by sorted
slopes. ~ e modify the definition slightly, so that at
the moment when a node v becomes full, then we will
perform some extra computat ions to make Hv be the
upper hull of all the edges which are stored in the
descendants of v. Suppose u is a node in T with left
child u and right child w and that v has just become
full. By induction, H , (resp. Hw) is the upper hull
for u {w) stored by sorted slopes. Thus, by merging
these two lists we can determine the common upper
tangent of Hu and H,o. Specifically, let t be the com-
mon upper tangent of H , and Hw, let e (resp. f) be
the first edge in He (resp., Hw) which has slope less
than t. Note that He and Hw both contain an edge
with slope +oo and an edge with slope - c o , thus the
edges e and f always exist. Let H~, denote the list
H , with e replaced by t and every edge after e in He
removed. Similarly, let H$ denote the list Hw with
every edge before f removed. Given the rank of t
in He and H,~, respectively, we can easily construct
H " and H " in constant t ime using O([H,, I + [He,[)
processors.

Given two sorted lists A and B (from the same
universe), if, for any two adjacent items e and f in
A, the rank of e in B differs from the rank of f in
B by at most a constant c, then we say that A is a
c-cover for B. In order for us to be able to perform
each stage of our algorithm in constant time using a
linear number of processors it must be the case that
the llst Hv at time t be a c-cover of Hv at t ime t + 1.
Atallah, Cole, and Goodrich [2] show that this %-
cover" property would surely b e true if we were not
deleting elements from H , and H,o and then adding
an edge to Hu (to create H$ and H$) . Thus, if we can
show that the He definitions have a c-cover property
in spite of the deletions and additions, then we will
have established that each stage can be performed
in O(1) time using O(n) processors. First, note that
He is a 2-cover for H$, since in creating H$ from H,o
we deleted a contiguous block of elements from H,,
and then added at most one additional edge. We also
have that Hw is trivially a 1-cover for H$. Thus, by
transitivity, Hv is a 2-cover for H i = H i U H$. This,
in turn, implies tha t Hv at t ime t will be a c-cover of
H,, at t ime t + 1. (The interested reader may wish to
examine the details of the proofs in [2] to show that ,
in fact, Hv at t ime t is a 4-cover of He at t ime t + 1.)
We summarize with the following theorem:

T h e o r e m 5.1: Given a set S of n points in the plane
one can construct the convez hull of S in O(logn)
time using O(n) processors in the CREW P R A M
model. •

208

6 . Final R e m a r k s and Open Prob lems

This paper presents parallel analogues to some fa-
mous notions from sequential computational geome-
try. Namely, that the all-nearest neighbor problem
can be solved without constructing a Voronoi dia-
gram, that problems for polygons can often-times be
solved faster than point-set problems, and that con-
vex hulls can be constructed by performing divide-
and-conquer with edge lists sorted by slopes. An-
other interesting observation is that in developing an
optimal parallel algorithm for the kernel problem we
discovered some geometric relationships which result
in a new optimal sequential algorithm (which is sim-
pler than the previous best algorithm [15]}. We leave
two open problems:

1. Can the Voronoi diagram of n planar points be
constructed in O(logn) time using O(n) pro-
cessors in the CREW PRAM model? The cur-
rent best algorithm runs in O(log 2 n) time us-
ing O(n) processors [1,2] (we already know how
to solve the all-nearest neighbors problem in
O(logn) time using O(n) processors (in the
EREW PRAM model)).

2. Can the convex hull of n planar points plane be
constructed in O(logn) time using O(n) pro-
cessors in the EREW PRAM model? It is
known that sorting can be done in O(log n) time
using O(n) processors in the EREW PRAM
model [8]. The close relationship between the
convex hull problem and sorting is well known
in sequential computational geometry, but in
the parallel setting there is currently a gap be-
tween their respective complexities.

R e f e r e n c e s

[1] A. Aggarwal, B. ChazeUe,
L. Guibas, C. 6'Ddnlaing, and C. Yap, "Parallel
Computational Geometry," manuscript, 1987 (a
preliminary version appeared in Proc. 25th IEEE
Syrup. on Found. of Comp. Sci., 1985, 468-477).

[2] M.J. Atallah, R. Cole, and M.T. Goodrich,
"Cascading Divide-and-Conquer: A Technique
for Designing Parallel Algorithms," Proc. ~8th
IEEE Syrup. on Found. of Comp. Sci., 1987,
151-160.

[3] M.J. Atallah and M.T. Goodrich, "Efficient Par.
allel Solutions to Some Geometric Problems," J.
of Par. and Dist. Comp., Vol. 3, 1986, 492-507.

[4] M.J. Atallah and M.T. Goodrich, "Parallel Algo-
rithms for Some Functions of Two Convex Poly-
gons," to appear Algorithmica.

[19t

[5] J. L. Bentley and M. I. Shamos, "Divide-And-
Conquer in Multidimensional Space," Proc. 8th
ACM Syrup. on Theory of Computing, 1976,
220-230.

[6] G. Bilardi and A. Nicolau, "Adaptive Bitonic
Sorting: An Optimal Parallel Algorithm for
Shared Memory Machines," TR 86-769, Dept.
of Comp. Sci., Cornell Univ., August 1986.

[7] A. Chow, "Parallel Algorithms for Geomet-
ric Problems," Ph.D. thesis, Comp. Sci. Dept.,
Univ. of Ill. at Urbana-Champaign, 1980.

[8] R. Cole, ~Parallel Merge Sort," Proc. eTth IEEE
Syrup. on Found. of Comp. Sci., 1986, 511-516.

[9] M.T. Goodrich, "Efficient Parallel Techniques
for Computational Geometry," Ph.D. thesis,
Dept. of Comp. Sci., Purdue Univ., August 1987.

[10] M.T. Goodrich, "Finding the Convex Hull of a
Sorted Point Set in Parallel," Info. Proe. Letters,
Vol. 26, December 1987, 173-179.

[11] L. Guibas, L. Ramshaw, and J. Stolfi, "A Ki-
netic Framework for Computational Geometry,"
Proc. ~$th IEEE Syrup. o n Found. of Comp.
Sci., 1983, 100-111.

[12] C.P. Kruskal, L. Rudolph, and M. Snir, "The
Power of Parallel Prefix," Proc. 1985 IEEE Int.
Conf. on Parallel Processing, 180-185.

[13] R.E. Ladner and M.J. Fischer, "Parallel Prefix
Computation/' J. ACM, October 1980, 831-838.

[14] D.T. Lee and F.P. Preparata, "The All Nearest-
Neighbor Problem for Convex Polygons," Info.
Proe. Letters, Vol. 7, No. 4, June 1978, 189---192.

[15] D.T. Lee and F.P. Preparata, "An Optimal Al-
gorithm for Finding the Kernel of a Polygon," J.
ACM, Vol. 26, No. 3, July 1979, 415-421.

[16] F.P. Preparata and D.E. Muller, "Finding
the Intersection of n Half-spaces in Time
O(nlogn)," Theoretical Comp. Sci., Vol. 8,
1979, 45-55.

[17] M.I. Shamos, "Geometric Complexity," Proc.
7th ACM Symp. on Theory of Computing, 1975,
224-233.

[18] G.T. Toussaint, "Solving Geometric Problems
with Rotating Calipers," Proc. IEEE MELE-
CON '83, Athens, Greece, May 1983.

H. Wagener, "Optimally Parallel Algorithms
for Convex Hull Determination," unpublished
manuscript, September 1985.

209

lne~(q) _ _ ~ : : : : I -o

(11,

lnext(q)

q
O-

Inext(q')

q'
. - O

(~)

I ly_~t(q')
ln (q) q

. . . . f -o

(2)

lnext(q)
O -

q
O -

lnext(q')
. - 0

q'
. - 0

(4)

Figure 1: A spiral polygon has ~.n empty kernel. Figure 3: The different cases for updating the lnext
label.

. "
. . -

. . °

: . . . ' " ' " . .

: " ° .

i " " .
: .." . . ' :
: ° . " " - .

: " ' " . ' " " " . " :
-°

'.. : :

• - - "
: *- . . . ° ' "

/ "'... ej _

7
: (interior of P) =

. . ° . ' . .

° " . % . . ° . . . ° . - ' " " ° ° " . . ' ° ' "
% . . ° -

:
.

° . . q
o

nw(suecCq,L(w))
%

" '= s.¢c(~LCw))

. , o pred(q,L(w))
J

s

s

sw(pred(q,L(w))

Figure 2: If ei intersects H(ei) then P is a spiral Figure 4: The only points in Y(w) which could have
polygon, q E Y(u) as their nearest neighbor.

210

