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ABSTRACT
Silhouettes are perceptually and geometrically salient fea-
tures of geometric models. Hence a number of graphics and
visualization applications need to �nd them to aid further
processing. The eÆcient computation of silhouettes, espe-
cially in the context of perspective projection, is known to be
diÆcult. This paper presents a novel eÆcient and practical
algorithm to compute silhouettes from a sequence of view-
points under perspective projection. Parallel projection is
a special case of this algorithm. Our approach is based on
a point-plane duality in three dimensions, which allows an
eÆcient computation of the changes in the silhouette of a
polygonal model between consecutive frames. In addition,
we present several applications of our technique to problems
from computer graphics and medical visualization. We also
provide experimental data that show the eÆciency of our
approach.
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1. INTRODUCTION
EÆcient computation of silhouettes of polyhedra is a cen-

tral problem in many applications, such as model simpli�-
cation [15, 16, 19, 22, 30], image-based rendering [25, 29],
collision detection [4], shadow computation [8], nonphotore-
alistic rendering [5, 12, 14, 23], and computer animation [13].
Since silhouette edges represent discontinuities in the visibil-
ity of an object, they are useful features in the registration
of models in two and three dimensions, a technique used in
medical robotics to align preoperative models to X-ray im-
ages [21]. Perceptual importance of silhouettes also allows
to visualize large polygonal models based on their silhou-
ettes [29].
We assume throughout this paper that the surface poly-

gons of a solid model are speci�ed consistently so that all
facet-normals point outwards (or all point inwards) from
the model. We also assume that the model is a 2-manifold.
While nonmanifold edges may be better classi�ed based on
additional geometric rules, we conservatively mark them as
silhouette edges in our current implementation. For a 2-
manifold without boundaries, our algorithm computes pre-
cisely the edges that are on the silhouette.
Every edge of the silhouette of a polyhedral model is

shared by two facets with opposite orientations with respect
to the viewpoint. That is, an edge is a silhouette edge if one
of the adjacent facet-normals points toward the viewpoint
and the other normal points away from it. In Figure 1 the
edge e is on the silhouette of the model since the facet f1 is
facing away from the viewer while facet f2 is facing toward
the viewer. Figure 2 shows a polyhedral representation of
a chess bishop, where the silhouette edges are highlighted
with thick lines.
Silhouette computation has recently received special at-

tention [2, 3, 11, 14, 17, 28, 29]. Raskar and Cohen [28]
treat the problem from a computer graphics point of view.
They use the rendering pipeline to draw silhouette edges on
the screen. Their algorithm draws enlarged backfacing poly-
gons �rst, followed by (normal-sized) frontfacing polygons to
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Figure 1: A silhouette edge

Figure 2: A silhouette of a chess bishop

produce the silhouette. While the problem of hidden-edge
removal adds considerable complexity to silhouette-�nding
algorithms, their approach has the advantage of showing
only visible silhouette edges. However, the rendering-based
approach does not explicitly compute silhouette edges; it
rather just renders them through image processing tech-
niques. In many applications we want to obtain a list of
silhouette edges (for example, for model registration).
Benichou and Elber [3] solve this problem under parallel

projection. In this case the visibility of a facet from the view-
point (located at in�nity) is uniquely de�ned by the facet's
normal. The authors project all the facet normals onto the
unit sphere, and map the edges of the polyhedron into arcs
on the sphere. Finding the silhouette edges is then equiva-
lent to �nding which spherical arcs are intersected by a plane
that passes through the center of the sphere. Benichou and
Elber solve this problem by further projecting the sphere
onto a unit cube, thus reducing it to �nding line-segment
intersections in the plane. The latter problem is solved by
using known techniques [1, 7, 24]. The main drawback of
this approach is that it only works for parallel projections,
whereas most practical applications require the use of per-
spective projections (e.g., complex scene rendering and im-
age registration). Our algorithm addresses the shortcomings
of both approaches, by explicitly computing silhouette edges
under perspective projection.
Two competing algorithms were recently introduced in [29]

and in [14]. In the �rst work silhouettes are computed by lo-

cating an anchored cone of normals in an n-ary tree. In the
second work the silhouette of a polygonal model is computed
by intersecting the dual of the model with the dual plane of
the viewpoint. The plane-surface intersection needed in this
work is, in general, a harder and more unstable problem than
the point-location operations needed in our work. In addi-
tion, our algorithm is based on tracking only the changes
of the silhouette rather than computing all the silhouette
edges in each frame. Also, the tree construction, mainte-
nance, and search are simpler in our method. As a result,
our method is more eÆcient both in theory and in practice.
The simplest brute-force approach for computing silhou-

ettes is to check the facets adjacent to every edge. Such
an approach must examine the whole model. However, it
has the advantage that the computation done for each edge
is quite fast since it involves only a couple of dot-products
operations. Using a more complicated procedure is bene�-
cial only if the number of silhouette edges is considerably
smaller than the number of edges in the model. Kettner
and Welzl [17] examine the complexity of the silhouettes of
polyhedral models. They show that the number of silhou-
ette edges of an "-approximation of the unit sphere under
the Hausdor� distance is proportional to 1=

p
", whereas the

total number of edges of the approximation is on the order of
1=". Thus we expect to have roughly O(

p
n) silhouette edges

for approximations of smooth convex objects with n edges.
For nonconvex objects the number of silhouette edges can be
higher, mainly due to the complexity of a convex partition
of the object. Kettner and Welzl show that the fraction of
silhouette edges for some commonly-used models varies be-
tween 2% and 40%, where the higher values correspond to
more complex objects. For most objects the value is around
10%, which indicates that a careful algorithm can yield an
improvement over the brute-force approach. We also note
that only a few silhouette edges change when the viewpoint
moves slightly. The brute-force algorithm cannot take ad-
vantage of this fact and recomputes all the silhouette edges
for each frame.
In contrast, our approach focuses on the edges that either

become silhouette edges or cease being silhouette edges in
each frame. Thus we update a small number of \silhouette

ags" at each frame. We reduce the problem of updating the
silhouette to �nding edges that cross a (three-dimensional)
double-wedge of two planes. The advantages of this scheme
are manifold:

� The silhouette computation is eÆcient;

� The silhouettes are object-space precise and are per-
spective accurate;

� It is able to compute edges that are `close' to being on
the silhouette; and

� It is able to compute silhouettes from a set of view-
points (e.g., along a line segment or within a triangle).

2. THE ALGORITHM
We present a novel approach for �nding silhouettes of

polyhedral models. Our technique makes use of a duality
between points and planes in three dimensions.
The dual transform associates a point P = (a; b; c) with

the plane dual(P ) given by ax+by+cz+1 = 0. Conversely,
a plane � with equation ax+ by + cz + d = 0 is associated
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Figure 3: Two possible duals of an edge shared by
two facets supported by the planes �1 and �2 (shown
with thick lines)

with the point dual(�) = (a=d; b=d; c=d). Note that if P is
the origin (a = b = c = 0) (resp., � passes through the origin
(d = 0)), then the dual plane (resp., the dual point) is at
in�nity.
It is well known that a point v lies in a plane � if and only

if the point dual(�) lies in the plane dual(v). We use this
simple fact for �nding silhouette edges. Consider the dual of
an edge e of the model. Let f1 and f2 be the facets sharing
the edge e, and let �1 and �2 be the supporting planes of
these two facets. We de�ne dual(e) as the shortest path in
the dual space taken by dual(�1) as �1 is rotated about e
toward �2 on the shortest path (smaller rotation angle in
the primal space). Saying di�erently, the normal to �1 is
rotated about e towards the normal of �2 along the shortest
arc. Note that the two normals, and all the intermediate
positions thereof, lie in a plane perpendicular to e.
The following theorem, which is a rather known fact, proves

that the dual of this motion occurs on a line connecting
the points dual(�1) and dual(�2). Note that �1 may pass
through the origin while it is rotated toward �2. In this case
dual(e) passes through a point at in�nity. This dual edge
is the di�erence between the entire line de�ned by dual(�1)
and dual(�2), and the segment connecting the two points.
The two situations are depicted in Figure 3.
It is also well known [27] that:

Theorem 1. Given a line ` in the three dimensional space,
the duals of all planes that contain ` lie on a line.

This follows directly from the fact that the duality preserves
occurrences. We will now prove that dual edges uniquely
de�ne silhouette edges, thus establishing the correctness of
our algorithm.

Theorem 2. An edge e is on the silhouette as seen from
a viewpoint v, if and only if dual(e) intersects the plane
dual(v).

Proof. The claim follows from the de�nition of the dual
of the edge e. If e is a silhouette edge, then its adjacent facets
f1 and f2 have di�erent orientations with respect to the
viewpoint. Therefore, while rotating one facet (or rather,
rotating its supporting plane) toward the other about e, we
must cross the viewpoint, hence the dual segment intersects
with the dual viewplane.
Conversely, if a dual segment intersects with the dual

viewplane, then the primal facets corresponding to the end-
points of the edge must have the viewpoint on di�erent sides

(since by moving from one to the other we need to cross the
viewpoint); therefore the primal edge is, by de�nition, a sil-
houette edge.

2.1 Silhouette Update
In order to �nd the silhouette edges of a model, it is

enough to construct the duals of the edges of the model,
then report those edges whose duals intersect the dual of
the viewpoint. The problem of �nding the set of three-
dimensional segments intersected by a query plane is dif-
�cult, although its two-dimensional variant has been stud-
ied [1, 7, 24] extensively. Even if we were able to eÆciently
compute the answer to such queries, we would need to re-
compute the complete silhouette every time the viewpoint
changes. An on-line silhouette-�nding algorithm needs to
compute the change in the silhouette between frames. We
note that as the viewpoint moves, the collection of silhouette
edges changes whenever the dual of the viewpoint intersects
one of the points dual to the supporting planes of the facets
of the model. Maintaining the collection of silhouette edges
while the viewpoint is in motion thus leads to the following
problem, which is a generalization of the segment-dragging
problem [6, 10, 18]:

Given a set of points in three dimensions and a
plane �, report the points hit by � while it moves
continuously (performing rotations and transla-
tions).

The segment-dragging problem has no simple eÆcient so-
lution known even in two dimensions when the segment is
not axis parallel. The two-dimensional solution relies on
constructing a simplicial partition with a low stabbing num-
ber for the set of points. (The stabbing number of a line
segment is the number of other segments or regions it inter-
sects.) The segment-dragging problem is then answered by
carefully traversing this partition. The eÆciency of the al-
gorithm is guaranteed by the bound on the stabbing number
of the partition. However, this procedure does not extend
easily to three dimensions. Therefore, the implementation
of an approach based on a simplicial partition is impracti-
cal. At the same time there are a few practical limitations.
Since the change of the position of the viewpoint is discrete
(at least in our application), our algorithm receives the po-
sitions of the viewpoint at instants determined by the frame
rate of the graphical interface. We could apply our proce-
dure by interpolating the position of the viewpoint between
the key positions. However, this turns out to be too slow as
the algorithm must handle each of the possibly many points
crossed by the moving viewplane. Hence, this theoretically-
eÆcient solution is not quite practical.
As a remedy for these problems we make use of a heuristic

approach. Ultimately we are interested in the set of points
that cross the moving viewplane between frames. This is the
set of points lying in the double wedge de�ned by the two
positions of the viewplane (at consecutive frames). These
points correspond to polygons that switch from backfacing
to frontfacing (or vice versa); all the silhouette changes are
with edges adjacent to these polygons. We therefore need
to answer double-wedge queries on a set of points (segment
endpoints) in three dimensions, and then process the re-
ported points.
Note that not all the points in the wedge contribute to

changes in the silhouette. Suppose there is a segment com-
pletely contained in the double wedge that corresponds to
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the current pair of frames. Then both facets adjacent to the
primal entities of the endpoints of the segment have switched
from being backfacing to frontfacing (or vice-versa), so the
edge shared by the two facets does not become a silhouette
edge. Thus we are interested only in segments that cross
the wedge planes, and exactly one of whose endpoints is in
the wedge.
Double-wedge point queries can be answered in O(n2=3 +

k) time, where n is the number of wedges and k is the out-
put size. The algorithm is based on partition trees [24]. It is
quite diÆcult to implement and ineÆcient in practice. (See
a description of its implementation in [26, x3.4].) We have
experimented with two search procedures for these queries:
one based on the well-known Octree, and the other based on
the BAR (balanced aspect ratio) tree of Duncan et al. [9].
In theory, The BAR tree combines the advantages of the k-d
tree and the Octree. It has a small depth (logarithmic in the
number of points) and at the same time the regions de�ned
by the tree have bounded aspect ratio. Both characteristics
are achieved by supporting diagonal cuts in addition to the
axis-parallel cuts allowed by the traditional data structures.
Our empirical results show that BAR trees, although supe-
rior in theory, do not perform as well as Octrees for data size
smaller than roughly a million triangles. We have therefore
used the Octree implementation in our experiments reported
in Section 3.
The query-answering algorithm is straightforward for both

Octree and BAR tree: we examine the regions of the tree,
recursing only on those that intersect the query wedge. For
each region we maintain:

1. A list Lin of dual points whose adjacent dual points
are all contained in that region;

2. A list Lout of the rest of the points in the region; and

3. A pointer A to the region that contains all the dual
points adjacent to the points in Lout.

For regions completely contained by the wedge, we do not
report any points in Lin. At a leaf node we report all points
in the wedge that have an adjacent point not in the wedge.
Then, we reject in a second pass Lout points of each region
whose A pointer is directed at a region out of the wedge.
In theory, the running time of this procedure can be linear
in the number of input points because we can construct an
empty wedge (that does not contain any points) which in-
tersects a linear number of regions. This case is however
very rare. In practice, the algorithm performs very well and
is easy to implement.
The tree-search procedure reports the dual points con-

tained in the wedge, pruning out most of the useless points
lying in the wedge. A (dual) point is useless if it is not adja-
cent to a silhouette. This happens if all its adjacent points
also lie in the wedge. In theory, some of the reported points
may yet have all adjacent points within the wedge. How-
ever, the fraction of such useless points is small in practice.
Large solid models are often generally smooth. Smoothness
implies that adjacent triangles have similar spatial orien-
tations and hence their dual edges are small. As a result,
most dual edges are short and are fully contained in the
tree region containing their two endpoints. This e�ectively
prevents most useless points from being reported by our al-
gorithm.
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 (a)          (b)                (c)              (d)
 Nearly Silhouette         Silhouettes from within a triangle

Dual space

Primal space

Dual Space

Figure 4: Silhouette extensions

The next step inspects each segment adjacent to the re-
ported points. If the segment crosses one of the viewplanes,
then its silhouette 
ag is toggled. Obviously, answering the
query for the �rst time requires a brute-force computation
of all the edges on the silhouette.

2.2 Extensions

2.2.1 Backface culling
Our silhouette-�nding algorithm can also be used to com-

pute the backfacing polygons. The duals of these polygons
are points in the double wedge that change their backfac-
ing status between frames. Points contained in one half
of the wedge correspond to the polygons that change from
being backfacing to frontfacing between the frames, while
the points in the other half change from being frontfacing
to backfacing. A backface-culling-only algorithm does not
need, however, to answer wedge queries. A simple halfs-
pace query results in the nodes that are frontfacing, which
are then passed to the graphics hardware. The backfacing
nodes are simply discarded. Leaf nodes intersecting with the
viewplane require testing of each contained dual point. This
backface-culling algorithm provides an average speed-up of
about 50% over hardware backface culling for the bunny
model. This compares favorably with earlier results [20, 31].

2.2.2 Near silhouettes
We can easily generalize our algorithm to �nd edges close

to being on the silhouette (which is useful for model sim-
pli�cation). We demonstrate this in Figure 4. We know
that silhouette edges cross the viewplane in the dual space.
Edges close to being on the silhouette may be characterized
as close to the viewplane, as shown in Figure 4(a), where
we just consider two planes parallel to the viewplane. Fig-
ure 4(b) shows the region, bounded by solid thin lines, in
which an incremental algorithm must locate the dual points
for `near-silhouettes.' Near-silhouette schemes are useful for
applications with large overhead on silhouette update.

2.2.3 Generalized silhouettes
Some problems (e.g., shadow computation) require that

we �nd edges that are on some silhouette seen from any-
where within a given triangle. Recall that all the silhouette
updates along a line segment connecting two viewpoints are
represented by dual points contained in the double wedge
dual to the two viewpoints. Similarly, all updates associ-
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ated with viewpoints within a triangle are given by the dual
multi-wedge as shown by the shaded area in Figure 4(c,d):
the region bounded by any pair of planes. A multi-wedge
query may be answered just as a wedge query. We have to
compute the intersection of all the wedges with the nodes of
the Octree (or of the BAR tree).

3. EXPERIMENTAL RESULTS
We have implemented the entire algorithm in C; parts of

it are also available in Java. The implementation took about
12 man months, and the software consisted of over 10,000
lines of code. All experiments were performed on an 64-
bit SGI Octane workstation with one 195 MHz processor,
256 MB of internal memory, using an SSI graphics board,
and running the IRIX 6.5.2m operating system. We have
experimented with the algorithm on the models shown in
Figure 5.
We �rst review the meaning of the observed parameters.

The complexity of the models is presented through the num-
ber of vertices, facets, and edges. Another parameter of
major importance in computer graphics is the frame rate:
number of frames we can display per second. The parame-
ters we examine are:

Edges/sil %: The percentage of silhouette edges out of the
total number of edges. Intuitively, this parameter is
proportional to the number of convex components of
the model, since the number of silhouette edges of a
convex polyhedron with n edges is roughly

p
n [17].

Change/frame %: The percentage of silhouette edges that
change between frames out of the total number of
edges. The amount of work performed by our algo-
rithm depends on this number, thus the smaller the
number is, the more advantage we have over the brute-
force approach.

Brute-force frame rate: Frame rate when computing the
silhouette edges with the brute-force method, i.e., by
examining all edges of the model and drawing each
silhouette edge.

Our frame rate: Frame rate when computing the silhou-
ette edges with our algorithm and drawing only the
silhouette.

All-facets frame rate: Frame rate when displaying all the
facets of the model (with hardware backface culling
turned on).

All-edges frame rate: Frame rate when displaying all the
edges of the model (no backface culling).

Our computation: Frame rate for silhouette computation
using an Octree; rendering is turned o�.

Brute-force Computation: Frame rate for silhouette com-
putation using the brute-force method; rendering is
turned o�.

Our point-search procedure uses an Octree for smaller
models and a BAR tree for larger models. For each model we
ran several experiments set up as follows. We �rst created a
sequence of viewpoints by randomly rotating, by hand (with
a graphic interface), the bounding box of the model for 30

seconds, and recording the sequence of viewpoint positions.
We then rendered the model in the modes listed above as it
was viewed from for the recorded viewpoints.
Table 1 summarizes the characteristics of the models we

tested. Although the percentage of silhouette edges of the
model can be as high as about 30%, less than 1% of them
changed between frames in our experiments. Thus the extra
work we spent over the brute-force approach paid o�.
Table 2 summarizes the di�erences between the brute-

force approach and our algorithm, applied for some of the
models. (Similar results were obtained for the other models.)
We obtained a speed-up of more than 6 for larger models like
the bunny and the dragon. For smaller models the rendering
rate is limited by the graphics hardware bu�er update rate.
Observe that the brute-force approach is faster than our
method for small models, which is the expected result.
Table 2 also provides a comparison of silhouette rendering

time versus the rendering time of the (unsimpli�ed) com-
plete model, with hardware backface culling turned on. In
all cases the frame rate is higher when drawing only silhou-
ettes than when drawing all the edges or all the facets.

4. APPLICATIONS
EÆcient computation of silhouette edges is relevant for a

variety of practical applications. In this section we brie
y
review a few of the problems which may bene�t from our
algorithm. (A more detailed discussion is given in the full
version of the paper.)

4.1 Fast Rendering of Polyhedral Models
Computer-aided design (CAD) programs used in archi-

tecture and engineering require frequent manipulations of
complex models. For such models, the image on the screen
moves rather slowly due to the need to render the entire
object during its motion. Visibility computation and model
simpli�cation are techniques commonly used to speed up
rendering. A third approach is based on eÆcient silhouette
computation. In this approach only the silhouette edges are
rendered during quick movement and inspection. When the
user stops moving the model, a more detailed rendering may
be performed. Silhouettes capture the general structure of
objects, and therefore can be used to guide the position-
ing of the object without the need to render all the edges.
As an example, Figure 6 shows the silhouette of a bust of
Beethoven as it is seen from three di�erent viewpoints. The
pose of the model can be easily inferred just from the sil-
houette.

4.2 Model Simplification
One of the central problems in computer graphics is that

of model simpli�cation [15, 16, 19, 22, 30]. The problem is to
simplify the polyhedral representation of computer models
so that the models preserve much of their original \look,"
yet use up much fewer facets for faster display. A general
procedure for simplifying models involves a series of edge
collapses such that the resulting model is not too far away
(under an appropriate measure of distance) from the original
model. The general framework for view-dependent simpli�-
cation accounts for the viewpoint movement and simpli�es
the objects dynamically according to the viewpoint. The
objects that come closer to the viewer need to show more
detail and the objects that move away from the viewer can
be simpli�ed.
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(a) Dragon (b) Epcot (c) Mushroom

(d) Bishop (e) Heart (f) Head (g) Teapot

(h) Sky scraper (i) Beethoven (j) Hammerhead (k) Honda            

(l) Molecule (m) Pagoda (n) Bunny (o) Power lines

Figure 5: Models with which we experimented
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Dataset Vertices Facets Edges Edges/sil % Change/frame %
bishop 251 496 744 12.76 0.48
heart 1,280 2,494 3,700 8.93 0.43
head 1,487 2,918 4,348 5.47 0.32
teapot 1,976 3,752 5,476 3.34 0.11
skyscraper 2,022 3,672 5,494 22.17 0.05
beethoven 2,521 5,030 7,545 11.97 0.32
hammerhead 2,560 5,116 7,674 6.74 0.17
honda 7,106 6,791 13,301 18.22 0.31
power lines 4,091 8,966 13,449 18.58 0.18
molecule 12,358 24,860 37,290 12.27 0.14
pagoda 24,254 40,098 57,960 21.85 0.28
bunny 34,834 69,451 104,065 3.09 0.10
dragon 437,645 871,414 1,309,257 2.9 0.05

Table 1: Complexities of test datasets

Dataset Brute-force Our All-facets All-edges Our Brute-force
frame rate frame rate frame rate frame rate computation computation

bishop 72.29 71.52 72.31 72.26 1946.21 1566.3
teapot 71.20 71.88 71.63 72.07 941.51 522.32
skyscraper 70.31 71.35 59.81 70.30 922.58 261.22
molecule 24.55 42.78 12.32 30.59 94.69 17.11
pagoda 16.29 29.54 8.34 21.03 83.49 15.22
bunny 11.29 32.58 3.45 12.44 196.56 30.76
dragon 1.1 4.3 0.8 1.5 12.2 2.0

Table 2: A comparison between our approach and the brute-force silhouette computation

Figure 6: The silhouettes of Beethoven from three
di�erent viewpoints

level of simplification

Figure 7: Progressive mesh tree

Fully dynamic computation of the adaptive simpli�cation
is time consuming. Therefore approaches like progressive

meshes [15, 16] store a predetermined set of operations. The
edges of the object are iteratively collapsed until the object
becomes a tetrahedron. The history of collapses is stored in
memory during a preprocessing step in the form of a tree.
During display, the simpli�ed model is obtained by exam-
ining a slice of the tree (see Figure 7). As the viewpoint
moves, we move up and down in the tree and do or undo
the collapses speci�ed by the nodes of the tree.
Perspective-accurate silhouette edges may be used to guide

the simpli�cation process. We make sure that silhouette
edges are not simpli�ed too drastically. Thus, the object pre-
serves its silhouette structure and still looks like the original
object, while the interior of the model can be greatly simpli-
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(a) Original (b) Simpli�ed

Figure 8: Models of a chess bishop

(a) X-ray (b) X-ray edges (c) Silhouette edges

Figure 9: Registration of a femur model

�ed. We also introduce a variant of Hoppe's approach [15,
16] in the sense that the simpli�cation tree is dynamically
constructed and updated. We store only the part of the tree
that is below the slice corresponding to the current simpli-
�cation level. Essentially we store a history of all edge col-
lapses performed to attain the current view. We can a�ord a
dynamic edge-collapsing process as the surface-quality met-
ric is trivial to compute. As an example of our approach,
Figure 8 shows a chess bishop and a simpli�ed version of it.
The simpli�ed model looks much like a bishop even when
the interior of the silhouette is simpli�ed quite aggressively.

4.3 Medical Image Registration
One of the important problems in medical robotics is that

of pose registration between a detailed preoperative three
dimensional model and X-rays taken during the operation.
Some of the algorithms used for the registration [21, x7,
pp. 115{143] involve the matching of features present in both
the model and the X-ray images. Since silhouettes represent
discontinuities in the visibility of the object, they form a
subset of the features present in the X-rays and hence can
be used to guide the registration algorithm. Figure 9 shows
an X-ray of a femur, the edges in the image (as determined
by standard image-processing techniques), and the silhou-
ette of a three dimensional model of the femur. Similarities

between the edges in the X-ray and the silhouette edges are
visually obvious. We use a measure of similarity based on
the distance between each silhouette point on the image and
the closest edge on the X-ray image.
Figure 10 shows the same three pictures of a model of a

brain. Note that in this case some of the X-ray features are
not captured by the silhouette. This is due to the fact that
X-rays also capture features e�ected by density gradients.
Such features cannot be described by the polyhedral mod-
els we use. We can therefore use a silhouette-based method
for obtaining fast an approximate solution to the registra-
tion problem, and apply then a more laborious technique for
arriving closer to the correct solution.

5. CONCLUSIONS
We present a nontrivial algorithm for computing true sil-

houette edges in polyhedral models under perspective pro-
jection. Our algorithm is not only theoretically eÆcient,
but it also performs well in practice. We provide experi-
mental data that show the eÆciency of our algorithm with
respect to prior approaches to silhouette computation. We
also present a set of practical applications that use our al-
gorithm. We are continuing further research in these ap-
plication areas to make the best use of silhouettes. We
are also pursuing techniques to compute only the extremal
silhouettes|the silhouette edges that are not enclosed on-
screen by other edges. Extremal silhouettes are useful, for
example, for shadow computation. In addition, we are work-
ing on a mechanism which will automatically decide whether
to use an Octree or a BAR tree for the point-location oper-
ations.
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