Seller-Focused Algorithms for Online Auctioning

Amitabha Bagchi', Amitabh Chaudhary', Rahul Garg?, Michael T. Goodrich!, and Vijay
Kumar?

! Dept of Computer Science, Johns Hopkins University, 3400 N Charles St, Baltimore MD 21218,
USA
2 IBM India Research Lab, Hauz Khas, New Delhi 110016, India,

Abstract. In this paper we provide an algorithmic approach to the study of online
auctioning. From the perspective of the seller, we formalize the auctioning problem
as that of designing an algorithmic strategy that fairly maximizes the revenue earned
by selling n identical items to bidders who submit bids online. We give a randomized
online algorithm that are O(log B)-competitive against an oblivious adversary, where
the bid values vary between 1 and B per item. We show that this algorithm is optimal
in the worst-case and that it performs significantly better than any worst-case bounds
achievable via deterministic strategies. Additionally we present experimental evidence
to show that our algorithm outperforms conventional heuristic methods in practice.
And finally we explore ways of modifying the conventional model of online algorithms
to improve competitiveness of other types of auctioning scenarios while still maintaining
fairness.

1 Introduction

Although auctions are among the oldest forms of economic activity known to mankind, there
has been a renewed interest in auctioning as the Internet has provided a forum for economic
interaction on an unprecedented scale. Indeed, a number of web sites have been created
for supporting various kinds of auctioning mechanisms. For example, at www.priceline.com,
users present bids on commodity items without knowledge of prior bids, and the presented
bids must be immediately accepted or rejected by the seller. Alternately, web sites such as
www.ebay.com and www.ubid.com allow bidding on small lots of non-commodity items, with
deadlines and exposure of existing bids. The rules for bidding vary considerably, in fact,
even in how equal bids for multiple lots are resolved. Interestingly, it is a simple exercise
to construct bidding sequences that result in suboptimal profits for the seller. For example,
existing rules at www.ubid.com allow a $100 bid for 10 of 14 items to beat out two $70 bids
for 7 items each. Thus, we feel there could be considerable interest in algorithmic strategies
that allow sellers to maximize their profits without compromising fairness.

Since Internet auctioning requires a great deal of trust, notions of fairness and legitimacy
are fundamental properties for an auction [18]. Indeed, there is considerable previous mathe-
matical treatments of auctioning that classify various types of auctions, together with evolving
criteria of fairness (e.g., see [19, 15, 6]). Still, the algorithmic aspects of auctioning have been
largely neglected.

1.1 The Topic of Interest

Given the interactive nature of Internet auctioning today, we feel it most appropriate to study
auctioning strategies from an online algorithms perspective. That is, algorithms must make
immediate decisions based on existing, incomplete information, and are not allowed to delay
responses to wait for future offers.

Moreover, given that existing auctioning web sites must implement what are essentially
algorithmic rules for accepting or rejecting bids, in this paper we focus on algorithmic strate-
gies for sellers. Even so, we restrict our study to strategies that are honest and fair to buyers.
For example, we would consider as unacceptable a strategy that uses a fictitious external
bidder that causes a real bidder to offer more than he would had there been less bidding com-
petition. Besides being unethical, dishonest or unfair strategies are ultimately detrimental to
any Internet auction house anyway, since their discovery drives away bidders.

1.2 Previous Related Work

Offline scenarios for auctioning, where all bids are collected at one time, such as in sealed bid
auctions, have been studied and understood in terms of knapsack problems, for which the
algorithms community has produced considerable previous work [16,8,9]. We are not aware
of much previous work on online auctioning strategies, however.

The general area of online algorithms [5] studies combinatorial optimization problems
where the problem instance is presented interactively over time but decisions regarding the
solution must be made immediately. Even though such algorithms can never know the full
problem instance until the end of the sequence of updates (whose arrival itself might not
even be known to the online algorithm), online algorithms are typically compared to optimal
offline algorithms. We say that an online algorithm is ¢-competitive with respect to an optimal
offline algorithm if the solution determined by the online algorithm differs from that of the
offline algorithm by at most a factor of ¢ in all cases.! The goal, therefore, in online algorithm
design is to design algorithms that are c-competitive for small values of ¢. Often, as will be
the case in this paper, we can prove worst-case lower bounds on the competitive ratio, c,
achievable by an online algorithm. Such proofs typically imply an adversary who constructs
input sequences that lead online algorithms to make bad choices. In this paper, we restrict
our attention to oblivious adversaries, who can have knowledge of the online algorithm we
are using, but cannot have access to any random bits that it may use.

In work that is somewhat related to online auctioning, Awerbuch, Azar and Plotkin ([3])
study online bandwidth allocation for throughput competitive routing in networks. Their
approach can be viewed as a kind of bidding strategy for bandwidth, but differs from our
study, since in bandwidth allocation the problem of communication path determination is
at least as difficult as that of bandwidth capacity management. Leonardi and Marchetti-
Spaccamela ([10]) generalize the result of Awerbuch et al., but in a way that is also not
directly applicable to online auctioning, since, again, there is no notion of path determination
in online auctioning.

Work for online call control [1,4, 11] is also related to the problems we consider. In online
call control, bandwidth demands made by phone calls must be immediately accepted or
rejected based on their utility and on existing phone line usage. In fact, our work uses an
adaptation of an algorithmic design pattern developed by Awerbuch et al. [4] and Lipton [11],
which Awerbuch et al. call “classify-and-select.” In applying this pattern to an online problem,
one must find a way to partition the optimization space into ¢ classes such that, for each class,
one can construct a c-competitive algorithm (all using the same value of ¢). Combining all of
these individual algorithms gives an online algorithm with a competitive ratio that is O(cq).
Ideally, the individual c-competitive algorithms should be parameterized versions of the same
algorithm, and the values ¢ and ¢ should be as small as possible. Indeed, the classify-and-
select pattern is best applied to problems that can be shown to require competitive ratios
that are {2(cq) in the worst case against an oblivious adversary.

! As a matter of convention we can never have a c-competitive algorithm for ¢ < 1 (such algorithms
would instead be called 1/c-competitive)

1.3 Owur Results

We consider several algorithmic issues regarding online auctioning, from the viewpoint of
the seller, in this paper. We begin, in Section 2, by defining the multiple-item B-bounded
online auctioning problem. We present an online algorithm for this problem that is O(log B)-
competitive with an oblivious adversary. The upper bound result presented in this sections
is based on adaptations of the classify-and-select design pattern [4] to the specific problem of
online auctioning.

In Section 3 we show that it is not possible for any deterministic algorithm to provide a
satisfactory competitive ratio for this problem. Moreover, we show that the algorithm we give
in Section 2 is “optimal” in the sense that no randomized algorithm can achieve a competitive
ratio of o(log B). To do this we derive lower bounds, based on novel applications of Yao’s
“randomness shifting” technique [20] , that show the competitive ratios for our algorithm is
worst-case optimal.

In order to show that our algorithm performs well in practice we undertook a number
of experiments. The results, detailed in Section 4, demonstrate that our algorithm handles
different types of input sequences with ease and is vastly superior to other online strategies
in the difficult case where the bids vary greatly in size and benefit.

Finally, in Section 5, we consider some modifications to our model for online auctioning,
and we examine some algorithmic strategies for these modifications. In Section 5.1 we discuss
a possible modification of our model with an eye towards making it more flexible as regards its
online nature so as to gain in terms of competitiveness. In particular, we allow the algorithm
to “buffer” a certain number of bids before making a decision. We show that by buffering only
O(log B) bids it is possible to be c-competitive with an oblivious adversary for the case in
which we are selling a single item, for a constant c. In Section 5.2 we consider a modification
to our model where we restrict bid size so as to improve competitiveness. In this case, we
discuss the implications of limiting bid size from both above and below, that is, in the scenario
where bids are for no more than a certain number of items and the scenario where bids are
for at least a certain number of items.

2 The Multiple-Item B-Bounded Online Auctioning Problem

In this section we introduce the multiple-item B-bounded online auctioning problem. We have
n instances of the item on sale and the bids which come in for them offer varying benefit
per item. Each bid can request any number of items and offer a given benefit for them. The
objective is to maximize the profit that can be earned from the sequence of bids with the
additional requirement that the seller accept or reject any given bid before considering any
future bids, if they exist.

The price density of a bid is defined as the ratio of the benefit offered by the bid to
the number of instances of the item that the bid wants. In other words the price density is
the average price per item the bidder is willing to pay. The range of possible price densities
that can be offered is between 1 and B, inclusively. This restriction is made without loss of
generality in any scheme for single-item bidding that has bounded bid magnitude, as we can
alternately think of B as the ratio of the highest and lowest bids that can possibly be made
on this item. A sequence of bids need not contain the two extreme values, 1 and B, and any
bid after the first need not be larger than or equal to the previous bid.

We assume that the algorithm knows the value of B. We discuss at the end of this section
how this assumption can be dispensed with.

For this problem we propose an algorithm that uses an adaption of a random choice
strategy of Awerbuch and Azar [2] together with the “classify and select” technique of [4],
where we break the range of possible optimization values into groups of ranges and select

sets of bids which are good in a probabilistic sense based on these ranges. Our algorithm is
described in Figure 1.

Algorithm Price_And_Pack

— Select ¢ uniformly at random from the integers 0 to log B — 1.
— If i is O then set pd, = 1 else set pd, = 2°71.
— Define a bid as legitimate if it has a price density of at least pd,
e Toss a fair coin with two outcomes before any bid comes in.
e If the coin has landed heads then wait for a legitimate bid of size larger than n/2 to come
rejecting all smaller bids and all illegitimate bids.
o Else keep accepting legitimate bids till there is capacity to satisfy them. Reject all illegitimate
bids.

Fig. 1. Price_And_Pack: Auctioning multiple items with bids of varying benefit.

Theorem 1. Price_And Pack is an O(log B) competitive algorithm for the multiple-item B-
bounded online auctioning problem.

The proof of this theorem is in Appendix A. []

An important thing to note is that here the algorithm has to know the range of the input
i.e. the algorithm has to be aware of the value of B. It is possible to dispense with this
assumption to get a slightly weaker result following [4]. In other words, it is possible to give
an O((log B)'*¢) competitive algorithm, for any € > 0, which does not know the value of B
beforehand. We do not detail it here because it does not provide any further insight into the
problem of auctioning.

In the next section we give lower bounds which will show that Price-And_Pack gives the
best possible competitive ratio for the this problem.

3 Lower Bounds For The Online Auctioning Problem

In this section we give lower bounds on the competitive ratio that any algorithm can achieve
for the multiple-item B-bounded online auctioning problem.

We consider the version of the online auctioning problem in which there is only one item
to be auctioned and the range of possible prices that can be offered for this item is between 1
and B, inclusively. We call this the single-item B-bounded online auctioning problem. We give
lower bounds for this problem. It is clear that any algorithm which is 2(f(B)) competitive
for this problem, where f(B) is any function of B, will be an 2(f(B)) competitive algorithm
for the multiple-item B-bounded problem as well. Therefore a lower bound on any algorithm
for the single-item problem is a lower bound for the multiple-item problem as well.

In this section we first prove that no deterministic algorithm can in the worst case have
a competitive ratio better than the maximum for the single-item problem. More precisely,
we show that every deterministic algorithm must have a worst-case competitive ratio that
is 2(B). This lower bound is based on the fact that a seller does not know in advance how
many bids will be offered. Even so, we also show that even if the seller knows in advance the
number of bids in the input sequence, any deterministic algorithm is limited to a competitive
ratio that is £2(v/B) in the worst case.

Theorem 2. Any deterministic algorithm for the single-item B-bounded auctioning problem
has a competitive ratio that is £2(B) in the worst case.

Proof: For a given deterministic algorithm A we construct an adversarial input sequence I4
in the following way: Let the first bid in T4 be of benefit 1. If A accepts this bid, then I4
is the sequence {1, B}. In this case, on the sequence I4, the deterministic algorithm A gets
a benefit of 1 unit while the offline optimal algorithm would pick up the second bid thereby
earning a benefit of B units.

If A does not accept this first bid, then I4 is simply the sequence {1}. In this case A earns
0 units of revenue while the optimal offline algorithm would accept the bid of benefit 1.

Thus, any deterministic algorithm must be at least £2(B)-competitive in the worst case. B

Of course, B is the worst competitive ratio that is possible for this problem, so this theorem
implies a rather harsh constraint on deterministic algorithms. Admittedly, the above proof
used the fact, perhaps unfairly, that the seller does not know in advance the number of bids
that will be received. Nevertheless, as we show in the following theorem, even if the number
of bids is known in advance, one cannot perform much better.

Theorem 3. Any deterministic algorithm for the single-item B-bounded online auctioning
problem, where the number of bids is known in advance, has a competitive ratio that is .Q(\/E)
in the worst case.

Proof: Consider the input sequence Ip,se = {1,2,4,...2¢...B/2, B}. For any deterministic
algorithm A we construct our adversarial sequence I4 based on what A does with Ij,se.

Suppose A accepts some bid 2¢ < v/B. Then we choose I4 to be the same as Ipgse. In this
case A’s benefit is less than /B, whereas an optimal offline algorithm would earn B units
thereby making A an 2(v/B) competitive algorithm.

If A accepts some bid 2¢ > v/B, on the other hand, then we choose I4 to be {1, 2, 4,
...20711, 1, ...}, i.e., we stop increasing the sequence just before A accepts and then pad
the rest of the sequence with bids of benefit 1. 2 This way A can get no more than 1 unit of
benefit while the optimal offline algorithm gets 2:~! which we know is at least v/B.

If A accepts none of the bids in Ij,se then it is not a competitive algorithm at all (i.e. it
earns 0 revenue while the optimal offline algorithm earns B units) and so we need not worry
about it at all.]

It is easy to see that the deterministic algorithm that either picks up a bid of benefit at
least v/B or, if it does not find such a bid, picks up the last bid, whatever it may be, succeeds
in achieving a competitive ratio of O(v/B).

Theorem 2 tells us that no deterministic algorithm can effectively compete with an obliv-
ious adversary in the worst case, if the number of bids is not known in advance. Indeed,
although the proof used a sequence that consisted of either one bid or two, the proof can
easily be extended to any sequence that is either of length n or n + 1. This bleak outlook
for deterministic algorithm is not improved much by knowing the number of bids to expect,
however, as shown in Theorem 3.

Furthermore we show that even randomization does not help us too much. We can use
Yao’s principle [20] to show that no randomized algorithm can be more competitive against
an oblivious adversary than Sell_One.

Theorem 4. Any randomized algorithm for the single-item B-bounded online auctioning
problem is 2(log B)-competitive in the worst case.

The proof is in Appendix B.]

2 Bids are not always increasing. For a single item there is no issue at all if the bids are always
increasing and the number of bids is known. Just wait for the last bid.

4 Experimental Results

In order to give an idea of the efficacy of Price_And_Pack we present the results of simulated
auctions which use this algorithm.

The input sequences were generated by selecting each bid from a given probability distri-
bution. The three distributions used were: Normal, Poisson and Uniform. Both the number
of items being bid for and the price density offered by the bid were chosen from the same
distribution.

We chose three different combinations of n and B and generated 100 input sequences for
each combination. To get a good approximation to the average benefit of Price_And_Pack we
ran the algorithm 1000 times on each instance and averaged the benefit over all these runs.

We determined a lower bound on the amount of revenue obtained by Price_And_Pack
compared to the maximum possible revenue. To do this we implemented an offline algorithm
which has been shown to be a 2 approximation [7]. By dividing the revenue obtained by
Price_And_Pack by 2 times the revenue obtained by the offline algorithm we were able to
provide a number which is effectively a lower bound on the actual ratio.

(n,B) | Distribution | Fxpected ratio | g,
(1/1og B)
Uniform 31
(50, 1024) Normal 1 .69
Poisson .61
Uniform .34
(2000, 1024)| Normal 1 .62
Poisson 7
Uniform .34
(2000, 2048) Normal .09 .61
Poisson .69

Fig. 2. Price_And_Pack v/s the optimal offline algorithm.

The numbers in Figure 2 show that in practice Price_And_Pack performs quite well com-
pared to the optimal offline algorithm and significantly better than the bound of O(log B)
would suggest. We see that in the two distributions which tend to cluster sample points near
the mean, i.e. Normal and Poisson, the algorithm does especially well. However these distri-
butions provide fairly regular input instances. The real power of Price_And_Pack is on view
when the input instances have widely varying bids.

To demonstrate this we compared the performance of a simple Greedy heuristic with the
performance of Price_And_Pack. Greedy simply accepts bids while it has the capacity to do so.
In Figure 3 we present the results in terms of the percentage extra revenue Price_And_Pack
is able to earn over the Greedy heuristic.

We see that when the bids are comparable to each other (i.e. when they are generated
by the Normal or Poisson distribution) then Price_And_Pack does not do significantly better
than Greedy but when the bids vary widely in size (i.e. when they are generated by the Poisson
distribution) then Price_And_Pack definitely outperforms Greedy.

In Figure 4 we graph the percentage extra revenue earned by Price_And_Pack in 100
different input instances for a given choice of n and B. It is clear from the graph that
Price_And_Pack consistently outperforms Greedy.

Distribution| (n, B) Average %
(50, 1024) %
Uniform {(2000, 1024) 28.5
(2000, 2048)| 27.1
(50, 1024) 0.5
Normal |(2000, 1024) 0.7
(2000, 2048)| 0.5
(50, 1024) 14
Poisson (2000, 1024) 0.1
(2000, 2048) 0.3

Fig. 3. Price_And_Pack over Greedy: % advantage.

300 T T T T T T T T T
"2000-2048-100_U_C" —

200 —

150 —

Percentage

100

50 -

OVV v \ v

»50 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
Case n=2000, B=2048. 100 input instances. Uniform distribution.

Fig. 4. Price_And_Pack over Greedy: % advantage in 100 individual runs.

5 Modifying the Model

In this section we look at some ways of modifying the auctioning model to improve com-
petitiveness. Various kind of auctions exist, and have existed for a long time. Taxonomies of
auctions (for eg. [19], [15]) have classified auctions along three broad categories: bid types,
clearance mechanisms and intermediate information policies. We look at these classifications
to order our search of the auction space.

5.1 Buffering: Giving Intermediate Information

In the preceding sections we saw that in the conventional online model, where every bid has
to be accepted or rejected before the next bid comes in, we are limited to a competitive ratio
of 2(log B). However it is possible to do better if we relax the online model slightly. In the
model under consideration so far every bid has to be accepted or rejected immediately, or,

more precisely, before the next bid comes in. However in real life auctions this is not always
the case.

The strictly online model can be thought of as the auction which releases no intermediate
information. It directly informs the bidder if his or her bid is accepted or rejected. However
most auctions do release some intermediate information. For example in the outcry type of
auction the current highest bid is announced. This amounts to informing those who bid at
that level that their bid is still under consideration, although it might yet be beaten out by
a better bid.

This paradigm of delaying a decision on a particular bid is directly contradictory to the
online model we have been considering in previous sections. The problem with the outcry
auction is that, in the case of a monotonically increasing sequence of bids, each bid is asked to
hold on and then rejected i.e. O(B) bids are made to wait till a new bid comes in before being
rejected. This is clearly unacceptable since from the point of view of a bidder an intermediate
notification that the bid is still under consideration is tantamount to saying that this bid has
a reasonable chance of success. However if the bidder knows that O(B) bids could be asked
to hold then he might not consider this chance of success reasonable.

So, the model we propose is that only a certain small number of bids can be asked to wait
without a definite notification of acceptance or rejection. We can think of these bids being
buffered in a buffer which will need to contain only one item at a time and will not be allowed
to hold more than a certain small number of items in the course of the auction. We call this
structure a k-limited access buffer or a k-LAB. We denote the highest bid held in the LAB
by H(LAB).

That this relaxation is useful becomes immediately evident when we consider that a log B-
LAB allows us to become constant competitive deterministically with the optimal algorithm in
the case where we want to sell one item and we know the number of bids. We give the algorithm
for this in Figure 5. We have to view this in light of the fact that in Theorem 3 we showed
that in a purely online setting it is not possible to do better than 2(v/B) deterministically
for this problem.

Algorithm LAB_Sell One_ N

— LAB «+ b()
— For each bid b; for i going from 1 to NV do

o if b; > 2.H(LAB) then LAB <« b; else reject b;
— Accept the bid in the LAB.

Fig. 5. LAB_Sell One_N: Auctioning a single item with a buffer when the number of bids is known.

Theorem 5. LAB_Sell_One_N is % competitive with the optimal.

Proof: It is quite easy to see that the highest bid b,s; which is the benefit of the offline
algorithm would not be put in the buffer only if a bid which was at least half its benefit were
already in there. Since a bid of at least half its benefit is already in the online algorithm’s
buffer therefore its benefit will be at least half of the online’s. [|

It is obvious to see that LAB_Sell_One_N requires an LAB of size at most log B.

5.2 Restricting Bid Size

Another way of modifying the model is by restricting bid sizes. There are several auctioning
scenarios in which this is a useful, sometimes required, restriction. In public auctions where
large players are to be kept out (public housing for example) or in which they would keep out
on their own (perishable items auctions,) such restrictions would make sense. In other cases
it might be essential to disallow bids which are smaller than a particular size.

We do not formally outline the algorithms here but it is possible to show that if the entire
lot of n instances is partitioned into mini lots of size ¢ where ¢ is the size of the largest
bid allowed, then we can use buffering (cf. Section 5.1) to be constant-competitive with the
optimal offline algorithm. Roughly, the scheme involves passing a bid from one mini lot to
the next till it gets accepted or buffered at a particular mini lot. We would need n/c buffers
of size c.log B but we would still be able to guarantee to each bid that if it gets buffered then
there will be no more than O(log B) other bids buffered with it.

In other work ([3], [10]) restricting bid sizes from below i.e. putting a lower bound on
bid size has been used to give polylog competitive algorithms for other scenarios which can
be understood in terms of auctioning distinct items with certain restrictions on number of
instances.

6 Conclusions

We have studied algorithms for auctioning in an online setting, taking the perspective of the
seller. We have given an optimal online algorithm for the fundamental problem of auctioning
a number instances of the same item, with and without prior knowledge of the number of
bids to expect. We have also shown some ways our model can be modified so that competitive
algorithms can be designed to maximise revenue while keeping in mind fairness and allowing
the bidders reasonable flexibility.

There are a number of possible directions to extend this work. For example, the immediacy
of the Internet and the proliferation of online auctioning sites motivate the investigation of
buyer-focused online strategies for purchasing commodity items from many possible Internet
auctioning sites or even the same auction site over time. When bidding deadlines are intro-
duced, such buyer-focused strategies become varieties of online scheduling problems, whereas
the seller-focused approach we took in this paper introduced varieties of online knapsack
problems.

Acknowledgement We would like to thank Leslie Hall for her help.

References

1. R. Adler and Y. Azar. Beating the logarithmic lower bound: randomized preemptive disjoint
paths and call control algorithms. In Proceedings of the Tenth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 1-10, 1999.

2. B. Awerbuch and Y. Azar. Blindly competitive algorithms for pricing and bidding. Manuscript.

3. B. Awerbuch, Y Azar, and S. Plotkin. Throughput competitive on-line routing. In Proceedings
of the 34th Annual Symposium on Foundations of Computer Science, pages 32-40. IEEE, 3-5
November 1993.

4. B. Awerbuch, Y. Bartal, A. Fiat, and A. Rosen. Competitive non-preemptive call-control. In
Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, 23-25 Jan 1994.

5. A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge Uni-
versity Press, 1998.

6. R. Engelbrecht-Wiggans, M. Shubik, and R. M. Stark, editors. Auctions, Bidding, and Contract-
ing: Uses and Theory. New York University Press, 1983.

7. Dorit S. Hochbaum, editor. Approzimation Algorithms for NP-Hard Proble. PWS Publishing
Company, Boston, MA., 1997.

8. O. H. Ibarra and C. E. Kim. Fast approximation algorithms for the knapsack and subset sum
problems. Journal of the ACM, 22:463-468, 1975.

9. E. L. Lawler. Fast approximation algorithms for knapsack problems. In Proceedings of the 17th
Annual Symposium on Foundations of Computer Science, pages 206-213, 1977.

10. S. Leonardi and A. Marchetti-Spaccamela. On-line resource management with applications to
routing and scheduling. In Proceedings of the 22nd International Collogquium on Automata,
Languages and Programming, pages 303-314, 1995.

11. R. J. Lipton and A. Tomkins. Online interval scheduling. In Proceedings of the Fifth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 302-11, 23-25 Jan 1994.

12. G. Lueker. Average-case analysis of off-line and on-line knapsack problems. Journal of Algo-
rithms, 29(2):277-305, November 1998.

13. A. Marchetti-Spaccamela and C. Vercellis. Stochastic on-line knapsack problems. Mathematical
Programming, 68(1):73-104, Jan 1995.

14. R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.

15. M. H. Rothkopf, A Pekec, and R. M. Harstad. Computationally manageable combinatorial
auctions. Management Science, 44(8):1131-1147, 1998.

16. S. Sahni. Approximation algorithms for the 0/1 knapsack problem. Journal of the ACM, 22:115—
124, 1975.

17. T. Sandholm. An algorithm for optimal winner determination in combinational auctions. Tech-
nical Report WUCS-99-01, Department of Computer Science, Washington University, January
1999.

18. Charles W. Smith. Auctions: The Social Construction of Value. The Free Press, 1989.

19. P. R. Wurman, M. P. Wellman, and W. E. Walsh. A parametrization of the auction design space.
Games and Economic Behaviour, To appear.

20. A. C-C. Yao. Probabilistic computations: Towards a unified measure of complexity. In Proceedings
of the 17th Annual Symposium on Foundations of Computer Science, pages 222-227, 1977.

A Proof of Theorem 1

Let the optimal offline algorithm OPT achieve profit density p on a given input sequence I.
So if the optimal algorithm sells n' < n items, its total profit is n'p. Let j be the largest
integer such that 2/ < 4p/5. Define a = %. We say that Price_And_Pack chooses i correctly,
if the chosen value of i equals j. It is easy to see that ¢ is chosen correctly with probability
1/log B. In that event, bids of price density greater than pa are legitimate while the rest are
not. Note that a € (2/5,4/5].

Let I, be a subset of I, comprising all bids in I which have price density greater than pao.

Lemma 1. The sum of the revenues obtained by the optimal algorithm running on I, is no
less than n'p(1 — o)) where p is the profit density of OPT on I and n' is the number of items
it sells.

Proof: Suppose that OPT sells some n;; < n' instances to bids in I — I,, and let revg. be
the revenue earned by OPT from items which were sold to bids in I,,. Clearly,

revge + ng.pa > n'p

this gives us

revge > n'p — ny.pa
and since n;; < n' we get
revge > n'p(l — a)

Since revy, is the revenue obtained from a subset of the bids in I,,, the result follows. ®
Proof of Theorem 1:
We consider the following three cases, and show that in each case the expected revenue of
n

Price_And_Pack is at least T0log B-

Case 1: There is a bid of size greater than n/2 in I,

With probability at least 1/log B, Price_And_Pack chooses i correctly. With probability
1/2 Price_And_Pack chooses to wait for a bid of size greater than size n/2. Thus, with prob-
ability at least ﬁ, Price_And_Pack will accept a bid of size at least n/2 and price density
at least a.

So in this case the expected revenue of Price_And_Packis at least %. Since the revenue

earned by OPT is np, and o > 2/5, in this case Price_And_Pack is 10log B competitive with
OPT.

Case 2: There is no bid of size greater than n/2 in I), and the total number of items demanded
by the bids in I, is more than n/2.

With probability 1/2 Price_And_Pack will choose to accept bids of any size. If it also
chooses i correctly (the probability of which is 1/log B), it will sell at least n/2 instances 2,
and earn a revenue of at least pa units for every item sold.

Thus, with probability 1/21log B, Price_And_Pack sells at least n/2 instances to bids whose
price densities are no smaller than pa. This means that, in this case, the expected revenue

of Price_And_Pack is at least 4711(% aB > 10 %Dg B which makes it 10log B competitive with

OPT.
Case 3: There is no bid of size greater than n/2 in I, and taken together the bids in I,
demand no more than n/2 instances.

Again, with probability 1/2 Price_And_Pack decides to accept all bids, and with probability
1/log B, i is chosen correctly. Thus, with probability 1/2log B Price_And_Pack accepts all
bids in I, and, by Lemma 1, earns a revenue no smaller than n'p(1 — «) where n' is the

!

! —
number of items sold by OPT. So its expected revenue is at least ng i(l)g Ba) > 1071105; B

which makes it 10log B competitive with OPT in this case.]

B Proof of Theorem 4

Proof: We use Yao’s Principle ([20]) to show a lower bound for all randomized algorithms.
To do this we give a probability distribution over the input space and determine the expected
benefit of the best possible deterministic algorithm on this probabilistic input. The compet-
itiveness of this expectation against the expected benefit of the optimal offline algorithm
for this probabilistically distributed input will be, by Yao’s Principle, a lower bound on the
competitiveness of any randomized algorithm for this problem. *

3 If Price_And_Pack accepts all bids in I, it sells at least n/2 instances. If it rejects any bid in I, it
must not have enough capacity left to satisfy it. But then at least n/2 instances must have been
sold, since any bid in I, — in particular the rejected bid — is of size no more than n/2.

4 See [14], chapter 13, for an exposition of this technique to prove lower bounds for online paging
problems.

Consider the following input sequence which we will be calling the base sequence or Ij,se:
{1,2,4,...B/2, B}. Our set of input sequences will be derived from Ij,s. by truncating it at
a given point and substituting bids of revenue 1 for the tail of the input sequence.® The set
of inputs, Z = {I1, I, ... Li,g g} U {I} and associated probabilities are described as:

— I; ={1,2,4,...24,1...1} occurs with probability P; = 5’% Each I; has log B + 1 bids.

— Iy = {1} occurs with probability Py = %

The expected benefit that an optimal offline algorithm would earn on this probabilistically
distributed input is:

log B
E[OPT] = P;.OPT(I) + Y P.OPT(I;)
=0
log B 1

_ 4 i
- B'l+ Z 2i+1'2
i=0

1 1 2 _1
= 2logB+2+B > 2logB

Now let us look at the expected benefit of the best possible deterministic algorithm on
this set of inputs. Consider any deterministic algorithm’s behaviour on Ij,s.. In general it will
reject the first j bids and accept the j + 1st bid for some j. This algorithm will manage to
earn a benefit of 27 on all the input sequences I;,i > j but will earn at most 1 unit of benefit
on all the I;,% < j. Of course, it will earn no more than 1 unit on Iy. Therefore the expected
benefit of this algorithm, call it A;, will be:

7 log B
BlA;]< Pp1+4) Pil+ > P2l
=0 i=j+1

j log B

2 1 ; 1
- J
< B+Zgz’+1 +20 Z 2i+1
=0 i=j+1

2
<=4+1+1<3
sptitls

This means that for any deterministic algorithm the expected benefit is less than a con-
stant, namely 3. Putting this together with the fact that E[OPT)] is always greater than
%logB we get that the competitive ratio of the best deterministic algorithm on our proba-
bilistically distributed input, and hence the competitive ratio of every randomized algorithm
on any input, is lower bounded by {2(log B).]

% By considering a small set of inputs and giving a probability distribution over them we do cover
the entire input space; we can just assume that all the input sequences we do not mention occur
with probability zero.

