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Abstract

In this paper we give a new solution to a constrained
polygon annulus placement problem for offset poly-
gons, providing a new efficient primitive operation
for computational metrology and dimensional tol-
erancing. Given a polygon P and a planar point
set S, the goal is to find the smallest annulus re-
gion of P containing S. The constraint we are given
is that inner polygon defining the annulus is fixed;
we shrink the annulus by finding a minimum outer
offset such that all the points are contained in the
annulus region. We provide a solution to this prob-
lem that is both simpler and asymptotically faster
than previous solutions.

1 Introduction

The research areas of computational metrology and
dimensional tolerancing are focused on developing
repertories of basic tests, such as for “roundness,”
“flatness,” and angle conformity, so as to build a sys-
tematic collection of ways for determining if man-
ufactured parts conform to their design specifica-
tions [Req, SV]. After a part is manufactured, its
surface is sampled by a device known as a coordi-
nate measuring machine (CMM) and these sample
points are then tested against various design con-
straints to see if this part is conforming or not. The
collection of tests that can be done simply and effi-
ciently is therefore a limiting factor on the richness
and sophistication of the constraints that design-
ers can specify with confidence that their designs
will be faithfully tested. Efficient methods for sev-
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eral computational metrology primitives have been
presented in the algorithms and computational ge-
ometry literatures (e.g., see [AAS, Ch, BBBR, DP,
DGR, LL, Lee, MSY, Ram, SSTY, SY, SJ, SLW]).

Computing optimal placements of annulus regions
is a fundamental aspect of many computational
metrology tests for quality control in manufactur-
ing. For example, the width of the thinnest circular
annulus containing a set of points is the measure
used by the American National Standards Institute
(see [F, pp. 40-42]) and by the International Stan-
dards Office for testing “roundness.” The usual goal
is to find, for a certain type of annulus region, a
placement of the annulus that contains a given set
or subset of points. Optimality of the placement can
be measured either by minimizing the size of the
annulus region necessary to contain all (or a certain
number) of the points, or by mazimizing the num-
ber of points contained in a fixed-size annulus. In
addition to the tolerancing applications, these prob-
lems also arise in pattern matching and robot local-
ization [GMR]. Thus we are interested in extend-
ing the collection of simple and efficient tolerancing
tests to include new kinds of minimum or maximum
annulus placement constraints.

One set of such problems studied recently by
Barequet et al. in [BBDG] and [BBD] involves the
optimal placement of polygonal annulus regions.
Barequet et al. noted that the polygonal annulus
can be defined as the difference region between two
offset copies of P. In many applications, including
those dealing with manufacturing processes, defin-
ing distance in terms of an offset from a polygon
(either inward or outward) is more natural than
scaling (which some have proposed as an alternate
metric). This preference for offsetting is motivated
from the fact that the relative error of a production
tool (milling head, laser beam, etc.) is independent
of the location of the produced feature relative to
some artificial reference point (the origin). Thus, a
tool is more likely to allow (and expect) local er-
rors bounded by some tolerance, rather than scaled



errors relative to some (arbitrary) center. For this
reason, a study of the polygon offset operation, of
the related distance function and its Voronoi dia-
gram, and of annulus-placement problems for offset-
polygons, are particularly interesting. Theoretical
aspects of this distance function and Voronoi dia-
gram were studied in [BDG] and [BBD], and were
used in these papers as well as in [BBDG] in solu-
tions to the offset versions of several problems in-
volving one or the other definition of optimization
given in the previous paragraph.

A constrained version of polygon annulus place-
ment problem arises when either one of the two an-
nulus boundaries (inner or outer) is fixed. Fixing
the size of the inner or outer shape of an annu-
lus is itself an important aspect of quality control.
Consider, for example, manufacturing a part (like
a cylinder) that must fit inside a sleeve. For the
part that must fit inside the sleeve, the outer poly-
gon defining the annulus has an absolute maximum
which is fixed. For the sleeve, however, it is the
polygon defining the inner boundary that is crucial
and must be fixed. This leads to several problem
definitions, including the following:

Problem 1: Given a convex polygon P and a set
of points S, find a translation T that minimizes an
outer offset O of P, such that all points in S lie in
the annulus region between P and O.

Figure 1: A sample offset polygon P and set of
points to be tested.

In Figure 1, we show a sample polygon P (solid),
an outer offset of P (dashed), and a set S of points
(to the right). For reference, the straight-skeleton of
P is also shown in light lines. In Figure 2, we see (in
larger scale) a solution to Problem 1 for the given P

and S of Figure 1. That is, we see an annulus region
containing all the points of S, whose inner boundary
is the fixed P, and whose outer boundary is the
smallest offset of P such that S can be contained in
the annulus.

Figure 2: An optimal offset and placement for the
polygon P for given set of points of Figure 1.

For circular annuli, it was shown by de Berg
et al. in [BBBR] that when either the inner cir-
cular boundary or the outer circular boundary is
of fixed size, the annulus minimization placement
problem can be solved more efficiently than for
the minimization problem when neither boundary
is fixed. In [BBD], Barequet et al. extended those
results to the problem of polygonal annuli for con-
vex polygons. They gave several competing algo-
rithms for both constrained (inner and outer) an-
nulus problems, for annuli defined by either scal-
ing or offsetting. When the annulus is defined
by the offset operation, their algorithm requires
O(n(logn +log® m)+m(logn +logm)) time for the
problem when the outer polygon is fixed and the in-
ner polygon is maximized, and O(nm log(nm)) time
for the problem when the inner polygon is fixed and
the outer polygon is minimized (Problem 1 above).
They also gave solutions to Problem 2 below, which
can be considered a special case of Problem 1 when
the inner polygon is empty, and is also an offset
polygon version of the famous “smallest enclosing
circle” problem:

Problem 2: Given a convex polygon P and a set
of points S, find the smallest offset translated copy



of P containing all the points in S.

In this paper we present an algorithm to solve
Problem 1 in O(m + nlognlogm) time. In addi-
tion to improving on the results of [BBD] by almost
a linear factor, our algorithm is also considerably
simpler in that it does not use the offset distance
function Voronoi diagram of [BDG]. Our algorithm
uses some of the ideas developed by Barequet et al.
for Problem 2, but does so in a way that extends to
Problem 1 in a more efficient way.

1.1 Other Related Work

The polygon-offset operation was studied by Ai-
cholzer et al. [AA, AAAG] in the context of a novel
polygon skeleton, called the straight skeleton. They
discussed the straight skeleton for both convex and
simple polygons. Barequet et al. [BDG] also stud-
ied the polygon-offset operation in a different con-
text: that of a new distance function and the related
Voronoi diagram. They give efficient algorithms for
computing compact representations of the nearest-
and furthest-neighbor diagrams. Polygon offsets
were also used in the solution to various annulus
placement problems [BBD, BBDG]. Some of the
approaches of [BBD] were extensions of the work of
de Berg, et al. [BBBR] from circular to polygonal
annuli, and also used the idea presented in [BBBR]
of “feasible” regions of placement.

In this paper we adopt the terminology of [BBDG]
and refer the reader to Section 1.3 of that paper for a
more precise definition of the offset operation. Like-
wise, for a formal definition of the corresponding
distance function, the reader is referred to [BDG].
We give here only a brief definition and description.

2 Offset Distance Functions:
Preliminary Observations

The outer §-offset of a convex polygon P is obtained
by translating each edge e € P by ¢ in a direction
orthogonal to e and by extending it until it meets
the translations of the edges neighboring to e. In
other words, the new edge e’ lies on a line parallel
to that containing e and at distance § from it on
the outside of P. The edge ¢’ is trimmed by the
lines parallel and at distance ¢ (outside of P) of

the neighboring edges of e. We denote by Op ;s the
version of P offset outward by 4.

2.1 Feasible Translations

We now present both some terminology and some
additional properties of the offset-polygon distance
function. We first define what we mean by a transla-
tion of a polygon to a point. Throughout the paper
we assume polygon P has a fixed reference point.
For a given point ¢ in the plane, by a translation
of P to ¢ we mean a translation of P and its refer-
ence point so that the reference point coincides with
g. Similarly, when we speak of the reflection of P,
we mean the rotation of P by 7 around its reference
point. The translation of a reflection of P to a point
q translates the polygon so that the reference of the
reflected copy is mapped to gq.

Note that for offset-polygons, the natural refer-
ence is the offsetting center, which is the point to
which the inner polygon collapses when the polygon
is offset inward. (In general, this point is the center
of the medial axis of the polygon [BDG]. In the de-
generate case, the offset center is a segment, so we
arbitrarily select a point of it as the center, say, the
median of the segment.)

We say that a polygon P contains point q if ¢
lies on the boundary or in the interior of P. We
say that a polygon P properly contains point ¢ if
q lies strictly in the interior of P (e.g., not on its
boundary). The annulus region for a polygon P and
a positive distance § is defined as the set of points
contained in the outer offset Ops but not properly
contained in P.

The following observations, reworded
from [BBD], are fundamental in our algorithm:

Observation 1: Given a polygon P and two points
p and q, a translation of P to p contains q if and only
if a translation of the reflection of P to q contains

p.

This observation follows from simple vector arith-
metic, and leads to the following generalizations:

Observation 2: A translation of a polygon P to a
point g contains all the points of a set S if and only
the intersection of the n copies of the reflection of
P translated to the points of S contains q.



Observation 3: A translation of a polygon P to a
point q properly contains none the points of a set S
if and only q is not properly contained in the union
of n copies of the reflection of P translated to the
points of S.

From the previous observations, we see that to
solve Problem 1 we are interested in finding a trans-
lation 7 of P and some Opys (for a ¢ to be deter-
mined) such that 7 lies in (e.g. maps the origin to)
the intersection of n reflected copies of Op s, but not
properly in the union of n reflected copies of P.

2.2 Efficiency of Some Substeps

The intersection of any number of copies of a con-
vex m-gon has complexity O(m). In [BBD], several
algorithms were given to compute the intersection
of n copies of a convex m-gon. Asymptotically, the
most efficient of these required only O(nlogh + m)
time where h is the number of points on the convex
hull of S.

Since translated copies of the same convex poly-
gon together define a set of pseudo-disks, the union
of n translated copies of a convex m-gon has com-
plexity O(nm), where “complexity” refers to the to-
tal number of edges (and vertices) possible on its
boundary [KLPS]. The union may be stored more
compactly, however, using an implicit representa-
tion. Consider the boundary of a convex polygon
P = (eg,€1,---,em—1) as being defined by a set of
m edges listed in counter-clockwise order. We can
represent any continuous portion of the boundary of
P as (p,i,q,j), where p is the starting endpoint of
the polygonal “arc,” e; is the edge containing p, ¢
is the terminating endpoint of the polygonal “arc,”
and e; is the edge containing ¢. If we consistently
represent maximal continuous portions of copies of
a convex polygon P in this way, then the bound of
Kedem et al. [KLPS] regarding pseudo-disks implies
that such a compact representation of the union of n
translated copies of a convex m-gon can be stored in
O(n + m) space. Moreover, by a simple divide-and-
conquer algorithm, we can construct such a compact
representation in O(m + nlognlogm) time.

3 The Algorithm

We now present, our algorithm for Problem 1. The
idea is to find some ¢ large enough to guarantee a

containing annulus translation. Based on this §, we
compute the intersection n reflected of Ops trans-
lated to the points of S. We call this intersection
Ipss, or just I when P.S, and § are clear from
context. We also compute the union of n reflected
copies of P translated to the points of S, which we
denote Up g, or just U when P and S are clear from
context.

Figure 3 shows a sample polygon P (solid) and
an outer offset Op ;s (dashed). Figure 4 shows (as
a shaded simple polygon with a solid boundary)
the union U of several copies of a reflection of
P | and also (as a lighter grey polygon with its
straight-skeleton) the intersection I of several re-
flected copies of the larger offset. (Note that the
union polygon U is not necessarily a single polygon,
but may be a collection of polygons with holes.)

Figure 3: A sample polygon P and its offset Op,s.

If ¢ be any point that is contained in I but not
in properly contained in U, then a translation to ¢
of the original P and Op gives a containing place-
ment of the annulus region for set S. However it
is not yet a solution to Problem 1 because ¢ is not
minimized. What we want to do is to shrink § back
down to the smallest value such that I has a non-
empty intersection with the boundary or exterior of
U.

This leads to the following sketch of an algorithm:

Algorithm 1



Figure 4: The union Upgs (shaded polygon with a
solid boundary) and intersection Ips g (lighter grey
polygon with its straight-skeleton) for a polygon P.

1. Compute an outer offset Ops of P for some
0 > 0 large enough that there exists a place-
ment of the annulus region between P and Op s
containing S.

2. Compute the intersection Ips s of the n re-
flected copies of Op translated to the points
of S.

3. Compute the union U of n reflected copies of
P translated to the points of S.

4. Find the minimum value of dmi, such that
Ips....,s contains a point exterior to or on the
boundary of U.

Before giving more precise detail about the algo-
rithm, we make a few further observations about
the first and final steps. In the first step we need to
compute a § large enough that Ip; g is not empty—
that is, a § that guarantees an annulus region large
enough to contain S. (We can’t shrink the annulus
down if it isn’t big enough to start with.) To this
end we note that at any vertex v of P, there is a
semi-circle of radius 0 centered at v that lies in the
annulus region between P and Opgs. So let w be
the width of some boundary square whose sides are
parallel to the z— and y— axes and that contains
all of S. Then for § = wy/5/2 there is a semi-circle
centered at the leftmost vertex of P that lies in the
annulus region between P and Ops and which is

large enough to contain the bounding square around
S.

Now we consider the final step. If we offset Ip; g
inward by some amount, say «, the resulting poly-
gon is simply Ip s (5_q), the intersection polygon
that would have resulted if the original outer offset
had been § — « instead of §. So in order to com-
pute the minimal outer offset iy, we really need
only compute the value of o that determines how
far inward the polygon Ips s can be offset.

This leads to a further observation. Equivalent
to offsetting I inward until it no longer contains a
point that is not properly contained in U, we could
compute the straight-line skeleton of I and consider
offsetting I outward from its center until it contacts
the first point that is not properly contained in U.
This leads to the following:

Lemma 4: Let the center ¢ of SLL(I) be inside
U. Consider an expanding offset of I that begins
at ¢ and grows outward. Then there is some point
x such that x is a first point on the boundary of U
hit by this expanding offset, and x is either a reflex
vertex of U or is on the intersection of SLL(I) and
the boundary of U.

Proof. We prove by contradiction. Let z be a
first point on the boundary of U that is hit by the
expanding offset of I. Suppose that x is neither
a reflex vertex of U, nor a point on SLL(I). It
follows that z falls on some edge e; of the expanding
I but not on a vertex of I (since the vertices of I
move outward along SLL(I)). Suppose z is on a
vertex of U. By our assumption, it is not a reflex
vertex, and so it is a convex vertex with respect
to the interior of U. Thus at least one edge of U
adjacent to x is interior to I at the moment the
expanding e; contacts z, but this would mean that
e; intersected that edge before intersecting  which
is a contradiction of our assumption that z is an
initial contact.

Suppose instead, then, that = is on an edge e,
of U, but not on a vertex of U. If e, is not par-
allel to e;, then one direction along e, is closer to
the inside of I and therefore e; will intersect e, be-
fore it reaches x, which is a contradiction. However
if e; and e, are parallel, then the initial point of
contact is a segment one of whose endpoints is ei-
ther a vertex of e; (and thus on SLL(I) which is a
contradiction) or is a convex vertex of e, which we
assumed was not the case. End Proof.

We now present a more detailed version of Step
4 of Algorithm 1, enhancing the details of the final



step.

Step 4: Expanded

4. (a) Compute SLL(I), the straight-line skele-
ton of I. Let ¢ be the center of SLL(I).

(b) Determine whether ¢ is properly contained
in U. If it is not, then we are done. We
let @ be the amount by which we offset
I inward until it degenerates to a point c.
Then our § — a is the width of the smallest
annulus, and ¢ is the translation of P and
Op,s—q that contains S.

(¢) If ¢ is not properly contained in U, then
we compute (using Lemma 4) the smallest
inner offset « of I that contains a point x
not properly contained in U. Our optimal
annulus region is § — a and its containing
translation is given by z.

3.1 Analysis

Step 1 requires O(n+m) time: O(n) time is required
to compute a bounding square of S and O(m) time
to offset P by this much. In step 2, we can compute
the intersection of n copies of a convex polygon in
O(nlogn + m) time, or O(nlogh + m) time where
h is the size of the convex hull of S [BBD].

In step 3, the union of n copies of a convex
polygon has complexity O(nm) and an explicit ver-
sion can be computed in time O(nmlog(nm)) us-
ing a divide-and-conquer strategy. The straight-line
skeleton of I in step 4 can be computed in time
O(m) using the technique of [AGSS].

The last two parts of step 4 are the most com-
plex. We can perform point location of ¢ in time
O(log(nm)). We then use ray-shooting for each of
the m edges of SLL(I) to determine where it in-
tersects U. Conversely, we test each of the n reflex
vertices of U to determine which region of SLL(I)
it falls in and then compute the offset at which the
edge sweeps through it.

3.2 Improving the Algorithm with a
Compact Diagram

The run time of Algorithm 1 can be improved by
almost a linear factor (in the case when m and n
are both large) by using a compact representation

of Up s: the union of the n copies of the reflection of
P. Note that Up s has complexity O(nm), but only
O(n) of those vertices are reflex vertices representing
the intersection of the boundaries of two reflected
copies of P, since the copies of P form a family
of n pseudo-disks [KLPS]. Furthermore, all reflex
vertices of Up s are of these O(n) intersection-type
vertices. The rest of the vertices are from some copy
of the reflection of P.

We want to compute a representation of Up, g that
explicitly stores only these intersection vertices. As
noted in Section 2.2, the portions of Up g in between
these intersection vertices are just parts of chains of
a copy of a reflection of P and are stored implic-
itly with two points that specify what portion of a
chain of which copy. This compact diagram U* can
be computed in O(m + nlognlogm) time, by us-
ing a simple divide-and-conquer strategy (where in
the merge step we compute crossing points between
two copies of P using appropriate “binary search”
strategies). The reflex vertices needed in Step (4c)
(see Lemma 4) are explicitly stored in U*. It is only
slightly more complex to compute the intersection
of SLL(I) with Ups. We do a O(logn) time ray-
shooting query on U* to determine which portion
of a polygon the ray from SLL(I) passes through,
and then a second O(log m) time ray-shooting query
on that particular portion of a polygon. (Note that
these are not nested steps, in that we don’t need
to do the second ray shooting query until we know
which region of U* we are searching.)

Thus, we have shown the following:

Theorem 5: Given a convex m-gon P and a set
S of n points in the plane, we can determine the
translation for the minimum outer offset of P that
contains all the points of S in O(m + nlognlogm)
time.

4 Summary and Open Prob-
lems

We have given an O(m + nlognlogm) time al-
gorithm for Problem 1, finding the smallest con-
strained annulus containing a set S of n points,
where the annulus is defined by a convex m-gon P
and the offset operation, and the inner boundary of
the annulus is fixed. This algorithms is both simpler
than previous approaches (not requiring the com-



plex offset-distance function Voronoi diagram) and
asymptotically faster.

Several open problems remain:

Problem 3: OPEN Give a theoretical lower bound
on the asymptotic run time required to solve Prob-
lem 1.

Problem 4: OPEN Give efficient solutions for
these annulus placement problems when the annu-
lus is defined by a simple polygon (not necessarily
convex).

Problem 5: OPEN Give efficient solutions for
Problem 1 for polyhedra in 3-space.
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