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Abstract. We show how to use the RSA one-way accumulator to real-
ize an efficient and dynamic authenticated dictionary, where untrusted
directories provide cryptographically verifiable answers to membership
queries on a set maintained by a trusted source. Our accumulator-based
scheme for authenticated dictionaries supports efficient incremental up-
dates of the underlying set by insertions and deletions of elements. Also,
the user can optimally verify in constant time the authenticity of the
answer provided by a directory with a simple and practical algorithm.
This work has applications to certificate revocation in public key infras-
tructure and end-to-end integrity of data collections published by third
parties on the Internet.

1 Introduction

Modern distributed transactions often operate in an asymmetric computational
environment. Typically, client applications are deployed on small devices, such as
laptop computers and palm devices, whereas the server side of these applications
are often deployed on large-scale multiprocessors. Moreover, several client appli-
cations communicate with these powerful server farms over wireless connections
or slow modem-speed connections. Thus, distributed applications are facilitated
by solutions that involve small amounts of computing and communication on
the client side, without overly burdening the more-powerful server side of these
same applications. The challenge we address in this paper is how to incorporate
added levels of information assurance and security into such applications with-
out significantly increasing the amount of computation and communication that
is needed at the client (while at the same time keeping the computations on the
servers reasonable).

An information security problem arising in the replication of data to mirror
sites is the authentication of the information provided by the sites. Indeed, there
are applications where the user may require that data coming from a mirror
site be cryptographically validated as being as genuine as they would be had
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the response come directly from the source. For example, a financial speculator
that receives NASDAQ stock quotes from the Yahoo! Finance Web site would
be well advised to get a proof of the authenticity of the data before making a
large trade.

For all data replication applications, and particularly for e-commerce appli-
cations in wireless computing, we desire solutions that involve short responses
from a mirror site that can be quickly verified with low computational overhead.

Problem Definition. More formally, the problem we address involves three
groups of related parties: trusted information sources, untrusted directories, and
users. An information source defines a finite set S of elements that evolves over
time through insertions and deletions of items. Directories maintain copies of the
set S. Each directory storing S receives time-stamped updates from the source
for S together with update authentication information, such as signed statements
about the update and the current elements of the set. A user performs mem-
bership queries on the set S of the type “is element e in set S?” but instead
of contacting the source for S directly, it queries a directory for S instead. The
contacted directory provides the user with a yes/no answer to the query together
with query authentication information, which yields a proof of the answer as-
sembled by combining statements signed by the source. The user then verifies
the proof by relying solely on its trust in the source and the availability of public
information about the source that allows to check the source’s signature. The
data structures used by the source directory to maintain set S, together with
the protocol for queries and updates is called an authenticated dictionary [25].

The design of an authenticated dictionary should address several goals. These
goals include low computational cost, so that the computations performed in-
ternally by each entity (source, directory, and user) should be simple and fast,
and low communication overhead, so that bandwidth utilization is minimized.
Since these goals are particularly important for the user, we say that an authen-
ticated dictionary is size-oblivious if the query authentication information size
and the verification time do not depend in any way on the number of items in the
dictionary. Size-oblivious solutions to the authenticated dictionary problem are
ideally suited for wireless e-commerce applications, where user devices have low
computational power and low bandwidth. In addition, size-oblivious solutions
add an extra level of security, since the size of the dictionary is never revealed
to users.

Applications of authenticated dictionaries include third-party data publi-
cation on the Internet, certificate revocation, and the authentication of Web
services.

Previous and Related Work. Authenticated dictionaries are related to re-
search in distributed computing (e.g., data replication in a network [5, 20]), data
structure design (e.g., program checking [7, 28] and memory checking [6, 13]),
and cryptography (e.g., incremental cryptography [3]).

Previous additional work on authenticated dictionaries has been conducted
primarily in the context of certificate revocation. The traditional method for
certificate revocation (e.g., see [18]) is for the CA (source) to sign a statement



consisting of a timestamp plus a hash of the set of all revoked certificates, called
certificate revocation list (CRL), and periodically send the signed CRL to the
directories. This approach is secure, but it is inefficient, for it requires the trans-
mission of the entire set of revoked certificates for both source-to-directory and
directory-to-user communication. Thus, this solution is clearly not size-oblivious,
and even more recent modifications of this solution, which are based on delta-
CRLs [12], are not size-oblivious.

The hash tree scheme introduced by Merkle [23, 24] can be used to implement
a static authenticated dictionary, which supports the initial construction of the
data structure followed by query operations, but not update operations. Other
certificate revocation schemes, based on variations of cryptographic hashing,
have been recently proposed in [8, 14], but like the static hash tree, these schemes
have logarithmic verification time.

Dynamic data structures based on hierarchical hashing that efficiently sup-
port also the insertion and deletion of elements are presented in [16, 25]. These
data structures have logarithmic query, update and verification time.

The software architecture and implementation of an authenticated dictio-
nary based on the above approach of [16] is described in [17]. An efficient data
structure for persistent authenticated dictionaries, where user can issue historical
queries of the type, “was element e in set S at time t?” is introduced in [1].

A general approach to the design of authenticated data structures, which is
based on a hashing scheme that digests a search structure into a single hash value,
and its applications to multidimensional range searching are presented in [21].
Using a similar approach, efficient data structures for various fundamental graph
problems, such as path and k-connectivity queries for k ≤ 3, and geometric
problems, such as intersection and containment queries, are given in [11]. Both
these approaches have logarithmic query and verification time and thus are not
size-oblivious.

Our Results. In this paper we present a number of size-oblivious solutions to
the authenticated dictionary problem. The general approach we follow here is to
abandon the approach of the previous methods cited above that are based on
applying one-way hash functions to nodes in a data structure. Instead, we make
use of one-way accumulators, as advocated by Benaloh and de Mare [4]. Such
an approach is immediately size-oblivious, but there is an additional challenge
that has to be overcome to make this approach practical. The computations
needed at the source and/or directories in a straightforward implementation of
the Benaloh-de Mare scheme are inefficient. Our main contribution, therefore, is
a mechanism to make the computations at the source and mirrors efficient.

We present a size-oblivious scheme for authenticated dictionaries, based on
one-way accumulators, that it is dynamic and distributed, thus supporting ef-
ficient updates and balancing the work between the source and the directories.
A first variation of our scheme achieves a complete tradeoff between the cost
of updates at the source and of queries at the directories, with updates taking
O(p + log(n/p)) time and queries taking O(n/p) time, where n is the size of the
dictionary and p is any fixed integer parameter such that 1 ≤ p ≤ n. For exam-



ple, we can achieve O(
√

n) time for both updates and queries. A second variation
of our scheme, suitable for large data sets, achieves O(nε)-time performance for
updates and queries, while keeping O(1) verification time, where ε > 0 is any
fixed constant.

Throughout the rest of this paper, we denote with n the current number of
elements of the set S stored in the authenticated dictionary. Also, we describe
the verification of positive answers to membership queries (i.e., validating e ∈ S).
The verification of negative answers (i.e., validating e �∈ S) can be handled with
the technique of storing in the dictionary not the items themselves, but instead
pairs of consecutive elements [19].

2 Preliminaries

In this section, we discuss some cryptographic concepts used in our approach.
One-Way Accumulators. An important tool for our scheme is that of one-
way accumulator functions [2, 4, 9, 15, 26]. Such a function allows a source to
digitally sign a collection of objects as opposed to a single object.

The use of one-way accumulators originates with Benaloh and de Mare [4].
They show how to utilize an exponential one-way accumulator, which is also
known as an RSA accumulator, to summarize a collection of data so that user
verification responses have constant-size. Refinements of the RSA accumulator
used in our construction are given by Baric and Pfitzmann [2], Gennaro, Halevi
and Rabin [15], and Sander, Ta-Shma and Yung [26].

Recently, Camenisch and Lysyanskaya [9] have independently investigated
dynamic accumulators. They give a zero-knowledge protocol and a proof that a
committed value is in the accumulator with respect to the Pedersen commitment
scheme. They also present applications to revocation for group signature, identity
escrow schemes and anonymous credentials systems.

As we show in the rest of this section, the RSA accumulator can be used to
implement a static authenticated dictionary, where the set of elements is fixed.
However, in a dynamic setting where items are inserted and deleted, the standard
way of utilizing the RSA accumulator is inefficient. Several other researchers have
also noted the inefficiency of this implementation in a dynamic setting (e.g., see
[27]). Indeed, our solution can be viewed as refuting this previous intuition to
show that a more sophisticated utilization of the exponential accumulator can
be made to be efficient even in a dynamic setting.

The most common form of one-way accumulator is defined by starting with a
“seed” value y0, which signifies the empty set, and then defining the accumulation
value incrementally from y0 for a set of values X = {x1, · · · , xn}, so that yi =
f(yi−1, xi), where f is a one-way function whose final value does not depend
on the order of the xi’s (e.g., see [4]). In addition, one desires that yi not be
much larger to represent than yi−1, so that the final accumulation value, yn,
is not too large. Because of the properties of function f , a source can digitally
sign the value of yn so as to enable a third party to produce a short proof for
any element xi belonging to X—namely, swap xi with xn and recompute yn−1



from scratch—the pair (xi, yn−1) is a cryptographically-secure assertion for the
membership of xi in set X.

A well-known example of a one-way accumulator function is the exponential
accumulator, f(y, x) = yx mod N for suitably-chosen values of the seed y0 and
modulus N [4]. In particular, choosing N = pq with p and q being two strong
primes [22] makes the exponential accumulator function as difficult to invert as
RSA cryptography [4].

The difficulty in using the exponential accumulator function in the context
of authenticated dictionaries is that it is not associative; hence, any updates to
set X require significant recomputations.

Implications of Euler’s Theorem. There is an important technicality in-
volved with use of the exponential accumulator function, namely in the choice of
the seed a = y0. In particular, we should choose a relatively prime with p and q.
This choice is dictated by Euler’s Theorem, which states that aφ(N) mod N = 1
if a > 1 and N > 1 are relatively prime. In our use of the exponential accumu-
lator function, the following well-known corollary to Euler’s Theorem will prove
useful.

Corollary 1. If a > 1 and N > 1 are relatively prime, then ax mod N =
ax mod φ(N) mod N , for all x ≥ 0.

One implication of this corollary to the authenticated dictionary problem is
that the source should never reveal the values of the prime numbers p and q.
Such a revelation would allow a directory to compute φ(N), which in turn could
result in a false validation at a compromised directory. So, our approach takes
care to keep the values of p and q only at the source.

Two-Universal Hash Functions. As in previous approaches [15, 26], we use
the RSA accumulator in conjunction with two-universal hash functions. Such
functions were first introduced by Carter and Wegman [10].

A family H = {h : A → B} of functions is two-universal if, for all a1,a2 ∈ A,
a1 �= a2 and for a randomly chosen function h from H,

Prh∈H{h(a1) = h(a2)} ≤ 1
|B| .

In our scheme, the set A consists of 3k-bit vectors and the set B consists of k-bit
vectors, and we are interested in finding random elements in the preimage of a
two-universal function mapping A to B. We can use the two-universal function
h(x) = Ux, where U is a k × 3k binary matrix. To get a representations of all
the solutions for h−1(e), we need to solve a linear system. Once this is done,
picking a random solution can be done by multiplying a bit matrix by a random
bit vector, and takes O(k2) bit operations.

Choosing a Suitable Prime. We are interested in obtaining a prime solution
of the linear system that represents a two-universal hash function. The following
lemma, of Gennaro et al. [15], is useful in this context:



Lemma 1 ([15]). Let H be a two-universal family from {0, 1}3k to {0, 1}k.
Then, for all but a 2−k fraction of the functions h ∈ H, for every e ∈ {0, 1}k

a fraction of at least 1
ck of the elements in f−1(e) are primes, for some small

constant c.

For reasons that will become clear in the security proof given in Section 6,
our scheme requires that a prime inverse be greater then

√
23k. Also, since the

domain of H is {0, 1}3k, this prime is less than 23k. Thus, in order to find a
suitable prime with high probability 1−2−Ω(k), we need to sample O(k2) times.
The Strong RSA Assumption. The proof of security of our scheme uses the
strong RSA assumption, as defined by Baric and Pfitzmann [2]. Given N and
x ∈ Z∗

N , the strong RSA problem consists of finding integers f , with 2 ≤ f < N ,
and a, such that we have af = x. The difference between this problem and the
standard RSA problem is that the adversary is given the freedom to choose not
only the base a but also the exponent f .

Strong RSA Assumption: There exists a probabilistic algorithm B that
on input 1r outputs an RSA modulus N such that, for all probabilistic
polynomial-time algorithms D, all c > 0, and all sufficiently large r, the
probability that algorithm D on a random input x ∈ ZN outputs a and
f ≥ 2 such that af = x mod N is no more than r−c.

In other words, given N and a randomly chosen element x, it is infeasible to find
a and f such that af = x mod N .
A Straightforward Accumulator-Based Scheme. Let S = {e1, e2, . . . , en}
be the set of elements stored at the source. Each element e is represented by
k bits. The source chooses strong primes [22] p and q that are suitably large,
e.g., p, q > 2

3
2 k. It then chooses a suitably-large base a that is relatively prime

to N = pq. Note that N is at least 23k. It also chooses a random hash function
h from a two-universal family.The source broadcasts once a, N and h to the
directories and users, but keeps p and q secret. At periodic time intervals, for each
element ei of S, the source computes the representative of ei, denoted xi, where
h(xi) = ei and xi is a prime chosen as described above. The source then combines
the representatives of the elements by computing the RSA accumulation

A ← ax1x2···xn mod N

and broadcasts to the directories a signed message (A, t), where t is the current
timestamp.
Query. To prove that a query element ei is in S, a directory computes the value

Ai ← ax1x2···xi−1xi+1···xn mod N. (1)

That is, Ai is the accumulation of all the representatives of the elements of S
besides xi and is said to be the witness of ei. After computing Ai, the directory
returns to the user the representative xi, the witness Ai and the pair (A, t), signed
by the source. Note that this query authentication information has constant size;



hence, this scheme is size-oblivious. However, computing witness Ai is no trivial
task for the directory, for it must perform n − 1 exponentiations to answer a
query. Making the simplifying assumption that the number of bits needed to
represent N is independent of n, the computation performed to answer a single
query takes O(n) time.
Verification. The user checks that timestamp t is current and that (A, t) is
indeed signed by the source. It then checks that xi is a valid representative of
ei, i.e., h(xi) = ei. Finally, it computes A′ ← Axi

i mod N and compares it to A.
If A′ = A, then the user is reassured of the validity of the answer because of the
strong RSA assumption. The verification time is O(1).
Updates. For updates, the above simple approach has an asymmetric perfor-
mance (for unrestricted values of accumulated elements), with insertions being
much easier than deletions. To insert a new element en+1 into the set S, the
source simply recomputes the accumulation A as follows

A ← Axn+1 mod N

where xn+1 is the representative of en+1. The computation of xn+1 can be done in
time that is independent of n (see Section 2), i.e., O(1) time. An updated signed
pair (A, t) is then sent to the directories in the next time interval. Thus, an
insertion takes O(1) time. The deletion of an element ei ∈ S, on the other hand,
will in general require the source to recompute the new value A by performing
n − 1 exponentiations. That is, a deletion takes O(n) time.

Of course, if a representative xi is relatively prime with p− 1 and q − 1, the
source can delete ei in constant time by computing x ← x−1

i mod φ(N) (via
the extended Euclidean algorithm) and then updating A ← Ax mod N . This
deletion computation would take O(1) time, but we cannot guarantee that xi

has an inverse in Zφ(N) if it is an accumulation of a group of elements; hence, we
do not advocate using this approach for deletions. Indeed, we will not assume the
existence of multiplicative inverses in Zφ(N) for any of our solutions. Thus, we are
stuck with linear deletion time at the source and linear query time at a directory
when making this straightforward application of exponential accumulators to the
authenticated dictionary problem.

We describe in the next section an alternative approach that can answer
queries much faster.

3 Precomputed Accumulations

We present a first improvement that allows for fast query processing. We require
the directory to store a precomputed witness Ai for each element ei of S, as
defined in Eq. 1. Thus, to answer a query, a directory looks up the Ai value, rather
than computing it from scratch, and then completes the transaction as described
in the previous section. Thanks to the precomputation of the witnesses at the
source, a directory can process any query in O(1) time while the verification
computation for a user remains unchanged.



Unfortunately, a standard way of implementing this approach is inefficient
for processing updates. In particular, a directory now takes O(n) time to process
a single insertion, since it needs to update all the witnesses, and O(n log n) time
to process a single deletion, for after a deletion the directory must recompute all
the witnesses, which can be done using the algorithm given in [26]. Thus, at first
glance, this precomputed accumulations approach appears to be quite inefficient
when updates to the set S are required.

We can process updates faster than O(n log n) time, however, by enlisting
the help of the source. Our method in fact can be implemented in O(n) time by
a simple two-phase approach. The details for the two phases follows.
First Phase. Let S be the set of n items stored at the source after performing
all the insertions and deletions required in the previous time interval. We build
a complete binary tree T “on top” of the representative values of the elements
of S, so that each leaf of T is associated with the representative xi of an element
ei of S. In the first phase, we perform a post-order traversal of T , so that each
node v in T is visited only after its children are visited. The main computation
performed during the visit of a node v is to compute a value x(v). If v is a leaf
of T , storing some representative xi, then we compute

x(v) ← xi mod φ(N).

If v is an internal node of T with children u and w (we can assume T is proper,
so that each internal node has two children), then we compute

x(v) ← x(u)x(w) mod φ(N).

When we have computed x(r), where r denotes the root of T , then we are done
with this first phase. Since a post-order traversal takes O(n) time, and each visit
computation in our traversals takes O(1) time, this entire first phase runs in
O(n) time. We again make the simplifying assumption that the number of bits
needed to represent N is independent of n.
Second Phase. In the second phase, we perform a pre-order traversal of T ,
where the visit of a node v involves the computation of a value A(v). The value
A(v) for a node v is defined to be the accumulation of all values stored at nodes
that are not descendents of v (including v itself if v is a leaf). Thus, if v is
a leaf associated with the representative value xi of some element of S, then
A(v) = Ai. For the root, r, of T , we define A(r) = a. For any non-root node
v, let z denote v’s parent and let w denote v’s sibling (and note that since T
is proper, every node but the root has a sibling). Given A(z) and x(w), we can
compute the value A(v) for v as follows:

A(v) ← A(z)x(w) mod N.

By Corollary 1, we can inductively prove that each A(v) equals the accumulation
of all the values stored at non-descendents of v. Since a pre-order traversal of
T takes O(n) time, and each visit action can be performed in O(1) time, we
can compute all the Ai witnesses in O(n) time. Note that implementing this



algorithm requires knowledge of the value φ(N), which presumably only the
source knows. Thus, this computation can only be performed at the source, who
must transmit the updated Ai values to the directory.

A variation of the approach presented in this section consists of precomputing
at the source the exponents of the witnesses instead of the witnesses themselves.
In this way, the arithmetic computations performed at the source consist of a
series of modular multiplications (of bit complexity O(k2)) and do not include
modular exponentiations (of bit complexity O(k3)). The directory, however, has
to perform one modular exponentiation to compute the actual witness from its
exponent when answering a query.

The precomputed accumulations approach supports constant-time queries
and linear-time updates. In the next section, we show how to combine this ap-
proach with the straightforward approach of Section 2 to design a scheme that
is efficient for both updates and queries.

4 Parameterized Accumulations

Consider again the problem of designing an accumulator-based authenticated
dictionary for a set S = {e1, e2, . . . , en}. In this section, we show how to balance
the processing between the source and the directory, depending on their relative
computational power. The main idea is to choose an integer parameter 1 ≤
p ≤ n and partition the set S into p groups of roughly n/p elements each,
performing the straightforward approach inside each group and the precomputed
accumulations approach among the groups. The details are as follows.

Subdividing the Dictionary. Divide the set S into p groups, Y1, Y2, . . . , Yp, of
roughly n/p elements each, balancing the size of the groups as much as possible.
For group Yj , let yj denote the product of the representatives of the elements in
Yj modulo φ(N). Define Bj as

Bj = ay1y2···yj−1yj+1···yp mod N.

That is, Bj is the accumulation of representatives of all the elements that are not
in the set Yj . After any insertion or deletion in a set Yj , the source can compute
a new value yj in O(n/p) time. Moreover, since the source knows the value of
φ(N), it can update all the Bj values (or their exponents) after such an update
in O(p) time. Thus, the source can process an update operation in O(p + n/p)
time, assuming that the update does not require redistributing elements among
the groups.

Maintaining the size of each set Yj is not a major overhead. We need only
keep the invariant that each Yj has at least �n/p	/2 elements at most 2�n/p	
elements. If a Yj set becomes too small, then we either merge it with one of its
adjacent sets Yj−1 or Yj+1, or (if merging Yj with such a sets would cause an
overflow) we “borrow” some of the elements from an adjacent set to bring the size
of Yj to at least 3�n/p	/4. Likewise, if a Yj set grows too large, then we simply
split it in two. These simple adjustments take O(n/p) time, and will maintain



the invariant that each Yj is of size Θ(n/p). Of course, this assumes that the
value of n does not change significantly as we insert and remove elements. But
even this condition is easily handled. Specifically, we can maintain the sizes of
the Yj ’s in a priority queue that keeps track of the smallest and largest Yj sets.
Whenever we increase n by an insertion, we can check the priority queue to see if
the smallest set now must do some merging or borrowing to keep from growing
too small. Likewise, whenever we decrease n by a deletion, we can check the
priority queue to see if the largest set now must split. An inductive argument
shows that this approach keeps the size of the groups to be Θ(n/p).

Turning to the task at a directory, then, we recall that a directory receives
all p of the Bj values after an update occurs. Thus, a directory can perform
its part of an update computation in O(p) time. It validates that some ei is in
e by first determining the group Yj containing ei, which can be done by table
look-up. Then, it computes Ai as

Ai ← B
Πem∈Yj−{ei}xm

j mod N,

where xm is the representative of em. Thus, a directory answers a query in
O(n/p) time.

Improving the Update Time for the Source. In this section, we show how
the source can further improve the performance of an update operation in the
parameterized scheme. In the algorithm described above, the source recomputes
yj from scratch after any update occurs, which takes O(n/p) time. We will now
describe how this computation can be done in O(log(n/p)) time.

The method is for the source to store the elements of each Yj in a balanced
binary search tree. For each internal node w in Tj , the source maintains the
value y(w), which is the product of the representatives of all the items stored
at descendents of w, modulo φ(N). Thus, y(r(Tj)) = yj , where r(Tj) denotes
the root of Tj . Any insertion or deletion will affect only O(log(n/p)) nodes w
in Tj , for which we can recompute their x(w) values in O(log(n/p)) total time.
Therefore, after any update, the source can recompute a yj value in O(log(n/p))
time, assuming that the size of the Yj ’s does not violate the size invariant. Still,
if the size of Yj after an update violates the size invariant, we can easily adjust
it by performing appropriate splits and joins on the trees representing Yj , Yj−1,
and/or Yj+1. Moreover, we can rebuild the entire set of trees after every O(n/p)
updates, to keep the sizes of the Yj sets to be O(n/p), with the cost for this
periodic adjustment (which will probably not even be necessary in practice for
most applications) being amortized over the previous updates.

Theorem 1. The parameterized accumulations scheme for implementing an au-
thenticated dictionary over a set of size n uses data structures with O(n) space
at the source and directories and has the following performance, for a given
parameter p such that 1 ≤ p ≤ n:

– the insertion and deletion times for the source are each O(p + log(n/p));
– the update authentication information has size O(p);



– the query time for a directory is O(n/p);
– the query authentication information has size O(1); and
– the verification time for the user is O(1).

Thus, for p =
√

n, one can balance insertion time, deletion time, update
authentication information size, and query time to achieve an O(

√
n) bound,

while keeping the query authentication information size and the verification time
constant.

The parameterized accumulations scheme described in this section signifi-
cantly improves the overhead at the source and directories for using an expo-
nential accumulator to solve the authenticated dictionary problem. Moreover,
this improvement was achieved without any modification to the client from the
original straightforward application of the exponential accumulator described in
Section 2.

In the next section, we show that if we are allowed to slightly modify the
computation at the client, we can further improve performance at the source
and directory while still implementing a size-oblivious scheme

5 Hierarchical Accumulations

In this section, we describe a hierarchical accumulation scheme for implementing
an authenticated dictionary on a set S with n elements. In this scheme, the
verification algorithm consists of performing a series of c exponentiations, where
c is a fixed constant for the scheme. Note that the approach of Section 4 assumed
that c = 1.

Given a fixed constant c, we define p = n1/(c+1) and construct the following
hierarchical partition of S:

– We begin by partitioning set S into p subsets of n1 = nc/(c+1) elements each,
called level-1 subsets.

– For i = 1, . . . , c − 1, we partition each level-i subset into p subsets of
n(c−i)/(c+1) elements each, called level-(i + 1) subsets.

Also, we conventionally say that S is the level-0 subset.
Next, we associate a value α(Y ) to each subset Y of the above partition, as

follows:

– The value of a level-c subset is the accumulation of the representatives of its
elements.

– For i = 0, . . . , c − 1, the value of a level-i subset is the accumulation of the
representatives of the values of its level-(i + 1) subsets.

Finally, we store with each level-i subset Y a data structure based on the
precomputed accumulations scheme of Section 3 that stores and validates mem-
bership in the set S(Y ) of the values of the level-(i + 1) subsets of Y .

Let e be an element of S. To prove the containment of e in S, the directory
determines, for i = 1, . . . , c, the level-i subset Yi containing e and returns the
sequence of values α(Yc), α(Yc−1), . . . , α(Y0) plus witnesses for the following c+1
memberships:



– e ∈ Yc

– α(Yi) ∈ S(Yi−1) for i = c, . . . , 1

The user can verify each of the above memberships by means of an exponen-
tiation. Thus, the verification time and query authentication information are
proportional to c, i.e., they are O(1).

Theorem 2. The hierarchical accumulations scheme for implementing an au-
thenticated dictionary over a set of size n uses uses data structures with O(n)
space at the source and directories and has the following performance, for a given
constant ε such that 0 < ε < 1:

– the insertion and deletion times for the source are each O(nε));
– the update authentication information has size O(nε);
– the query time for a directory is O(nε);
– the query authentication information has size O(1); and
– the verification time for the user is O(1).

We can extend the hierarchical accumulations scheme by using a more gen-
eral hierarchical partitioning of the set S while keeping constant the size of the
query authentication information and the verification time. The two extreme
partitioning strategies are: (i) single-level partition in O(1) groups of size O(n),
and (ii) O(log n)-level partition where the size of each partition is O(1) (this
corresponds to a hierarchy that can be mapped into a bounded-degree tree).
The insertion and deletion times and the update authentication information size
are then proportional to O(

∑c−1
i=1 gi), where gi is the size of the partition at the

i-th level, and can range from O(1) to O(n). At the same time, the query time
is proportional to O(c + gc−1), and can range from O(n) to O(1).

6 Security

We now show that an adversarial directory cannot forge a proof of membership
for an element that is not in S. Our proof follows a closely related constructions
given in [9, 15, 26]. An important property of the scheme comes from representing
the elements e of set S with prime numbers. If the accumulator scheme was used
without this stage, the scheme would be insecure. An adversarial directory could
forge the proof of membership for all the divisors of elements whose proofs it
has seen.

Theorem 3. In the dynamic accumulator schemes for authenticated dictionar-
ies defined in the previous sections, under the strong RSA assumption, a direc-
tory whose resources are polynomially bounded can produce a proof of membership
only for the elements that are in the dictionary.

Proof. Our proof is based on related proofs given in [9, 15, 26]. Assume an
adversarial directory D has seen proofs of membership for all the elements



e1, e2, . . . en of the dictionary S. The trusted source has computed represen-
tatives x1, x2, . . . , xn as suitable primes defined in Section 2. The witnesses
A1, A2 . . . , An have been computed as well, either solely by the trusted source,
or by balancing the work between the trusted source and the directories. The
trusted source has distributed a signed pair (A, t). By the definition of the scheme
in Section 2, for all 1 ≤ i ≤ n, we have

– xi is the prime representative of ei ∈ S, i.e., h(xi) = ei;
–

√
23k < xi < 23k;

– Axi
i mod N = A.

We need to show that directory D cannot prove the membership of a an element
en+1 that is not in the set S already. The proof is by contradiction. Suppose that
D has has found a triplet (en+1, xn+1, An+1) proving the membership of en+1.
Then, the following must hold and can checked by the user (it is not necessary
for xn+1 to be a prime):

– h(xn+1) = en+1;
–

√
23k < xn+1 < 23k;

– A
xn+1
n+1 mod N = A.

Let d = gcd(xn+1, x1x2 . . . xn). Thus, we have gcd(xn+1
d , x1x2...xn

d ) = 1. Define
f = xn+1

d . There are integers u, v such that v x1x2...xn

d + uf = 1 holds over
integers. Directory D can find u and v in polynomial time using the extended
Euclidean algorithm. Set s = Av

n+1a
u. We have

sf = Avf
n+1a

uf = A
v

xn+1
d

n+1 auf = A
v
d auf = av

x1x2...xn
d +uf = a.

Thus, directory D can find in polynomial time a value s that is an f -th root
of a. By the strong RSA assumption (Section 2), it must be that f = 1. Hence,
we have xn+1 = d and it follows that xn+1 divides x1x2 . . . xn. But by our
assumptions we have xn+1 < 23k and xi >

√
23k for each i, which implies that

xn+1 = xi, for some 1 ≤ i ≤ n. Thus, element en+1 is already in set S, which is
a contradiction.

We conclude that the adversarial directory D can find membership proofs
only for those elements already in S. 
�

7 Experimental Results

In this section, we present a preliminary experimental study on the performance
of the dynamic accumulator schemes for authenticated dictionaries described in
this paper. The main results of this study are summarized in the the charts of
Figures 1–2, where the x axis represents the size of the dictionary (number of
elements) and the y axis represents the average time of the given operation in
microseconds. We denote with (f1(n), f2(n), ..., fc(n)) a generalized hierarchical
partition scheme of the dictionary with O(fi(n)) elements in the i-th level group
(Section 5).
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Fig. 1. Performance tradeoffs for dynamic accumulators. The insertion time at the
source excludes the computation of the prime representative. Note that we use a loga-
rithmic scale for the y-axis. (a) Query time at the directory (stars) when the directory
computes the witness from scratch for each query (using modular exponentiations) vs.
insertion time at the source (diamonds) when the source precomputes all the exponents
of the witnesses (using modular multiplications). (b) Insertion time at the source (di-
amonds) without partitioning, when all the n witnesses’s exponents are precomputed,
vs. with partitioning (stars), when a 2-level (n1/2, n1/4) partitioning scheme is used
and O(n1/2) witnesses’s exponents are precomputed.

The dynamic accumulator scheme has been implemented in Java and the ex-
periments have been conducted on an AMD Athlon XP 1700+ 1.47GHz, 512MB
running Linux. The items stored in the dictionary and the query values are ran-
domly generated 165-bit integers and the parameter N of the RSA accumulator
is a 200-bit integer. The variance between different runs of the query and dele-
tion operations was found to consistently small so only a few runs were done for
each dictionary size considered.

The main performance bottleneck of the scheme was found to be the com-
putation of prime representatives for the elements. In our experiments, finding
a prime representative of a 165-bit integer using the standard approach of Sec-
tion 2 takes about 45 milliseconds and dominates the rest of the insertion time.
The computation of prime representatives is a constant overhead that does not
depend on the number of elements and has been omitted in the rest of the
analysis.

Figure 1 illustrates two performance tradeoffs. Part (a) compares the per-
formance of the two extreme naive approaches where either the source or the
directory does essentially all the work. Since the source can use modular multipli-
cation and the directory has to use modular exponentiation, it is more effective
to shift as much as possible the insertion work to the source. Part (b) shows
the benefits of partitioning, which allows to reduce the computation time at the
source.

Experimental results on the hierarchical accumulations method (Section 5)
are presented in Figure 2. These results show that one can tune the partition-
ing scheme according to the processing power available at the source and the
directory.
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Fig. 2. Insertion and deletion times at the source and query time at the directory
for two variants of the hierarchical accumulations approach (Section 5) on dictionaries
with up to one million elements. The time for computing the prime representative of an
element has been omitted from the insertion time. The stars represent a 2-level (n1/2,
n1/4) partitioning scheme and the diamonds represent a 2-level (n2/3, n1/3) partitioning
scheme.
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