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Abstract. We design a variation of skip lists that performs well for
generally biased access sequences. Given n items, each with a positive
weight wi, 1 ≤ i ≤ n, the time to access item i is O

(
1 + log W

wi

)
, where

W =
∑n

i=1 wi; the data structure is dynamic. We present deterministic
and randomized variations, which are nearly identical; the determinis-
tic one simply ensures the balance condition that the randomized one
achieves probabilistically. We use the same method to analyze both.

1 Introduction

The primary goal of data structures research is to design data organization
mechanisms that admit fast access and update operations. For a generic n-
element ordered data set that is accessed and updated uniformly, this goal is
typically satisfied by dictionaries that achieve O(log n)-time search and update
performance; e.g., AVL-trees [2], red-black trees [12], and (a, b)-trees [13].

Nevertheless, many dictionary applications involve sets of weighted data
items subject to non-uniform access patterns that are biased according to the
weights. For example, operating systems (e.g., see Stallings [22]) deal with bi-
asing in memory requests. Other recent examples of biased sets include client
web server requests [11] and DNS lookups [6]. For such applications, a biased
search structure is more appropriate—that is, a structure that achieves search
times faster than log n for highly weighted items. Biased searching is also useful
in auxiliary structures deployed inside other data structures [5,10,20].

Formally, a biased dictionary is a data structure that maintains an ordered
set X, each element i of which has a weight, wi; without loss of generality, we
assume wi ≥ 1. The operations are as follows.

Search(X, i). Determine if i is in X.
Insert(X, i). Add i to X.
Delete(X, i). Delete i from X.
Join(XL, XR). Assuming that i < j for each i ∈ XL and j ∈ XR, create a new

set X = XL ∪XR. The operation destroys XL and XR.
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Split(X, i). Assuming without loss of generality that i �∈ X, create XL = {j ∈
X : j < i} and XR = {j ∈ X : j > i}. The operation destroys X.

FingerSearch(X, i, j). Determine if j is in X, exploiting a handle in the data
structure to element i ∈ X.

Reweight(X, i, w′
i). Change the weight of i to w

′
i.

In this paper, we study efficient data structures for biased data sets subject
to these operations. We desire search times that are asymptotically optimal and
update times that are also efficient. For example, consider the case when wi is
the number of times item i is accessed. DefineW =

∑n
i=1 wi. A biased dictionary

with O
(
log W

wi

)
search time for the i’th item can perform m searches on n items

in O(m(1 −∑n
i=1 pi log pi)) time, where pi = wi

m , which is asymptotically opti-

mal [1]. We therefore desire O
(
log W

wi

)
search times and similar update times for

general biased data (with arbitrary weights). We also seek biased structures that
would be simple to implement and that do not require major restructuring op-
erations, such as tree rotations, to achieve biasing. Tree rotations, in particular,
make structures less amenable to augmentation, for such rotations often require
the complete rebuilding of auxiliary structures stored at the affected nodes.

1.1 Related Prior Work

The study of biased data structures is a classic topic in algorithmics. Early work
includes a dynamic programming method by Knuth [14,15] for constructing a
static biased binary search tree for items weighted by their search frequencies.
Subsequent work focuses primarily on achieving asymptotically optimal search
times while also admitting efficient updates. Most of the known methods for
constructing dynamic biased data structures use search trees, and they differ
from one another primarily in their degree of complication and whether or not
their resulting time bounds are amortized, randomized, or worst case.

Sleator and Tarjan [21] introduce the theoretically elegant splay trees, which
automatically adjust themselves to achieve optimal amortized biased access
times for access-frequency weights. Splay trees store no balance or weight infor-
mation, but they perform many tree rotations after every access, which makes
them less practically efficient than even AVL-trees in many applications [3].
These rotations can be particularly deleterious when nodes are augmented with
auxiliary structures.

Bent, Sleator, and Tarjan [4] and Feigenbaum and Tarjan [9] design biased
search trees for arbitrary weights that significantly reduce, but do not eliminate,
the number of tree rotations needed. They offer efficient worst-case and amor-
tized performance of biased dictionary operations but do so with complicated
implementations.

Seidel and Aragon [19] demonstrate randomized bounds with treaps. Like
splay trees, treaps perform a large number of rotations after every access. Their
data structure is elegant and efficient in practice, but its performance does not
achieve bounds that are efficient in a worst-case or amortized sense.
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Pugh [18] introduces an alternative skip list structure, which efficiently im-
plements an unbiased dictionary without using rotations. Skip lists store the
items in series of a linked lists, which are themselves linked together in a leveled
fashion. Pugh presents skip lists as a randomized structure that is easily im-
plemented and shows that they are empirically faster than fast balanced search
trees, such as AVL-trees. Search and updates take O(log n) expected time in skip
lists, with no rotations or other rebalancing needed for updates. Exploiting the
relationship between skip lists and (a, b)-trees, Munro, Papadakis, and Sedgewick
[17] show how to implement a deterministic version of skip lists that achieves
similar bounds in the worst case using simple promote and demote operations.

For biased skip lists, much less prior work exists. Mehlhorn and Näher [16]
anticipated biased skip lists but claimed only a partial result and omitted details
and analysis. Recently, Ergun et al. [7,8] presented a biased skip list structure
that is designed for a specialized notion of biasing, in which access to an item i
takes O(log r(i)) expected time, where r(i) is the number of items accessed since
the last time i was accessed. Their data structure is incomparable to a general
biased dictionary, as each provides properties not present in the other.

1.2 Our Results

We present a comprehensive design of a biased version of skip lists. It combines
techniques underlying deterministic skip lists [17] with Mehlhorn and Näher’s
suggestion [16]. Our methods work for arbitrarily defined item weights and pro-
vide asymptotically optimal search times based on these weights. Using skip list
technology eliminates tree rotations. We present complete descriptions of all the
biased dictionary operations, with time performances that compare favorably
with those of the various versions of biased search trees. We give both deter-
ministic and randomized implementations. Our deterministic structure achieves
worst-case running times similar to those of biased search trees [4,9] but uses
techniques that are arguably simpler. A node in a deterministic biased skip list is
assigned an initial level based on its weight, and simple invariants govern promo-
tion and demotion of node levels to ensure desired access times. Our randomized
structure achieves expected bounds similar to the respective amortized and ran-
domized bounds of splay trees [21] and treaps [19]. Our randomized structure
does not use partial rebuilding and hence does not need any amortization of
its own. Table 1 (at the end) juxtaposes our results against biased search trees,
splay trees, and treaps.

In Section 2, we define our deterministic biased skip list structure, and in
Section 3 we describe how to perform updates efficiently in this structure. In
Section 4 we describe a simple, randomized variation of biased skip lists and
analyze its performance. We conclude in Section 5.

2 Biased Skip Lists

A skip list [18] S is a dictionary data structure, storing an ordered set X, the
items of which we number 1 through |X|. Each item i ∈ X has a key, xi, and a
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corresponding node in the skip list of some integral height, hi ≥ 0. The height of
S is H(S) = maxi∈X hi. The depth, di, of i is H(S)−hi. We use the terms item,
node, and key interchangeably; the context clarifies any ambiguity. We assume
without loss of generality that the keys in X are unique: xi < xi+1, 1 ≤ i < |X|.

Each node i is implemented by a linked list or array of length hi + 1, which
we call the tower for that node. The level-j successor of a node i is the least
node � > i of height h
 ≥ j. Symmetrically define level-j predecessor. For node i
and each 0 ≤ j ≤ hi, the j’th element of the node contains pointers to the j’th
elements of the level-j successor and predecessor of i. Two distinct nodes x < y
are called consecutive if and only if hz < min(hx, hy) for all x < z < y. A plateau
is a maximal sequence of consecutive nodes of equal height.

For convenience we assume sentinel nodes of height H(S) at the beginning
(with key −∞) and end (with key ∞) of S; in practice, this assumption is not
necessary. We orient the pointers so that the skip list stores items in left-to-right
order, and the node levels progress bottom to top. See Figure 1(a).

1 5 10 22 50 60 75 80−∞ ∞
(a)

1 5 10 22 50 60 75 80−∞ ∞

21

3 4

5

(b)

Fig. 1. (a) A skip list for the set X = {1, 5, 10, 22, 50, 60, 75, 80}. (b) Searching for key
80; numbers over the pointers indicate the order in which they are traversed.

To search for an item with key K we start at level H(S) of the left sentinel.
When searching at level i from some node we follow the level-i links to the right
until we find a key matching K or a pair of nodes j, k such that k is the level-i
successor of j and xj < K < xk. We then continue the search at level i− 1 from
node j. The search ends with success if we find a node with key K, or failure if
we find nodes j and k as above on level 0. See Figure 1(b).

We describe a deterministic, biased version of skip lists. In addition to key
xi each item i ∈ X has a weight, wi; without loss of generality, assume wi ≥ 1.
Define the rank of item i as ri = �loga wi�, where a is a constant parameter.

Definition 1. For a and b such that 1 < a ≤ ⌊
b
2

⌋
, an (a, b)-biased skip list is

one in which each item has height hi ≥ ri and the following invariants hold.

(I1) There are never more than b consecutive items of any height in [0, H(S)].
(I2) For each node x and all rx < i ≤ hx, there are at least a nodes of height

i− 1 between x and any consecutive node of height at least i.

To derive exact bounds for the case when an item does not exist in the skip
list we eliminate redundant pointers. For every pair of adjacent items i, i + 1,
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we ensure that the pointers between them on level min(hi, hi+1)− 1 are nil; the
pointers below this level are undefined. (In Figure 1, for example, the level-0
pointers between −∞ and 1 become nil.) When searching for an item i �∈ X, we
assert failure immediately upon reaching a nil pointer.

Throughout the remainder of the paper, we define W =
∑

i∈X wi to be the
weight of S before any operation. For any key i, we denote by i− the item in X
with largest key less than i, and by i+ the item in X with smallest key greater
than i. The main result of our definition of biased skip lists is summarized by
the following lemma, which bounds the depth of any node.

Lemma 1 (Depth Lemma). The depth of any node i in an (a, b)-biased skip
list is O

(
loga

W
wi

)
.

Before we prove the depth lemma, consider its implication on access time for
key i: the time it takes to find i in S if i ∈ X or pair i−, i+ in S if i �∈ X.

Corollary 1 (Access Lemma). The access time for key i in an (a, b)-biased

skip list is O
(
1 + b loga

W
wi

)
if i ∈ X and O

(
1 + b loga

W

min(wi− ,wi+)

)
if i /∈ X.

Proof. By (I1), at most b+1 pointers are traversed at any level. A search stops
upon reaching the first nil pointer, so the Depth Lemma implies the result.

It is important to note that while all the bounds we prove rely on W , the
data structure itself need not maintain this value.

To prove the depth lemma, observe that the number of items of any given
rank that can appear at higher levels decreases geometrically by level. Define
Ni = |{x : rx = i}| and N ′

i = |{x : rx ≤ i ∧ hx ≥ i}|.

Lemma 2. N ′
i ≤

∑i
j=0

1
ai−j Nj.

Proof. By induction. The base case, N ′
0 = N0, is true by definition. For i > 0,

(I2) implies that N ′
i+1 ≤ Ni+1+

⌊ 1
aN

′
i

⌋ ≤ Ni+1+ 1
aN

′
i , which, together with the

induction hypothesis, proves the lemma.

Intuitively, a node promoted to a higher level is supported by enough weight
associated with items at lower levels. Define Wi =

∑
rx≤i wx.

Corollary 2. Wi ≥ aiN ′
i .

Proof. By definition, Wi ≥
∑i

j=0 a
jNj = ai

∑i
j=0

1
ai−j Nj . Apply Lemma 2.

Define R = maxx∈X rx. Any nodes with height exceeding R must have been
promoted from lower levels to maintain the invariants. (I2) thus implies that
H(S) ≤ R+ loga N

′
R, and therefore the maximum possible depth of an item i is

di ≤ H(S)− ri ≤ R+ loga N
′
R − ri.

By Corollary 2, W =WR ≥ aRN ′
R. Therefore loga N

′
R ≤ loga W −R. Hence,

di ≤ loga W − ri. The Depth Lemma follows, because loga wi− 1 < ri ≤ loga wi.
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(I1) and (I2) resemble the invariants defining (a, b)-skip lists [17], but (I2) is
stronger than their analogue. Just to prove the Depth Lemma, it would suffice
for a node of height h exceeding its rank, r, to be supported by at least a items
to each side only at level h − 1, not at every level between r and h − 1. The
update procedures in the next section, however, require support at every level.

3 Updating Deterministic Biased Skiplists

We describe insertion in detail and then sketch implementations for the other
operations. All details will be available in the full paper.

The profile of an item i captures its predecessors and successors of increas-
ingly greater level. For hi− ≤ j ≤ H(S), let Li

j be the level-j predecessor of i;
for hi+ ≤ j ≤ H(S), let Ri

j be the level-j successor of i. Define the ordered set

PL(i) =
(
j : hLi

j
= j, hi− ≤ j ≤ H(S)

)
: the set of distinct heights of the nodes

to the left of i. Symmetrically define PR(i) =
(
j : hRi

j
= j, hi+ ≤ j ≤ H(S)

)
.

We call the ordered set
(
Li

j : j ∈ PL(i)
) ∪ (

Ri
j : j ∈ PR(i)

)
the profile of i. We

call the subset of predecessors the left profile and the subset of successors the
right profile of i. For example, in Figure 1, PL(60) = (3); PR(60) = (2, 3); the
left profile of 60 is (50); and the right profile of 60 is (75,∞).

These definitions assume i ∈ S but are also precise when i �∈ S, in which case
they apply to the (nonexistent) node that would contain key i. Given node i or,
if i �∈ S, nodes i− and i+, we can trace i’s profile from lowest-to-highest nodes by
starting at i− (rsp., i+) and, at any node x, iteratively finding its level-(hx + 1)
predecessor (rsp., successor), until we reach the left (rsp., right) sentinel.

3.1 Inserting an Item

The following procedure inserts a new item with key i into an (a, b)-biased skip
list S. If i already exists in the skip list, we discover it in Step 1.

1. Search S for i to discover the pair i−, i+.
2. Create a new node of height ri to store i, and insert it between i− and i+ in

S, splicing predecessors and successors as in a standard skip list [18].
3. Restore (I2), if necessary. Any node x in the left (sym., right) profile of i

might need to have its height demoted, because i might interrupt a plateau
of height less than hx, leaving fewer than a nodes to x’s left (sym., right).
In this case, x is demoted to the next lower height in the profile (or rx,
whichever is higher). More precisely, for j in turn from hi− up through ri, if
j ∈ PL(i), consider node u = Li

j . If (I2) is violated at node u, then demote
u to height ru if u = i− and otherwise to height max(j′, ru), where j′ is the
predecessor of j in PL(i); let h′

u be the new height of u. If the demotion
violates (I1) at level h′

u, then, among the k ∈ (b, 2b] consecutive items of
height h′

u, promote the �k
2 �’th node (in order) to height h′

u + 1. (See Figure
2.) Iterate at the next j. Symmetrically process right profile of i.
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10 20 30 40 50 60 70 80

(a)
60 70 8010 20 30 40 50 55

(b)
60 70 8010 20 30 40 50 55

(c)

Fig. 2. (a) A (2,4)-biased skip list. Nodes are drawn to reflect their heights; hatch
marks indicate ranks. Pointers are omitted. (b) After inserting 55 with rank 3, node
40 violates (I2). (c) After demotion of 40 and compensating promotion of 30.

10 20 30 40 50 60 70 80

(a)
65 80757010 20 30 40 50 60

(b)
80757010 20 30 40 50 60 65

(c)

Fig. 3. (a) The (2,4)-biased skip list of Figure 2(a). (b) (I1) is violated by the insertion
of 65 and 75 with rank 1 each. (c) After promoting node 65.

4. Restore (I1), if necessary. Starting at node i and level j = ri, if node i
violates (I1) at level j, then, among the b+1 consecutive items of height j,
promote the � b+1

2 �’th node (in order), u, to height j+1, and iterate at node
u and level j + 1. Continue until the violations stop. (See Figure 3.)

Theorem 1. Inserting an item i in an (a, b)-biased skip list can be done in
O

(
1 + b loga

W+wi

min(wi− ,wi,wi+ )

)
time.

Proof. We omit the proof of correctness. By the Depth and Access Lemmas,
Steps 1 and 2 take O

(
1 + b loga

W+wi

min(wi− ,wi,wi+ )

)
time. If min(hi− , hi+) ≤ ri,

Step 3 performs O(b) work at each level between min(hi− , hi+) and ri; Step 4
performs O(b) work at each level from ri through H(S). Again apply the Depth
Lemma.

3.2 Deleting an Item

Deletion is the inverse of insertion. After finding i, i−, and i+, remove i and
splice predecessors and successors as required. Then restore (I1), if necessary,
as removing i might unite plateaus into sequences of length exceeding b. This
is done analogously to Step 4 of insertion, starting at level min(hi− , hi+) and
proceeding up through level hi−1. Finally, restore (I2), if necessary, as removing
i might decrease the length of a plateau of height hi to a − 1. This is done
analogously to Step 3 of insertion, starting at level hi. The proof of correctness
is analogous to that for insertion, and the time is O

(
1 + b loga

W
min(wi− ,wi,wi+ )

)
.
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3.3 Joining Two Skiplists

Consider biased skip lists SL and SR of total weights WL and WR, rsp. Denote
the item with the largest key in SL by Lmax and that with the smallest key in SR

by Rmin. Assume Lmax < Rmin. To join SL and SR, trace through the profiles of
Lmax and Rmin to splice SL and SR together. Restore (I1), if necessary, starting
at level max(hLmax , hRmin) and proceeding through level max(H(SL), H(SR)), as
in Step 4 of insertion. (I2) cannot be violated by the initial splicing, as plateaus
never shrink, nor by the promotion of the node in the middle in the restoration
of (I1). The time is O

(
1 + b loga

WL

wLmax
+ b loga

WR

wRmin

)
.

3.4 Splitting a Skiplist

We can split a biased skip list S of total weight W into two biased skip lists,
SL and SR, containing keys in S less than (rsp., greater than) some i �∈ S. First
insert i into S with weight wi = aH(S)+1. Then disconnect the pointers between
i and its predecessors (rsp., successors) to form SL (rsp., SR). (I1) and (I2) are
true after inserting i by the correctness of insertion. Because i is taller than all
of its predecessors and successors, disconnecting the pointers between them and
i does not violate either invariant. The time is O

(
1 + b loga

W
min(wi− ,wi+ )

)
.

3.5 Finger Searching

We can search for a key j in a biased skip list S starting at any node i to which
we are given an initial pointer (or finger). Assume without loss of generality that
j > i. The case j < i is symmetric.

At any point in the search, we are at some height h of some node u. Initially,
u = i and h = ri. In the up phase, while Ru

h < j, we continually set h ← h + 1
when h < hu and u← Ru

h when h = hu. Once Ru
h ≥ j, we enter the down phase,

in which we search from u at height h using the normal search procedure.
The up phase moves up and to the right until we detect a node u < j with

some level-h successor Ru
h > j. That the procedure finds j (or j−, j+ if j �∈ S)

follows from the correctness of the vanilla search procedure and that we enter
the down phase at the specified node u and height h.

Define V (i, j) =
∑

i≤u≤j wu. For any node u and h ∈ [ru, hu], it follows
by induction that V (Lu

h, u) ≥ ah and V (u,Ru
h) ≥ ah. Using this fact we can

show that sufficient weight supports either the link into which u is originally
entered during the up phase or the link out of which u is exited during the
down phase. It follows that the time is O

(
1 + b loga

V (i,j)
min(wi,wj)

)
if j ∈ X and

O
(
1 + b loga

V (i,j+)
min(wi,wj− ,wj+ )

)
if j /∈ X.

3.6 Changing the Weight of an Item

We can change the weight of an item i to w′
i without deleting and reinserting

i. Let r′
i = �loga w

′
i�. If r′

i = ri, then stop. If r′
i > ri, then stop if hi ≥ r′

i.
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Otherwise, promote i to height r′
i; restore (I2) as in insertion, starting at height

hi + 1; and restore (I1) as in insertion, starting at height r′
i. Finally, if r

′
i < ri,

then demote i to height r′
i; restore (I1) as in deletion, starting at height r′

i; and
restore (I2) as in deletion, starting at the least j ∈ PL(i) greater than r′

i.
Correctness follows analogously as for insertion (in case r′

i > ri) or deletion
(in case r′

i < ri). The time is O
(
1 + b loga

W+w′
i

min(wi,w′
i)

)
.

4 Randomized Updates

We can randomize the structure to yield expected optimal access times without
any promotions or demotions. Mehlhorn and Näher [16] suggested the following
approach but claimed only that the expected maximal height of a node is logW+
O(1). We will show that the expected depth of a node i is E[di] = O

(
log W

wi

)
.

A randomized biased skip list S is parameterized by a positive constant 0 <
p < 1. Here we define the rank of an item i as ri = �log 1

p
wi�. When inserting

i into S, we assign its height to be hi = ri + ei with probability pei(1 − p) for
ei ∈ Z, which we call the excess height of i. Algorithmically, we start node i at
height ri and continually increment the height by one as long as a biased coin
flip returns heads (with probability p).

Reweight is the only operation that changes the height of a node. The new
height is chosen as for insertion but based on the new weight, and the tower is
adjusted appropriately. The remaining operations (insert, delete, join, split, and
(finger) search) perform no rebalancing.

Lemma 3 (Randomized Height Lemma). The expected height of any item
i in a randomized, biased skip list is log 1

p
wi +O(1).

Proof. E[hi] = ri +E[ei] = ri +
∑∞

j=0 jp
j(1− p) = ri + p

1−p = �log 1
p
wi�+O(1).

The proof of the Depth Lemma for the randomized structure follows that for
the deterministic structure. Recall the definitions Ni = |{x : rx = i}|; N ′

i = |{x :
rx ≤ i ∧ hx ≥ i}|; and Wi =

∑
rx≤i wx.

Lemma 4. E[N ′
i ] =

∑i
j=0 p

i−jNj.

Proof. By induction. By definition, N ′
0 = N0. Since the excess heights are

i.i.d. random variables, for i > 0, E[N ′
i+1] = Ni+1 + pE[N ′

i ], which, together
with the induction hypothesis, proves the lemma.

Corollary 3. E[N ′
i ] ≤ piWi.

Lemma 5 (Randomized Depth Lemma). The expected depth of any node i
in a randomized, biased skip list S is O

(
log 1

p

W
wi

)
.
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Proof. The depth of i is di = H(S) − hi. Again define R = maxx∈X rx. By
standard skip list analysis [18],

E[H(S)] = R+O(E[log 1
p
N ′

R]) ≤ R+ cE[log 1
p
N ′

R] for some constant c

≤ R+ c log 1
p
E[N ′

R] by Jensen’s inequality

≤ R+ c
(
log 1

p
WR −R

)
by Corollary 3

= c log 1
p
W − (c− 1)R.

By the Randomized Height Lemma, therefore, E[di] ≤ c log 1
p
W − (c − 1)R −

log 1
p
wi. The lemma follows by observing that R ≥ �log 1

p
wi�.

Corollary 4 (Randomized Access Lemma). The expected access time for
any key i in a randomized, biased skip list is O

(
1 + 1

p log 1
p

W
wi

)
if i ∈ X and

O

(
1 + 1

p log 1
p

W

min(wi− ,wi+)

)
if i /∈ X.

Proof. As n → ∞, the probability that a plateau starting at any given node is
of size k is p(1− p)k−1. The expected size of any plateau is thus 1/p.

The operations discussed in Section 3 become simple to implement.

Insert(S, i). Locate i− and i+ and create a new node between them to hold i.
The expected time is O

(
1 + 1

p log 1
p

W+wi

min(wi− ,wi,wi+ )

)
.

Delete(S, i). Locate and remove node i. The Randomized Depth and Access
Lemmas continue to hold, because S is as if i had never been inserted. The
expected time is O

(
1 + 1

p log 1
p

W
min(wi− ,wi,wi+ )

)
.

Join(SL, SR). Trace through the profiles of Lmax and Rmin to splice the point-
ers leaving SL together with the pointers going into SR. The expected time
is O

(
1 + 1

p log 1
p

WL

wLmax
+ 1

p log 1
p

WR

wRmin

)
.

Split(S, i). Disconnect the pointers that join the left profile of i− to the right
profile of i+. The expected time is O

(
1 + 1

p log 1
p

W
min(wi− ,wi+ )

)
.

FingerSearch(S, i, j). Perform FingerSearch(S, i, j) as described in Section
3.5. The expected time if j ∈ X is O

(
1 + 1

p log 1
p

V (i,j)
min(wi,wj)

)
and if j /∈ X is

O
(
1 + 1

p log 1
p

V (i,j+)
min(wi,wj− ,wj+ )

)
.

Reweight(S, i, w′
i). Reconstruct the tower for node i. The expected time is

O
(
1 + 1

p log 1
p

W+w′
i

min(wi,w′
i)

)
.
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Table 1. Time bounds for biased data structures. In all bounds,W is the total weight of all items before the operation; V (i, j) =
∑j

k=i wk.
For each table entry, E, the associated time bound is O(1 + E).

Biased Search Trees [4] Splay Trees [21] Treaps [19] Biased Skip Lists
amort. rand. w.c. & rand.

Search(X, i) log W
wi
amort./w.c. log W

wi
log W

wi
log W

wi

Insert(X, i)
log W+wi

min(w
i−+w

i+ ,wi)
amort.

log W
w

i−+w
i+
+ log W+wi

wi
w.c.

log W
min(w

i− ,w
i+ ) + log

W+wi
wi

log W+wi
min(w

i− ,wi,w
i+ ) log W+wi

min(w
i− ,wi,w

i+ )

Delete(X, i)
log W

wi
amort.

log W
wi
+ log W−wi

w
i−+w

i+
w.c.

log W
wi
+ log W−wi

w
i− log W+wi

min(w
i− ,wi,w

i+ ) log W+wi
min(w

i− ,wi,w
i+ )

Join(XL, XR) log WL+WR
wLmax+wRmin

w.c. log WL+WR
wLmax

log WL
wLmax

+ log WR
wRmin

log WL
wLmax

+ log WR
wRmin

Split(X, i) log W
w

i−+w
i+
amort./w.c. log W

min(w
i− ,w

i+ ) log WL
wLmax

+ log WR
wRmin

log W
min(w

i− ,w
i+ )

Reweight(X, i, w′
i)

log max(W,W ′)
min(wi,w′

i)
amort.

log W
wi
+ log W ′

w′
i
w.c.

log max(wi,w′
i)

min(wi,w′
i)

log W ′
min(wi,w′

i)

FingerSearch(X, i, j) log V (i,j)
min(wi,wj) log V (i,j)

min(wi,wj)
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5 Conclusion

Open is whether a deterministic biased skip list can be devised that has not only
the worst-case times that we provide but also an amortized bound of O(logwi)
for updating node i; i.e., once the location of the update is discovered, inserting
or deleting should take O(logwi) amortized time.

The following counterexample demonstrates that our initial method of pro-
motion and demotion does not yield this bound. Consider a node i such that
hi − ri is large and, moreover, that separates two plateaus of size b/2 at each
level j between ri + 1 and hi and two plateaus of size b/2 and b/2 + 1, rsp., at
level ri. Deleting i will cause a promotion starting at level ri that will percolate
to level hi. Reinserting i with weight ari will restore the structural condition
before the deletion of i. This pair of operations can be repeated infinitely often;
since hi−ri is arbitrary, the cost of restoring the invariants cannot be amortized.

We might generalize the promotion operation to split a plateau of size ex-
ceeding b into several plateaus of size about b/η each, for some suitable constant
η. Above, η = 2. The counterexample generalizes, however.
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