
I n t e r s e c t i n g Line S e g m e n t s in Para l l e l w i t h an
O u t p u t - S e n s i t i v e N u m b e r of P r o c e s s o r s

Michael T. Goodrich*

Department of Computer Science
The Johns Hopkins University

Baltimore, MD 21218

Summary

We give an efficient parallel algorithm for con-
structing the arrangement of n line segments in
the plane, i.e., the planar graph 'determined by
the segment endpoints and intersections. Our
algorithm is efficient relative to three efficiency
measures it is an NC algorithm, it has a small
time-processor product, and it is output-size sensi-
tive. In particular, it runs in O(log 2 n) time using
O(n + k/log n) processors in the CREW PRAM
model, where k is the size of the output (which
is ~2(n 2) in the worst case). The algorithm does
not receive the value of k as input, it determines
it on-line.

1 Introduction

One of the major thrusts of computational geom-
etry research has been to show that one can solve
many geometric problems with a running time
that is proportional to the input size plus the out-
put size (times logarithmic factors in some cases);
see, for example [4,8,9,17,19,20,23,29]. This is
significant, because most of these problems have
trivial ~2(n 2) lower bounds, which are based on
constructing examples that have a large output
size. Thus, these output-sensitive algorithms usu-
ally perform much better than the worst-case time

on most inputs.

" R e s e a r c h s u p p o r t e d by the N a t i o n a l Science F o u n d a -

t ion under Grant CCR-8810568.

Permission to copy without fee all or part of thismaterialis granted provided that
thecopies are not made or distributed for direct commercial advantage, the ACM
copyright notice and the title of the publication and its date appear, and notice is
given that copying is by permission of the Association for Computing Machinery.
To copy otherwise, or to republish, requires a fee and/or specific permission.

© 1989 ACM 0-89791-323-X/89/0006/0127 $1.50

One of the most studied of these problems is
the problem of constructing the planar graph de-
termined by the pair-wise intersections of a set
of line segments in the plane, i.e., the segment
arrangement problem [4,8,9]. This problem has
several applications in computer graphics (e.g.,
[18,25,28]). One of the oldest algorithms solving
this problem is an elegant method by Bentley and
Ottmann [4] published in 1979 that uses the now-
famous "plane-sweeping" paradigm [13,26]. The
running time of their algorithm is sensitive to the
size of the output, as it runs in O((n + k) log n)
time for the general case, and in O(n log n+k) time
if the input segments are iso-oriented (i.e., paral-
lel to the coordinate axes), where k is the size of
the output. Since k is ~(n 2) in the worst-case, it
was not clear whether or not their general-case al-
gorithm was optimal, however. Since then, there
has been a considerable amount of research done
to resolve this question (e.g., [9,10,16]). In fact, it
wasn't until very recently that it was shown, by
Chazelle and Edelsbrunner, that one can in fact
solve this problem in e (n l o g n + k) time [9].

In this paper we investigate how efficiently one
can solve this problem in parallel. Our general
goal is to design a parallel algorithm that simulta-
neously runs as fast as possible and has a time-
processor product that is as small as possible.
Thus, for the segment arrangement problem, we
desire an algorithm that is output-sensitive.

There is no previous parallel algorithm for this
problem other than the trivial brute-force method
that is based on sorting [12] and runs in O(logn)
time using O (n 2) processors. There has been some
related work done, however. In [2] Atallah, Cole,
and Goodrich show to solve the decision problem,
i.e., determining if any two segments intersect, in
O(logn) time using O(n) processors. It doesn't
seem possible to extend their algorithm to the con-

127

struction problem, however. In [11] Chow studies
a restricted version of the problem, namely, she
shows how to determine all the pair-wise intersec-
tions of n iso-oriented segments. Her algorithm
runs in O((1/e)logn + kmax) t ime using O(n l+~)
processors [11], where e > 0 is a small cons tan t
and kmax is the maximum, taken over all input
segments s, of the number of intersections on s.
Note that this does not give an NC algorithm,
since kmax is lf/(n) in the worst case, nor does
is balance the computat ional burden for the case
when only a few segments cause the majority of
intersections.

The main result of this paper is the first
output-sensitive parallel algori thm for solving the
general segment arrangement problem. Our algo-
r i thm runs in O(log ~ n) t ime using O(n + k/log n)
processors in the CREW PRAM model, where k
is the size of the output. Note tha t our algorithm
matches the time-processor product of the brute-
force approach when the output size is large, i.e.,
~(n2). We also give an algorithm for the case
when the segments are iso-oriented tha t runs in
O(logn) time using an optimal O(n + k/logn)
number of processors in the CREW PRAM model.

The main obstacle to designing an output-
sensitive parallel algori thm for this problem is
that paradigms that led to the efficient sequential
algori thms--such as plane-sweeping [13,26], topo-
logical sweeping [9,14], and incremental construc-
tion [13,26J--seem inherently sequential. More-
over, parallel techniques--such as the plane-sweep
tree [1,2], cascading divide-and-conquer [2t, and
parallel sequence-evaluation [3J--that worked well
for parallelizing fast sequential algorithms that use
plane sweeping cannot be directly applied here,
because it seems impossible to compute a priori
all the places where a sweeping line would need
to stop in a sequential algorithm. Our algorithm
avoids the plane-sweeping approach all together.
Instead, it is based on a number of new parallel
techniques and a hierarchical geometric character-
ization of the types of intersections that can oc-
cur. The new parallel techniques include a "trun-
cated" version of the zone lemma of [8,9,10,15,16]
and a method for re-using processors created for
enumerating intersections of one type to then dis-
cover intersections of another type. Our algorithm

achieves its output-sensitivity by computing the
size of the output while it is computing the answer,
and dynamically allocates new processors accord-
ingly.

In the next section we discuss some preliminar-
ies, including a discussion of our computational
model. In Section 3 we give an overview of our
algorithm, and we give the details of our method
in Sections 4 and 5. In Section 6 we outline our
algorithm for the iso-oriented case. We conclude
with Section 7.

2 P r e l i m i n a r i e s

2 .1 T h e C o m p u t a t i o n a l M o d e l

The computational model we use in this paper is
the CREW PRAM model. Recall that processors
in this model act in a synchronous fashion and
use a shared memory space where many processors
may simultaneously read from the same location
but no two processors may simultaneously write
to the same location. Given an input of size n,
the traditional way of utilizing this model is that
one simply allocates, once and for all, a number
of processors that depends on n (e.g., n ~, n log n,
etc.), Of course, a real parallel machine has a con-
stant number, p, of processors, not a number that
is a function of n. Thus, the p real processors must
always simulate the "virtual" processors in the al-
gorithm in order to implement it. Since we wish
to solve a problem in an output-sensitive manner,
in order to achieve the maximum speed-up possi-
ble we allow the set of virtual processors to grow
dynamically. More specifically, we consider a ver-
sion of the PRAM, as outlined by Reif and Sen
in [27], where a new processor can be created by
having some existing processor execute a spawn-
ing operation. Such an operation is issued by an
existing processor specifying the task that a new
processor is to perform, and in the next time step
a new processor is created and begins executing
that task. This is also similar to a model used by
Bhatt and Cai [6], for example. We refer to this
model as the L-PRAM model, since processors are
created locally, instead of globally, as in the tradi-
tional PRAM model. It is beyond the scope of this
paper to study general model-comparison results,

128

b u t we do give the following lemma:

L e m m a 2.1: If an algorithm can be implemented
in the L - P R A M model in t steps using p pro-
cessors, then it can be implemented in O(t logp)
steps using 0 (p/ log p) processors in the analogous
P R A M model.

P r o o f s k e t c h : Let Pi denote the number of
processors used in the L-PRAM model in step i.
The main idea of the proof is to simulate step i
of the L-PRAM algori thm in O(logpi) t ime us-
ing [p j logpi] processors in the PRAM model.
With each step of the L-PRAM algorithm, one
first performs all the non-spawning conaputations,
and then performs a parallel prefix [21,22] to de-
termine the number, pi+1 - pl, of new processors
that are to be spawned in step i and to which
tasks they are to be assigned. This takes at most
O(logpi) t ime using [pi/logpi] processors. One
then requests [pi+l/logpi+l] - [pi/logpi] new
processors on the PRAM machine to help sim-
ulate the next step of the L-PRAM algorithm.
Thus, the entire algori thm can be implemented
in O(tlogpt) t ime using O(pt/ logpt) processors
in the P R A M model. []

Having discussed our computat ional model, let
us now discuss some preliminaries for the segment
arrangement problem.

2.2 Characterizing Intersections

In this section we review an observation by
Chazelle [8] for characterizing intersections in
terms of a segment tree da ta s tructure [5]. Let
S be a set of n line segments in t h e plane, and
let T be the complete binary tree whose at most
2n + 1 leaves, in left to right order, correspond to
the vertical slabs determined by the endpoints of
the segments in S. For each v in T we use Hv to
denote the union of all the slabs associated with
the descendents of v (including v itself, if v is a
leaf). A segment si covers a node v E T if it
spans Hv but not I1parent(v). Clearly, no segment
covers more than 2 nodes on any level of T; hence,
each segment covers at most O(log n) nodes of T.
For each node v E T we define the following sets
(see Figure 1):

Cover(v) = { s e S I s covers v) ,

V

b w

Figure I: The segment s is in Cover(y), End(x) ,
End(u), End(w), and End(v).

End(v) = {s C S I s does not span Ho,

but has an endpoint in Hv).

O b s e r v a t i o n 2.2 [8]: Let S be a set of line seg-
ments in the plane, and let Sl and sz be two seg-
ments in S that intersect at a point p. In addi.
tion, let T be a segment tree for S. Then there is
a (unique) node v E T such that p E H~ and one
of the following is true:

1. Sl, s2 e Cover(v),

2. sl e End(v) and s2 Cooer(v),

3. s2 e E, d(v) and sl e Cooer(v).

We call intersections of type 1 CC-interseetions
and intersections of types 2 and 3 EC-intersections.
We present an overview of our algori thm in the
next section.

3 A n O v e r v i e w

Suppose we are given a set S of n line segments
in the plane. We define the upper (resp., lower)
vertical shadow in S of a point p as the point on
a segment in S that is intersected by the maxi-
mal vertical ray emanating upward (resp., down-
ward) from p that does not intersect any other
segment in S , if s u c h a point exists. The segment
arrangement of S is defined to be the planar graph
determined by the pair-wise intersections in S as
well as all the vertical shadows of the endpoints of
segments in S (see Figure 2). For simplicity, we

129

Figure 2: Av example segment arrangement .

assume that a~ most two segments meet at any
intersection point. One can easily modify our al-
gor i thm for the general case (using an appropriate
definition of the "multiplicity" of an intersection
point).

In what follows we describe the a lgor i thm so
as to run in O(logn) t ime using O(nlogn + k)
processors in the C R E W L-PRAM model; we then
use Lemma 2.1 to derive the bounds s ta ted in the
introduction.

S t e p 1. In this step we construct a segment
tree T for the segments in S, including the lists
End(v) and Cover(v) for each v ~ T. This can be
done in O(log n) t ime with O(nlogn) processors
using an a lgor i thm by Aggarwal et al. [1]. Then,
for each v in T in parallel, we sort the segments in
Cover(v), where comparisons are based on the y-
coordinates of the intersections of the segments
with the left boundary of IIv. Since the total
size of all the Cover(v)'s is O(n log n), this sorting
step can also be performed in O(log n) t ime using
O(n log n) processors [121.

S t e p 2. In this s tep we determine all the
CC-intersections in S. Our method is based on
the simple observation tha t if two segments in
Cover(v) intersect, then their relative order would
be reversed if we were to base comparisons on the
right boundary of H~ (instead of the left bound-
axy). We implement this step by construct ing a
da ta s t ruc ture tha t can answer the related dom-
inance query for a segment s in O(log n + a~,v)
t ime, where as,i, is the number of answers for s in
Cover(v). We then use these lists to construct the
ar rangement of the segments in Cover(v) (the so-

called hammock [8,9]). This step requires O(Iog n)
time using O(n log n + a) processors, where a is
the total number of CO-intersections in S.

S t e p 3. In this step we compute all the EC-
intersections in S. This is the most involved step
in our construction. The main idea is to construct
two da ta s t ructures from the hammock produced
in Step 2, for each v in T in parallel. We use the
first da ta s t ructure to find all the EC-intersections
with segments in Cover(v) for each segment s in
End(v), so long as there are less than c logn of
them (c is a constant parameter) , or, alternatively,
to determine if there are at least c log n such inter-
sections. This requires O(logn) t ime and 1 pro-
cessor per segment in End(v), and is based on
a "truncated" zone theorem. The second data
s t ructure allows us to find all the EC-intersections
with segments in Cover(v) for any segment s in
End(v) in O(log n) t ime with O(logn + fl.,,o) pro-
cessors per 8, where fls,v is the number of such
intersections. But we only use this second data
s t ructure if the first one did not discover all the
intersections for s; so fls,v > clogn for all such
segments. We conclude the construction by deter-
mining all the adjacencies between the intersec-
tion points and endpoints in the segment arrange-
ment. This entire step requires O(log n) time us-
ing O(n log n + a + fl) processors, where fl is the
number of EC-intersections in S.
E n d o f O u t l i n e .

SoT assuming we can implement each of the
above steps in the s tated bounds, then we can
enumerate all the pair-wise intersections in S in
O(logn) t ime using O(nlogn + k) processors,
where k = o~ + fl is the size of the output . Let
us now give the details for performing each of the
above steps. The details for Step 1 should already
be apparent , so we begin our detailed description
with Step 2.

4 Comput ing CC-Intersect lons

Let us concentrate on finding all the CC-
intersections for a specific node v in T. Recall
that in Step 1 we constructed all the Cover(v)
lists in T. For each segment s in Cover(v), let
yl(s) (resp., y2(s)) denote the y-coordinate of the

130

intersect ion of s wi th the left (resp., r ight) bound-
ary of Hr. The following observat ion characterizes
all CC-intersec t lons in t e rms of these labels.

O b s e r v a t i o n 4.1: Two segments r and s in
Cover(v) have a CC-intersection intersection in
IIv if and only i f one of the following is true:

1. vl(r) < y (s) but v2(r) > w(s) ,

2 W(r) > y (s) but y (r) < y2(s).

For each segment s in Cover(v), if we define
a point p~ = (yl(s) , y2(s)), then we can in terpre t
Observat ion 4.1 in t e rms of domifiance relation-
ships. Namely, a segment s' has a CC-in tersec t ion
wi th s if and only if Ps' is (i) above and to the left
o fps , or (ii) below and to the right of pp. Thus , let
us digress a bi t to discuss how one can efficiently
solve the dominance repor t ing problem in parallel.

4 . 1 D o m i n a n c e R e p o r t i n g

The generic p rob lem is the following: we are given
a set R of n poin ts in the plane sor ted by x-
coordinates , and wish to cons t ruc t a d a t a struc-
ture D tha t allows one to efficiently repor t all the
points in a query range [x, oo) × [y, oo). There
are a n u m b e r of ways one can solve this problem;
we include one such m e t h o d here to i l lustrate how
one can use the spawning opera t ion.

The d a t a s t ruc ture D is simply a b inary tree
t ha t s tores the points of R in its leaves (listed
f rom left to r ight) . Wi th each internal node in D
we associate two labels, xmax(v) and ymax(v),
where xmax(v) (resp., ymax(v)) is the descen-
dent of v t h a t has m a x i m u m z-coordina te (resp.,
y-coordinate) . This cons t ruc t ion can easily be
done in O (l o g n) t ime wi th O(n/ logn) proces-
sors [12,30], by a s imple appl ica t ion of Brent ' s the-
o rem [7].

One uses D to answer a dominance query
Q = [x, c~) × [y, oc) as follows. We begin by as-
signing a processor p to search D, s ta r t ing at the
root , to locate the posi t ion of x among the leaves
of D. E a c h t ime p visits a left child z, p tests if
the subtree Do rooted at z 's sibling v contains any
answers or not (by tes t ing if ymax(v) _> Y). If Do
contains some answers, t hen p spawns a processor

p' to enumera te all the answers in Dr. The proces-
sor p continues in this fashion until it reaches the
leaf-level of D. The a lgor i thm for p, is as follows.
Let v be the node pt is current ly at in the search,
and let u and w be v's left and right child, respec-
tively. If there are answers in both Du and Dw,
then p' spawns a new processor p" to search Du
(using the same method) and continues its search
in D~. Otherwise, pP simply continues it search in
the subtree t h a t contains an answer. The spawned
processors cont inue in this way unti l they reach
the leaf-level in D. They complete the compu-
ta t ion for Q by collecting all their answers into a
single array. If the spawned processors have main-
ta ined themselves in a doubly-l inked list (which is
easy to do), then this can be done by a simple
l ist-ranking compu ta t i on [30]. Thus , we have the
following lemma.

L e m m a 4.2: Given a set R of n points in the
plane sor ted by x-coordinates, one can construct
a dominance.reporting d a t a structure that can
be used to answer dominance queries in O(log n)
time using 0 (1 + l) processors in the C R E W L-
P R A M model, where I is the number of answers.
This construction requires O(logrt) time using
O(n/ log n) processors. •

We note in passing t h a t we could have saved
a log n factor in the number of spawned proces-
sors had we used a more powerful da ta s t ruc ture
(e.g., a priori ty search tree [24]), bu t the me thod
out l ined above will be sufficient for our purposes.
Let us re turn, then, to the problem at hand.

4.2 Construct ing the Hammock

From the Cover(v) list we have the ps's listed in
sor ted order by their first coordinates. Thus, we
can cons t ruc t the dominance query da ta struc-
ture in O(logn) t ime using O(nv/ logn) proces-
sors, by L e m m a 4.2, where no = ICover(v)[. The
l emma also implies tha t the queries for a spe-
cific p~ can be answered in O(log n) t ime using
O(1 + as,v) processors, where c~s,v is the number
of CC-intersect ions s has with other segments in
Cover(v). This of course implies tha t , given the
segment tree cons t ruc ted in Step 1, we can find

131

all the CC-intersections in S (for all v in T in par-
allel) in O(log n) time using O(n + a) processors,
where a is the sum of all the as,,,'s (also recall that

E v e r nv is O(n log n)).
To complete Step 2 we have only to construct

the adjacency information for the hammock. That
is, for each intersection point p of segments r and
s we must determine the other intersection points
on r and s to which p is adjacent. We do this
by sorting, for each s in parallel, the intersections
along s by x-coordinates. Then for each intersec-
tion point p of a segment s with a segment r we
locate the position of p in the list for r by a binary
search. From this we then construct a represen-
tation of the planar graph induced by the adja-
cencies of the CC-intersection for Cover(v). We
finish the construction by augmenting the graph,
as Chazelle does [8], by adding pointers for each
edge e that point to the leftmost and rightmost
vertex, respectively, of each face in the hammock
to which e belongs. Since the bottleneck in this
computat ion is the sorting of O(nlog n + a) ele-
ments, it takes O(log n) t ime using O(n log n + a)
processors [12].

Thus, we have shown how to efficiently find all
the CC-intersections in S. In the next address the
problem of finding the EC-intersections in S.

5 C o m p u t i n g E l - I n t e r s e c t i o n s

To complete the algorithm we must find all the
EC-intersections for each v in T in parallel. As
mentioned earlier, this is the most involved step
in the construction. It consists of two phases:
one that finds the intersections along segments
that have few EC-intersections, and the other that
finds the intersections along segments that have
many EC-intersections.

5.1 Segments with few intersections

Let us concentrate on the computations for a par-
ticular v in T. We begin by constructing a pla-
nar point location data structure for the hammock
for each v using the methods of Atallah, Cole,
and Goodrich [2], which takes O(logn) time using
O(ICover(v)] + a~,) processors per v, where a , is
the number of CC-intersection determined by the

b

Figure 3: An example walk in the hammock.

segments in Cover(v). This requires O(n log n + a)
processors total, and allows point locations to be
performed in the hammock in O(log n) time using
a single processor.

Suppose we are given a query segment s in
End(v). We begin by locating the two faces fa and
fb that contain s's two endpoints a and b, respec-
tively (with a being to the left of b). Our method
is to then mimic the method of Chazelle [8] for
walking through the hammock from f~ to fb, ex-
cept that we cut the walk short as soon as it tra-
verses at least 4c log n edges (where c is a constant
parameter). We will show that if the walk is ter-
minated early because of this restriction, then
must have at least c log n intersections with seg-
ments in Cover(v).

So let us review the method of Chazelle [8].
If fa = fb, then we are done, so let us assume
fa # fb. One begins by jumping to the rightmost
vertex vl in f l = f~ and then traversing the edges
of fl until finding the edge el of f l that intersects
s. If vl is above the line supporting s, then this
traversal is to be clockwise, and is to be counter-
clockwise, otherwise. Upon reaching el, one uses
the adjacency information for el to "hop" over el
into the next face, f2, adjacent to s, and then jump
to the rightmost vertex v2 in f2. (See Figure 3.)
One continues in this way, going from face to face
along s, provided that for each edge e traversed,

132

the line support ing e intersects s. If one is about
to traverse an edge whose support ing line does not
intersect s, then one suspends the traversal from
fa at this point, and begins a symmetric traversal
from fb (using the rule tha t if vi is above the line
support ing s, then the traversal must be counter-
clockwise, and must be clockwise, otherwise). One
continues this traversal until all the intersections
along s have been discovered or, as in our case, one
traverses at least 4c log n edges. Chazelle [8] shows
if one uses this strategy, then one will eventually
discover all the intersections along s and the total
t ime spent will be proport ional to the number of
intersections. We need a stronger property than
this, however:

L e m r n a 5.1: Suppose one has traversed at least
46 edges in performing the walk for a segment s.
Then there are at least 6 intersections along s in
the hammock.

P r o o f sketch: Since this is a slightly stronger
version of a lemma proved by Chazelle [8], we
use the proof technique of Chazelle, Guibas, and
Lee [10] to prove it. Namely, we use an accounting
scheme, where for each edge traversed, we charge
one of the intersections along s for the cost of this
traversal. Let f be a face traversed, and let si be
the subsegment of s contained in f . The traversed
edges of f can be divided into three groups: left-
hanging edges, which intersect s left of si, right-
hanging edges, which intersect s right of si, and
anchored edges, which are adjacent to si. These
groups suffice, because the line support ing each
traversed edge intersects s. Note that for any face
f all the edges we traverse in f will be either left-
hanging or right-hanging, but not both. The ac-
counting scheme is that each left-hanging edge e
charges the intersection of s with the line support-
ing e's successor in a clockwise traversal around f ,
and each right-hanging edge e charges the intersec-
tion of s with the line support ing e's successor in
a counter-clockwise traversal around f . Each an-
chored edge e simply charges its intersection with
s. It is easy to see that each intersection point
can be charged by at most one left-hanging edge,
one right-hanging edge, and at most twice by its
anchored edge. Thus, each intersection point can

133

be charged at most 4 times. Therefore, if we have
traversed at least 45 edges, then we must have
charged at least 6 intersection points. []

Thus, by this "truncated" zone lemma, if
in traversing the hammock for a segment s we
stopped by reaching the other endpoint of s, then
we have discovered all the EC-intersections for s;
and if we terminated the traversal early, then there
are at least c log n intersections of s with segments
in Cover(v). Note, however, that these c log n in-
tersection points need not be adjacent in the list
of intersections along s.

Let E, be the list of all segments in End(v)
that have at least c log n EC-intersections, and let
Sv denote the set of segment "pieces" in the ham-
mock for v, i.e., the segments resulting from cut-
ting each s in Cover(v) at its CC-intersections.
We have yet to find all the EC-intersections for
the segments in Ev.

5.2 S e g m e n t s w i t h m a n y i n t e r s e c t i o n s

We begin by building a segment tree Tv for the
segments in S~. To avoid confusion, let us denote
the sets and slabs for each node w in Tv using
lower-case letters. Thus, for each w in Tv we de-
fine lists cover(w) and end(w) in terms of the slab
Ir~ associated with w. (See Figure 4.) For each
w in T~ we have cover(w) stored in sorted order
by the segment intersections with the left vertical
boundary of rio. Let us also define a list left(w),
which consists of all segments in end(w) that in-
tersection the left boundary of r,o, and let us also
store the left(w) lists sorted by the segment in-
tersections with the left vertical boundary. Since
the subsegments in S~ do not intersect, except at
their endpoints, we can use the method of Atal-
lah, Cole, and Goodrich [2] to build Tu. Note:
the tree in the Atallah, Cole, Goodrich construc-
tion is built on every log n- th x-coordinate; so that
the end(w) list stored in a leaf has O(log n) size
rather than O(1) size. This does not affect the
running t ime of queries, however, as we will see
later. Their me thod runs in O(log m) time using
O(rn) processors, where m is the number of seg-
ments. In our case rn = ICover(v)l +av. Thus, we
use the processors created in Step 2 (to enumerate
CC-intersections) to now allow us to construct T,

.° , . . "

I

Figure 4: An example ~rw. The segments in
end(w) are shown do t t ed and the segments in
cover(v) are shown solid.

for each v in T in parallel in O(logn) time. This
requires a tota l of O(n log n + a) processors.

For each w in T, we let inter(w) denote the
set of segments in Cover(v) t ha t have an inter-
section point in ~w. Recall tha t the subsegments
in S~, are all pieces of segments in Cover(v) tha t
span IIv. Thus, even though each subsegment
in left(w) does not span ~%,, it is a piece of a
segment t h a t does span r~ . Thus, left(w) con-
tains a representa t ive piece of each segment in
inter(w). With each segment s in inter(w) we
associate a pair (yl(s),y~(s)), where yl(s) (resp.,
y2(s)) is the y-coordina te of the intersect ion of
the left (resp., r ight) vertical boundary of r ~
with s. Thus, by applying the techniques of Sec-
tion 4.1, we can build a dominance repor t ing d a t a
s t ruc ture D(w) for the segments in inter(w) in
O(log n) t ime using O(ileft(w)l / log n) processors
(recall tha t lef t(w)is given in sor ted order) . Since
each (C- in t e r sec t i on can be contained in at most
O(logn) different a~ 's , the total size of all the
left(w)'s in T, is O((ICover(v)[+o~, ,) log n). Thus,
the tota l number of processors needed to cons t ruct
all the D(w)'s in T, is O(tCover(v)l + o~). There-
fore, the tota l number of processors needed to do
this for all T . ' s is O(nlogn + a).

We use the cover(w)'s and D(w) ' s to allow us
to find the EC-intersect ions for each segment s in
E, . In par t icular , we assign O(log n) processors to
s to per form O(log n) queries, one for each node
w in T. such tha t s ei ther covers w or has an end-
point in ~rw. Note tha t all the segments in Ev have

at least c log n EC-intersect ions with segments in
Cover(v). So the ex t ra processors we are now al-
locating to s can be accounted for by "charging"
the EC-intersect ions on s. There are three types
of queries we perform:

Query 1. If s has an endpoint in ~rw or s covers
w, then we locate the two endpoints of the segment
s A ~w (i.e., s "clipped" to ~rw) in cover(w), by
two binary searches. All the segments in cover(w)
between these two positions in the list must in-
tersect s. The processor associated with this w
then spawns enough o ther processors (in a dou-
bling fashion) to enumera t e these segments.

Query 2. I f s covers w, and w is not a leaf,
then we per form a dominance query for s using
the da t a s t ruc tu re D(w), since s necessarily spans
the slab ~ . This query is exact ly as t ha t used in
Section 4.

Query 3. If s covers w or s has an endpoint in
~ , and w is a leaf, then we simply search through
all the segments s I with a piece ~ in end(w) to see

if any of the s ~ segments intersect s (there can be
at most O(log n) such segments [2]).

The next l emma shows tha t when the process-
ing of these types of quer ies is complete we have
enumera ted all the EC-intersect ions for s with seg-
ments in Cover(v).

L e m m a 5.2: For any segment s in E~ all the EC-
intersections of s with segments in Cover(v) will
be discovered by the above queries.

P r o o f : Suppose p is an EC-intersect ion point of
s and a segment s t in Cover(v) tha t will be missed
by the above queries. The set of nodes w such that
p is conta ined in ~rv~ forms a leaf- to-root path or in
Tv. Suppose there is a node u on a tha t s covers.
There are two cases.
Case 1: s ~ does not have a CC-intersect ion in 7r,.
In this case there must be a piece ~ of s e in 5~
such tha t g spans ~ru. This, of course, implies that

covers some node on the pa th f rom u to the root
of T~. But we will per form a type 1 query for s at
each of these nodes. (~+--)
Case 2: J has a (C- in t e r sec t ion in ru. In this
case there mus t be a piece g of s ~ in S, such that

is in end(u). If u is not a leaf, then J is in
inter(u); hence, s' will be included in D(u). But

134

we will perform a type 2 query for s at such a u.
So u must be a leaf. But we will perform a type
3 query for s at such a u. (- - ~)
Thus, there is no node on ~ that s covers. Tha t
is, s does not span Ir~ for any node w on a; hence,
s has an endpoint in 7rz, where z is the leaf such
that p E Irz. But we will perform a type 3 query
at z. (- ~) Therefore, we will discover p. []

We complete our algori thm by constructing
the segment arrangement , not counting the verti-
cal shadows, from the intersection points and end-
points, using using essentially the same method we
used to construct the hammocks. We then aug-
ment this s t ructure with the vertical shadows by
applying the trapezoidal decomposit ion of Atal-
lah, Cole, and Goodrich [2] and the sorting algo-
r i thm of Cole [12]. This takes O(log n) t ime using
O(n + k) processors, where k = a + ft. We sum-
marize:

T h e o r e m 5.3: Given a set S of n line segments
in the plane, one can construct the segment ar-
rangement for S in O(log n) time using O(n log n +
k) processors in the CREW L-PRAM model,
where k is the size of the output. []

C o r o l l a r y 5.4: The segment arrangement for S
can be constructed in O(log 2 n) time using O(n +
k~ log n) processors in the CREW PRAM model.

6 Iso-Oriented Segments

of v. This da ta structure can be constructed in
O(logn) time using O(n) processors [3]. We con-
struct thi~ data s tructure to represent a horizon-
tal plane-sweep (e.g., [4]) and use it to perform a
range query for every position i that corresponds
to a vertical segment. This takes O(logn) time
using a total of O(n + k~ log n) processors in the
CREW PRAM model. It also gives us all the ver-
tical adjacencies in the segment arrangement. A
similar method gives us the horizontal adjaceneies.

T h e o r e m 6.1: Given a set S of n iso-oriented
segments in the plane, one can construct the seg-
ment arrangement for S in O(logn) time using
O(n + k~ log n) processors in the CREW PRAM
model, where k is the size of the output, m

7 Open P r o b l e m

We have shown how construct the segment ar-
rangement of a set of line segments in the plane
in parallel so that total work performed is only
a logn factor from the sequential lower bound
(which is achievable [9]). If all the segments are
extended to infinite lines, then our algorithm be-
comes equivalent to the brute-force method that
runs in O(log n) time using O(n 2) processors. Can
the arrangement in this case be constructed in
O(log n) t ime using only O(n~/log n) processors
(which would match the sequential running time
for this problem [10,14,16])?

In this section we outline how to construct the
segment arrangement when all the segments are
parallel to the x- and y-axes. We give the details
in the full version of this paper. Our method runs
in O(logn) t ime using O(n + k/ logn) processors
in the CREW PRAM model, which is optimal.
Our method uses the array-of-trees parallel da ta
s tructure of Atallah, Goodrich, and Kosaraju [3].
Given a sequence a of i n s e r t (p) and de le te (p)
operations tha t operate on an initially empty set,
the array-of-trees allows one to perform queries in
the past (Le., for s o m e posit ion i in a) as if one
had all the elements present in the set at "time" i
stored in a complete binary tree, where each inter-
nal node stores O(1) labels that are the values of
associative operations applied to the descendents

A c k n o w l e d g e m e n t s

We thank Mikhail J. Atallah and S. Rao Kosaraju
for helpful discussions, and Gregory Bachelis for
pointing out an omission in an earlier version of
the proof of Lemma 5.2.

References

[1] A. Aggarwal, B. Chazelle, L. Guibas,
C. O'Ddnlaing, and C. Yap, "Parallel Com-
putat ional Geometry," Algorithrnica, 3 (3) ,
1988, 293-328.

[2] M.J. Atallah, R. Cole, and M.T. Goodrich,
"Cascading Divide-and-Conquer: A Tech-
nique for Designing Parallel Algorithms,"
28th FOCS, 1987, 151-160.

135

[3] M.J. Atallah, M.T. Goodrich, and
S.R. Kosaraju, "Parallel Algorithms for Eval-
uating Sequences of Set-Manipulation Oper-
ations," Aegean Workshop on Comp., 1988,
1-10.

[4] J.L. Bentley and T. Ottmann, "Algorithms
for Reporting and Counting Geometric Inter-
sections," IEEE Trans. on Computers, C-28,
1979, 643-647.

[5] J.L. Bentley and D. Wood, "An Optimal
Worst Case Algorithm for Reporting Inter-
sections of Rectangles," IEEE Trans. on

...... Computers, C-29(7), 1980, 571-576.
[6] S. Bhatt and J.Y. Cai, "Take a Walk, Grow

a Tree," 29th FOCS, 1988, 469-478.
[7] R.P. Breng, "The Parallel Evalutation of

General Arithmetic Expressions," J. A CM,
Vol. 21, No. 2, 1974, pp. 201-206.

[8] B. Chazelle, "Intersecting is Easier Than
Sorting," 16th ACM Syrup. on Theory of
Comp. (STOC), 1984, pp. 125-134.

[9] B. Chazelle and H. Edelsbrunner, "An Op-
timal Algorithm for Intersecting Line Seg-
ments in the Plane," 29th FOCS, 1988, 590-
600.
B. Chazelle, L.J. Guibas, and D.T. Lee, "The
Power of Geometric Duality," 24th FOCS,
1983, 217-225.
A. Chow, "Parallel Algorithms for Geometric
Problems," Ph.D. thesis, Comp. Sci. Dept.,
Univ. of Illinois, 1980.
R. Cole, "Parallel Merge Sort," SIAM J.
Comput., 17(4), 1988, 770-785.
H. Edelsbrunner, Algorithms in Combinato-
rial Geometry, Springer-Verlag, NY, 1987.
H. Edesbrunner and L.J. Guibas, "Topo-
logically Sweeping anArrangement ," 18th
STOC, 1986, 389-403.
H. Edelsbrunner, L.J. Guibas, d. Pach,
R. Pollack, R. Seidel, and M. Sharir,
"Arrangements of Curves in the Plane -
Topology, Combinatorics, and Algorithms,"
UIUCDCS-R-88-1477, Dept. of Comp. Sci.,
Univ. of Illinois, 1988.
H. Edelsbrunner, J. O'Rourke, and R. Seidel,
"Constructing Arrangements of Lines and
Hyperplanes with Applications," 24th FOCS,
1983, 83-91.
S.K. Ghosh and D.M. Mount, "An Output
Sensitive Algorithm for Computing Visibility
Graphs," 28th FOCS, 1987, 11-19.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18] M.T. Goodrich, "A Polygonal Approach
to Hidden-Line Elimination," 25th Ailerton
Conf., 1987, 849-858.

[19] R.H. G/iting, "An Optimal Contour Algo-
rithm for Iso-Oriented Rectangles," J. Alto.
rithms, 5, 1984, 303--326.

[20J J. Hershberger, "Finding the Visibility
Graph of a Simple Polygon in Time Propor-
tional to its Size," 3rd A CM Syrup. on Comp.
Geom., 1987, 11-20.

[21] Kruskal, C.P., Rudolph, L., and Snir, M.,
"The Power of Parallel Prefix," 1985 Int.
Conf. on Parallel Processing, 180-185.

[22] Ladner, R.E., and Fischer, M.J., "Paral-
lel Prefix Computation," J. ACM, October
1980, 831--838.

[23] W. Lipski, Jr. and F.P. Preparata, "Finding
the Contour of a Union of Iso-Oriented Rect-
angles," J. Algorithms, 1, 1980, 235-246.

[24] E.M. McCreight, "Priority Search Trees,"
SIAM J. on Comput., No. 14, 1985, 257-276.

[25] O. Nurmi, "A Fast Line-Sweep Algorithm
For Hidden Line Elimination," BIT, Vol. 25,
1985~ 466-472.

[26] F.P. Preparata and M.I. Shamos, Computa-
tional Geometry: An Introduction, Springer-
Verlag, NY, 1985.

[27] J. Reif and S. Sen, "An Efficient Output-
Sensitive Hidden-Surface Removal Algorithm
and its Parallelization," 4th A CM Syrup. on
Comp. Geom., 1988, 193-200.

[28] A. Schmitt, "Time and Space Bounds for
Hidden Line and Hidden Surface Algo-
rithms," EUROGRAPHICS "81, 43-56.

[29] D. Wood, "The Contour Problem for Rec-
tilinear Polygons," Info. Proc. Let., Vo]. 19,
1984, 229-236.

[30] J.C. Wyllie, "The Complexity of Parallel
Computation," Ph.D. thesis, TR 79-387,
Dept. of Comp. Sci., Cornell Univ., 1979.

136

