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Summary 

We give an efficient parallel algorithm for con- 
structing the arrangement of n line segments in 
the plane, i.e., the planar graph 'determined by 
the segment endpoints and intersections. Our 
algorithm is efficient relative to three efficiency 
measures it is an NC algorithm, it has a small 
time-processor product, and it is output-size sensi- 
tive. In particular, it runs in O(log 2 n) time using 
O(n + k/log n) processors in the CREW PRAM 
model, where k is the size of the output (which 
is ~2(n 2) in the worst case). The algorithm does 
not receive the value of k as input, it determines 
it on-line. 

1 Introduction 

One of the major thrusts of computational geom- 
etry research has been to show that  one can solve 
many geometric problems with a running time 
that  is proportional to the input size plus the out- 
put size (times logarithmic factors in some cases); 
see, for example [4,8,9,17,19,20,23,29]. This is 
significant, because most of these problems have 
trivial ~2(n 2) lower bounds, which are based on 
constructing examples that  have a large output 
size. Thus, these output-sensitive algorithms usu- 
ally perform much better than the worst-case time 

on most inputs. 
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One of the most studied of these problems is 
the problem of constructing the planar graph de- 
termined by the pair-wise intersections of a set 
of line segments in the plane, i.e., the segment 
arrangement problem [4,8,9]. This problem has 
several applications in computer graphics (e.g., 
[18,25,28]). One of the oldest algorithms solving 
this problem is an elegant method by Bentley and 
Ottmann [4] published in 1979 that uses the now- 
famous "plane-sweeping" paradigm [13,26]. The 
running time of their algorithm is sensitive to the 
size of the output, as it runs in O((n + k) log n) 
time for the general case, and in O(n log n+k) time 
if the input segments are iso-oriented (i.e., paral- 
lel to the coordinate axes), where k is the size of 
the output. Since k is ~(n  2) in the worst-case, it 
was not clear whether or not their general-case al- 
gorithm was optimal, however. Since then, there 
has been a considerable amount of research done 
to resolve this question (e.g., [9,10,16]). In fact, it 
wasn't until very recently that  it was shown, by 
Chazelle and Edelsbrunner, that one can in fact 
solve this problem in e ( n l o g n  + k) time [9]. 

In this paper we investigate how efficiently one 
can solve this problem in parallel. Our general 
goal is to design a parallel algorithm that simulta- 
neously runs as fast as possible and has a time- 
processor product that  is as small as possible. 
Thus, for the segment arrangement problem, we 
desire an algorithm that is output-sensitive. 

There is no previous parallel algorithm for this 
problem other than the trivial brute-force method 
that  is based on sorting [12] and runs in O(logn) 
time using O (n 2) processors. There has been some 
related work done, however. In [2] Atallah, Cole, 
and Goodrich show to solve the decision problem, 
i.e., determining if any two segments intersect, in 
O(logn) time using O(n) processors. It doesn't 
seem possible to extend their algorithm to the con- 
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struction problem, however. In [11] Chow studies 
a restricted version of the problem, namely, she 
shows how to determine all the pair-wise intersec- 
tions of n iso-oriented segments. Her algorithm 
runs in O((1/e)logn + kmax) t ime using O(n l+~) 
processors [11], where e > 0 is a small cons tan t  
and kmax is the maximum, taken over all input 
segments s, of the number of intersections on s. 
Note that  this does not give an NC algorithm, 
since kmax is lf/(n) in the worst case, nor does 
is balance the computat ional  burden for the case 
when only a few segments cause the majority of 
intersections. 

The main result of this paper is the first 
output-sensitive parallel algori thm for solving the 
general segment arrangement problem. Our algo- 
r i thm runs in O(log ~ n) t ime using O(n + k/log n) 
processors in the CREW PRAM model, where k 
is the size of the output.  Note tha t  our algorithm 
matches the time-processor product of the brute- 
force approach when the output  size is large, i.e., 
~(n2). We also give an algorithm for the case 
when the segments are iso-oriented tha t  runs in 
O(logn)  time using an optimal O(n + k/logn) 
number of processors in the CREW PRAM model. 

The main obstacle to designing an output- 
sensitive parallel algori thm for this problem is 
that  paradigms that  led to the efficient sequential 
algori thms--such as plane-sweeping [13,26], topo- 
logical sweeping [9,14], and incremental construc- 
tion [13,26J--seem inherently sequential. More- 
over, parallel techniques--such as the plane-sweep 
tree [1,2], cascading divide-and-conquer [2t, and 
parallel sequence-evaluation [3J--that worked well 
for parallelizing fast sequential algorithms that  use 
plane sweeping cannot be directly applied here, 
because it seems impossible to compute a priori 
all the places where a sweeping line would need 
to stop in a sequential algorithm. Our algorithm 
avoids the plane-sweeping approach all together. 
Instead, it is based on a number of new parallel 
techniques and a hierarchical geometric character- 
ization of the types of intersections that  can oc- 
cur. The new parallel techniques include a "trun- 
cated" version of the zone lemma of [8,9,10,15,16] 
and a method for re-using processors created for 
enumerating intersections of one type to then dis- 
cover intersections of another type. Our algorithm 

achieves its output-sensitivity by computing the 
size of the output  while it is computing the answer, 
and dynamically allocates new processors accord- 
ingly. 

In the next section we discuss some preliminar- 
ies, including a discussion of our computational 
model. In Section 3 we give an overview of our 
algorithm, and we give the details of our method 
in Sections 4 and 5. In Section 6 we outline our 
algorithm for the iso-oriented case. We conclude 
with Section 7. 

2 P r e l i m i n a r i e s  

2 .1  T h e  C o m p u t a t i o n a l  M o d e l  

The computational model we use in this paper is 
the CREW PRAM model. Recall that  processors 
in this model act in a synchronous fashion and 
use a shared memory space where many processors 
may simultaneously read from the same location 
but no two processors may simultaneously write 
to the same location. Given an input of size n, 
the traditional way of utilizing this model is that 
one simply allocates, once and for all, a number 
of processors that  depends on n (e.g., n ~, n log n, 
etc.), Of course, a real parallel machine has a con- 
stant number, p, of processors, not a number that 
is a function of n. Thus, the p real processors must 
always simulate the "virtual" processors in the al- 
gorithm in order to implement it. Since we wish 
to solve a problem in an output-sensitive manner, 
in order to achieve the maximum speed-up possi- 
ble we allow the set of virtual processors to grow 
dynamically. More specifically, we consider a ver- 
sion of the PRAM, as outlined by Reif and Sen 
in [27], where a new processor can be created by 
having some existing processor execute a spawn- 
ing operation. Such an operation is issued by an 
existing processor specifying the task that  a new 
processor is to perform, and in the next time step 
a new processor is created and begins executing 
that  task. This is also similar to a model used by 
Bhatt  and Cai [6], for example. We refer to this 
model as the L-PRAM model, since processors are 
created locally, instead of globally, as in the tradi- 
tional PRAM model. It is beyond the scope of this 
paper to study general model-comparison results, 
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b u t  we do give the following lemma: 

L e m m a  2.1:  If an algorithm can be implemented 
in the L - P R A M  model in t steps using p pro- 
cessors, then it can be implemented in O(t logp) 
steps using 0 (p/ log p) processors in the analogous 
P R A M  model. 

P r o o f  s k e t c h :  Let Pi denote the number of 
processors used in the L-PRAM model in step i. 
The main idea of the proof is to simulate step i 
of the L-PRAM algori thm in O(logpi) t ime us- 
ing [p j logpi]  processors in the PRAM model. 
With each step of the L-PRAM algorithm, one 
first performs all the non-spawning conaputations, 
and then performs a parallel prefix [21,22] to de- 
termine the number,  pi+1 - pl, of new processors 
that  are to be spawned in step i and to which 
tasks they  are to be assigned. This takes at most 
O(logpi) t ime using [pi/logpi] processors. One 
then requests [pi+l/logpi+l] - [pi/logpi] new 
processors on the PRAM machine to help sim- 
ulate the next  step of the L-PRAM algorithm. 
Thus,  the entire algori thm can be implemented 
in O(tlogpt)  t ime using O(pt/ logpt)  processors 
in the P R A M  model. [] 

Having discussed our computat ional  model, let 
us now discuss some preliminaries for the segment 
arrangement  problem. 

2.2 Characterizing Intersections 

In this section we review an observation by 
Chazelle [8] for characterizing intersections in 
terms of a segment tree da ta  s tructure [5]. Let 
S be a set of n line segments in t h e  plane, and 
let T be the complete binary tree whose at most  
2n + 1 leaves, in left to right order, correspond to 
the vertical slabs determined by the endpoints  of 
the segments in S. For each v in T we use Hv to 
denote the union of all the slabs associated with 
the descendents of v (including v itself, if v is a 
leaf). A segment si covers a node v E T if it 
spans Hv but  not I1parent(v ). Clearly, no segment 
covers more than  2 nodes on any level of T; hence, 
each segment  covers at most  O(log n) nodes of T. 
For each node v E T we define the following sets 
(see Figure 1): 

Cover(v) = { s  e S I s covers  v ) ,  

V 

b w  

Figure I: The segment s is in Cover(y), End(x) ,  
End(u),  End(w),  and End(v).  

End(v) = {s C S I s does not span Ho, 

but  has an endpoint in Hv). 

O b s e r v a t i o n  2.2 [8]: Let S be a set of  line seg- 
ments in the plane, and let Sl and sz be two seg- 
ments in S that intersect at a point p. In addi. 
tion, let T be a segment tree for S. Then there is 
a (unique) node v E T such that p E H~ and one 
of the following is true: 

1. Sl, s2 e Cover(v), 

2. sl e End(v) and s2 Cooer(v), 

3. s2 e E, d(v) and sl e Cooer(v). 

We call intersections of type 1 CC-interseetions 
and intersections of types 2 and 3 EC-intersections. 
We present an overview of our algori thm in the 
next section. 

3 A n  O v e r v i e w  

Suppose we are given a set S of n line segments 
in the plane. We define the upper (resp., lower) 
vertical shadow in S of a point  p as the point on 
a segment in S that  is intersected by the maxi- 
mal vertical ray emanating upward (resp., down- 
ward) from p that  does not  intersect any other 
segment in S ,  if s u c h a  point  exists.  The  segment 
arrangement of S is defined to be the planar graph 
determined by the pair-wise intersections in S as 
well as all the vertical shadows of the endpoints of 
segments in S (see Figure 2). For simplicity, we 
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Figure 2: Av example segment  arrangement .  

assume that  a~ most  two segments  meet  at any 
intersection point.  One can easily modify our al- 
gor i thm for the  general case (using an appropriate  
definition of the "multiplicity" of an intersection 
point).  

In what  follows we describe the a lgor i thm so 
as to run in O( logn)  t ime using O(nlogn + k) 
processors in the C R E W  L-PRAM model;  we then 
use Lemma 2.1 to derive the bounds  s ta ted  in the 
introduction.  

S t e p  1. In this step we construct  a segment 
tree T for the segments in S,  including the lists 
End(v) and Cover(v) for each v ~ T. This  can be 
done in O(log n) t ime with O(nlogn) processors 
using an a lgor i thm by Aggarwal et al. [1]. Then,  
for each v in T in parallel, we sort the segments in 
Cover(v), where comparisons are based on the y- 
coordinates of the intersections of the segments 
with the left boundary of IIv. Since the total  
size of all the Cover(v)'s is O(n log n), this sorting 
step can also be performed in O(log n) t ime using 
O(n log n) processors [121. 

S t e p  2. In this s tep we determine all the 
CC-intersections in S. Our  method  is based on 
the simple observation tha t  if two segments in 
Cover(v) intersect, then their relative order would 
be reversed if we were to base comparisons on the 
right boundary  of H~ (instead of the left bound- 
axy). We implement  this step by construct ing a 
da ta  s t ruc ture  tha t  can answer the related dom- 
inance query for a segment  s in O(log n + a~,v) 
t ime, where as,i, is the number  of answers for s in 
Cover(v). We then use these lists to construct  the 
ar rangement  of the segments  in Cover(v) (the so- 

called hammock [8,9]). This  step requires O(Iog n) 
time using O(n log n + a)  processors, where a is 
the total  number  of CO-intersections in S. 

S t e p  3. In this step we compute  all the EC- 
intersections in S. This is the most  involved step 
in our construction.  The main idea is to construct 
two da ta  s t ructures  from the hammock produced 
in Step 2, for each v in T in parallel. We use the 
first da ta  s t ructure  to find all the EC-intersections 
with segments  in Cover(v) for each segment s in 
End(v), so long as there are less than c logn  of 
them (c is a constant  parameter) ,  or, alternatively, 
to determine if there are at least c log n such inter- 
sections. This  requires O( logn)  t ime and 1 pro- 
cessor per segment in End(v), and is based on 
a "truncated" zone theorem. The second data 
s t ructure  allows us to find all the EC-intersections 
with segments in Cover(v) for any segment s in 
End(v) in O(log n) t ime with O( logn  + fl.,,o) pro- 
cessors per 8, where fls,v is the number  of such 
intersections. But we only use this second data  
s t ructure  if the first one did not  discover all the 
intersections for s; so fls,v > clogn for all such 
segments. We conclude the construction by deter- 
mining all the adjacencies between the intersec- 
tion points and endpoints  in the segment arrange- 
ment.  This entire step requires O(log n) time us- 
ing O(n log n + a + fl) processors, where fl is the 
number  of EC-intersections in S. 
E n d  o f  O u t l i n e .  

SoT assuming we can implement  each of the 
above steps in the s tated bounds,  then we can 
enumerate  all the pair-wise intersections in S in 
O( logn)  t ime using O(nlogn + k) processors, 
where k = o~ + fl is the size of the output .  Let 
us now give the details for performing each of the 
above steps. The details for Step 1 should already 
be apparent ,  so we begin our detailed description 
with Step 2. 

4 Comput ing  CC-Intersect lons  

Let us concentrate  on finding all the CC- 
intersections for a specific node v in T. Recall 
that  in Step 1 we constructed all the Cover(v) 
lists in T. For each segment s in Cover(v), let 
yl(s) (resp., y2(s)) denote the y-coordinate of the 
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intersect ion of s wi th  the left (resp., r ight)  bound-  
ary of Hr. The  following observat ion characterizes 
all CC-intersec t lons  in t e rms  of these labels. 

O b s e r v a t i o n  4.1:  Two segments r and s in 
Cover(v) have a CC-intersection intersection in 
IIv if and only i f  one of the following is true: 

1. vl(r) < y (s) but v2(r) > w(s) ,  

2 W(r) > y (s) but y (r) < y2(s). 

For each segment  s in Cover(v), if we define 
a point  p~ = (yl(s) ,  y2(s)), then  we can in terpre t  
Observat ion 4.1 in t e rms  of domifiance relation- 
ships. Namely,  a segment  s' has a CC-in tersec t ion  
wi th  s if and only if Ps' is (i) above and to the left 
o fps ,  or (ii) below and to the  right of pp. Thus ,  let 
us digress a bi t  to discuss how one can efficiently 
solve the  dominance  repor t ing  problem in parallel.  

4 . 1  D o m i n a n c e  R e p o r t i n g  

The  generic p rob lem is the following: we are given 
a set R of n poin ts  in the  plane sor ted  by x- 
coordinates ,  and  wish to cons t ruc t  a d a t a  struc- 
ture  D tha t  allows one to efficiently repor t  all the  
points  in a query range [x, oo) × [y, oo). There  
are a n u m b e r  of ways one can solve this  problem; 
we include one such m e t h o d  here to i l lustrate  how 
one can use the  spawning opera t ion.  

The  d a t a  s t ruc ture  D is simply a b inary  tree 
t ha t  s tores  the  points  of R in its leaves (listed 
f rom left to  r ight) .  Wi th  each internal  node  in D 
we associate  two labels, xmax(v)  and ymax(v),  
where xmax(v)  (resp.,  ymax(v))  is the  descen- 
dent  of v t h a t  has m a x i m u m  z-coordina te  (resp., 
y-coordinate) .  This  cons t ruc t ion  can easily be 
done in O ( l o g n )  t ime  wi th  O(n/ logn)  proces- 
sors [ 12,30], by a s imple appl ica t ion of Brent ' s  the- 
o rem [7]. 

One uses D to answer a dominance  query 
Q = [x, c~) × [y, oc) as follows. We begin by as- 
signing a processor  p to search D, s ta r t ing  at  the 
root ,  to locate  the posi t ion of x among  the leaves 
of D. E a c h  t ime p visits a left child z, p tests  if 
the subtree  Do rooted at z 's sibling v contains  any 
answers or not  (by tes t ing if ymax(v) _> Y). If Do 
contains  some answers, t hen  p spawns a processor 

p' to enumera te  all the answers in Dr.  The  proces- 
sor p continues in this fashion until  it reaches the 
leaf-level of D. The  a lgor i thm for p, is as follows. 
Let v be the node  pt is current ly  at in the search, 
and let u and w be v's left and right child, respec- 
tively. If there are answers in both  Du and Dw, 
then  p' spawns a new processor p" to search Du 
(using the same method)  and continues its search 
in D~. Otherwise,  pP simply continues it search in 
the  subtree t h a t  contains an answer. The  spawned 
processors cont inue in this way unti l  they reach 
the  leaf-level in D. They complete  the compu- 
ta t ion  for Q by collecting all their  answers into a 
single array. If the spawned processors have main- 
ta ined themselves in a doubly-l inked list (which is 
easy to do), then  this can be done by a simple 
l ist-ranking compu ta t i on  [30]. Thus ,  we have the 
following lemma.  

L e m m a  4.2: Given a set R of n points in the 
plane sor ted by x-coordinates, one can construct 
a dominance.reporting d a t a  structure that can 
be used to answer dominance queries in O(log n) 
time using 0 ( 1  + l) processors in the C R E W  L- 
P R A M  model, where I is the number of  answers. 
This construction requires O(logrt)  time using 
O(n/ log  n) processors. • 

We note in passing t h a t  we could have saved 
a log n factor in the number  of spawned proces- 
sors had we used a more powerful da ta  s t ruc ture  
(e.g., a priori ty search tree [24]), bu t  the me thod  
out l ined above will be sufficient for our purposes.  
Let us re turn,  then,  to the problem at hand.  

4.2 Construct ing  the Hammock 

From the  Cover(v) list we have the  ps's listed in 
sor ted order by their first coordinates.  Thus,  we 
can cons t ruc t  the dominance  query da ta  struc- 
ture  in O( logn )  t ime using O(nv/ logn)  proces- 
sors, by L e m m a  4.2, where no = ICover(v)[. The 
l emma  also implies tha t  the  queries for a spe- 
cific p~ can be answered in O(log n) t ime using 
O(1 + as,v) processors,  where  c~s,v is the  number  
of CC-intersect ions s has with other  segments  in 
Cover(v). This  of course implies tha t ,  given the 
segment  tree cons t ruc ted  in Step 1, we can find 
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all the CC-intersections in S (for all v in T in par- 
allel) in O(log n) time using O(n + a)  processors, 
where a is the sum of all the as,,,'s (also recall that  

E v e r  nv is O(n log  n)). 
To complete Step 2 we have only to construct 

the adjacency information for the hammock. That  
is, for each intersection point p of segments r and 
s we must determine the other intersection points 
on r and s to which p is adjacent. We do this 
by sorting, for each s in parallel, the intersections 
along s by x-coordinates. Then for each intersec- 
tion point p of a segment s with a segment r we 
locate the position of p in the list for r by a binary 
search. From this we then construct a represen- 
tation of the planar graph induced by the adja- 
cencies of the CC-intersection for Cover(v). We 
finish the construction by augmenting the graph, 
as Chazelle does [8], by adding pointers for each 
edge e that  point to the leftmost and rightmost 
vertex, respectively, of each face in the hammock 
to which e belongs. Since the bottleneck in this 
computat ion is the sorting of O(nlog  n + a) ele- 
ments, it takes O(log n) t ime using O(n log n + a)  
processors [12]. 

Thus, we have shown how to efficiently find all 
the CC-intersections in S. In the next address the 
problem of finding the EC-intersections in S. 

5 C o m p u t i n g  E l - I n t e r s e c t i o n s  

To complete the algorithm we must find all the 
EC-intersections for each v in T in parallel. As 
mentioned earlier, this is the most involved step 
in the construction. It consists of two phases: 
one that  finds the intersections along segments 
that have few EC-intersections, and the other that  
finds the intersections along segments that  have 
many EC-intersections. 

5.1 Segments with few intersections 

Let us concentrate on the computations for a par- 
ticular v in T. We begin by constructing a pla- 
nar point location data  structure for the hammock 
for each v using the methods of Atallah, Cole, 
and Goodrich [2], which takes O(logn) time using 
O(ICover(v)] + a~,) processors per v, where a ,  is 
the number of CC-intersection determined by the 

b 

Figure 3: An example walk in the hammock. 

segments in Cover(v). This requires O(n log n + a )  
processors total,  and allows point locations to be 
performed in the hammock in O(log n) time using 
a single processor. 

Suppose we are given a query segment s in 
End(v). We begin by locating the two faces fa and 
fb that  contain s's two endpoints a and b, respec- 
tively (with a being to the left of b). Our method 
is to then mimic the method of Chazelle [8] for 
walking through the hammock from f~ to fb, ex- 
cept that  we cut the walk short as soon as it tra- 
verses at least 4c log n edges (where c is a constant 
parameter).  We will show that  if the walk is ter- 
minated early because of this restriction, then 
must have at least c log n intersections with seg- 
ments in Cover(v). 

So let us review the method of Chazelle [8]. 
If fa = fb, then we are done, so let us assume 
fa # fb. One begins by jumping to the rightmost 
vertex vl in f l  = f~ and then traversing the edges 
of fl until finding the edge el of f l  that  intersects 
s. If vl is above the line supporting s, then this 
traversal is to be clockwise, and is to be counter- 
clockwise, otherwise. Upon reaching el, one uses 
the adjacency information for el to "hop" over el 
into the next face, f2, adjacent to s, and then jump 
to the rightmost vertex v2 in f2. (See Figure 3.) 
One continues in this way, going from face to face 
along s, provided that  for each edge e traversed, 
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the line support ing e intersects s. If one is about 
to traverse an edge whose support ing line does not 
intersect s, then one suspends the traversal from 
fa at this point,  and begins a symmetric  traversal 
from fb (using the rule tha t  if vi is above the line 
support ing s, then the traversal must  be counter- 
clockwise, and must  be clockwise, otherwise). One 
continues this traversal until  all the intersections 
along s have been discovered or, as in our case, one 
traverses at least 4c log n edges. Chazelle [8] shows 
if one uses this strategy, then one will eventually 
discover all the intersections along s and the total 
t ime spent  will be proport ional  to the number of 
intersections. We need a stronger property than 
this, however: 

L e m r n a  5.1: Suppose one has traversed at least 
46 edges in performing the walk for a segment s. 
Then there are at least 6 intersections along s in 
the hammock. 

P r o o f  sketch: Since this is a slightly stronger 
version of a lemma proved by Chazelle [8], we 
use the proof technique of Chazelle, Guibas, and 
Lee [10] to prove it. Namely, we use an accounting 
scheme, where for each edge traversed, we charge 
one of the intersections along s for the cost of this 
traversal. Let f be a face traversed, and let si be 
the subsegment  of s contained in f .  The traversed 
edges of f can be divided into three groups: left- 
hanging edges, which intersect s left of si, right- 
hanging edges, which intersect s right of si, and 
anchored edges, which are adjacent to si. These 
groups suffice, because the  line support ing each 
traversed edge intersects s. Note that  for any face 
f all the edges we traverse in f will be either left- 
hanging or right-hanging, but  not  both.  The ac- 
counting scheme is that  each left-hanging edge e 
charges the intersection of s with the line support- 
ing e's successor in a clockwise traversal around f ,  
and each right-hanging edge e charges the intersec- 
tion of s with  the line support ing e's successor in 
a counter-clockwise traversal around f .  Each an- 
chored edge e simply charges its intersection with 
s. It is easy to see that  each intersection point 
can be charged by at most  one left-hanging edge, 
one right-hanging edge, and at most twice by its 
anchored edge. Thus,  each intersection point can 
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be charged at most 4 times. Therefore, if we have 
traversed at least 45 edges, then we must  have 
charged at least 6 intersection points. [] 

Thus, by this "truncated" zone lemma, if 
in traversing the hammock for a segment s we 
stopped by reaching the other endpoint of s, then 
we have discovered all the EC-intersections for s; 
and if we terminated the traversal early, then there 
are at least c log n intersections of s with segments 
in Cover(v). Note, however, that  these c log n in- 
tersection points need not be adjacent in the list 
of intersections along s. 

Let E,  be the list of all segments in End(v) 
that  have at least c log n EC-intersections, and let 
Sv denote the set of segment "pieces" in the ham- 
mock for v, i.e., the segments resulting from cut- 
ting each s in Cover(v) at its CC-intersections. 
We have yet to find all the EC-intersections for 
the segments in Ev. 

5.2 S e g m e n t s  w i t h  m a n y  i n t e r s e c t i o n s  

We begin by building a segment tree Tv for the 
segments in S~. To avoid confusion, let us denote 
the sets and slabs for each node w in Tv using 
lower-case letters. Thus, for each w in Tv we de- 
fine lists cover(w) and end(w) in terms of the slab 
Ir~ associated with w. (See Figure 4.) For each 
w in T~ we have cover(w) stored in sorted order 
by the segment intersections with the left vertical 
boundary of rio. Let us also define a list left(w), 
which consists of all segments in end(w) that  in- 
tersection the left boundary of r,o, and let us also 
store the left(w) lists sorted by the segment in- 
tersections with the left vertical boundary. Since 
the subsegments in S~ do not  intersect, except at 
their endpoints,  we can use the method of Atal- 
lah, Cole, and Goodrich [2] to build Tu. Note: 
the tree in the Atallah, Cole, Goodrich construc- 
tion is built on every log n- th  x-coordinate; so that  
the end(w) list stored in a leaf has O(log n) size 
rather than O(1) size. This does not affect the 
running t ime of queries, however, as we will see 
later. Their me thod  runs  in O(log m) time using 
O(rn) processors, where m is the number of seg- 
ments. In our case rn = ICover(v)l +av. Thus, we 
use the processors created in Step 2 (to enumerate 
CC-intersections) to now allow us to construct  T, 
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Figure 4: An example  ~rw. The segments  in 
end(w) are shown do t t ed  and the segments  in 
cover(v) are shown solid. 

for each v in T in parallel in O( logn )  time. This 
requires a tota l  of  O(n log n + a )  processors. 

For each w in T,  we let inter(w) denote  the 
set of  segments  in Cover(v) t ha t  have an inter- 
section point  in ~w. Recall tha t  the subsegments  
in S~, are all pieces of segments  in Cover(v) tha t  
span IIv. Thus,  even though  each subsegment  
in left(w) does not  span ~%,, it is a piece of a 
segment  t h a t  does span r~ .  Thus,  left(w) con- 
tains a representa t ive  piece of each segment  in 
inter(w). With  each segment  s in inter(w) we 
associate a pair (yl(s),y~(s)), where yl(s) (resp., 
y2(s)) is the  y-coordina te  of the  intersect ion of 
the left (resp., r ight)  vertical  boundary  of r ~  
with s. Thus,  by applying the techniques of Sec- 
tion 4.1, we can build a dominance  repor t ing d a t a  
s t ruc ture  D(w) for the segments  in inter(w) in 
O(log n) t ime  using O(ileft(w)l / log n) processors 
(recall tha t  lef t(w)is given in sor ted order) .  Since 
each (C- in t e r sec t i on  can be contained in at most  
O( logn)  different a~ 's ,  the  total  size of all the 
left(w)'s in T,  is O((ICover(v)[+o~, ,) log n). Thus,  
the tota l  number  of processors needed to cons t ruct  
all the D(w)'s in T, is O(tCover(v)l + o~). There- 
fore, the tota l  number  of processors needed to do 
this for all T . ' s  is O(nlogn + a). 

We use the  cover(w)'s and D(w) ' s  to allow us 
to find the EC-intersect ions  for each segment  s in 
E, .  In par t icular ,  we assign O(log n) processors to 
s to per form O(log n) queries, one for each node 
w in T.  such tha t  s ei ther  covers w or has an end- 
point  in ~rw. Note tha t  all the segments  in Ev have 

at least c log n EC-intersect ions with segments in 
Cover(v). So the ex t ra  processors we are now al- 
locating to s can be accounted for by "charging" 
the EC-intersect ions on s. There  are three types 
of queries we perform: 

Query 1. If s has an endpoint  in ~rw or s covers 
w, then we locate the two endpoints  of  the segment 
s A ~w (i.e., s "clipped" to ~rw) in cover(w), by 
two binary searches. All the segments  in cover(w) 
between these two positions in the list must  in- 
tersect s. The processor associated with this w 
then spawns enough o ther  processors (in a dou- 
bling fashion) to enumera t e  these segments.  

Query 2. I f s  covers w, and w is not  a leaf, 
then we per form a dominance  query for s using 
the da t a  s t ruc tu re  D(w), since s necessarily spans 
the slab ~ .  This query is exact ly as t ha t  used in 
Section 4. 

Query 3. If s covers w or s has an endpoint  in 
~ ,  and w is a leaf, then we simply search through 
all the segments  s I with a piece ~ in end(w) to see 

if any of the  s ~ segments  intersect  s ( there  can be 
at most  O(log n) such segments  [2]). 

The next  l emma shows tha t  when the  process- 
ing of these types of quer ies  is complete  we have 
enumera ted  all the EC-intersect ions for s with seg- 
ments  in Cover(v). 

L e m m a  5.2:  For any segment s in E~ all the EC- 
intersections of s with segments in Cover(v) will 
be discovered by the above queries. 

P r o o f :  Suppose p is an EC-intersect ion point of 
s and a segment  s t in Cover(v) tha t  will be missed 
by the above queries. The set of nodes w such that  
p is conta ined in ~rv~ forms a leaf- to-root  path  or in 
Tv. Suppose there is a node u on a tha t  s covers. 
There  are two cases. 
Case 1: s ~ does not  have a CC-intersect ion in 7r,. 
In this case there must  be a piece ~ of s e in 5~ 
such tha t  g spans ~ru. This, of course, implies that  

covers some node on the pa th  f rom u to the root 
of T~. But we will per form a type 1 query for s at 
each of these nodes. (~+--)  
Case 2: J has a (C- in t e r sec t ion  in ru.  In this 
case there mus t  be a piece g of s ~ in S,  such that  

is in end(u). If u is not  a leaf, then J is in 
inter(u); hence, s' will be included in D(u). But 
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we will perform a type 2 query for s at such a u. 
So u must  be a leaf. But  we will perform a type 
3 query for s at such a u. ( - - ~ )  
Thus, there is no node on ~ that  s covers. Tha t  
is, s does not span Ir~ for any node w on a; hence, 
s has an endpoint  in 7rz, where z is the leaf such 
that  p E Irz. But  we will perform a type 3 query 
at z. ( - ~ )  Therefore, we will discover p. [] 

We complete our algori thm by constructing 
the segment arrangement ,  not  counting the verti- 
cal shadows, from the intersection points and end- 
points, using using essentially the same method  we 
used to construct  the hammocks.  We then aug- 
ment  this s t ructure  with the vertical shadows by 
applying the trapezoidal decomposit ion of Atal- 
lah, Cole, and Goodrich [2] and the sorting algo- 
r i thm of Cole [12]. This takes O(log n) t ime using 
O(n + k) processors, where k = a + ft. We sum- 
marize: 

T h e o r e m  5.3:  Given a set S of n line segments 
in the plane, one can construct the segment ar- 
rangement for S in O(log n) time using O(n log n +  
k) processors in the CREW L-PRAM model, 
where k is the size of  the output. [] 

C o r o l l a r y  5.4:  The segment arrangement  for S 
can be constructed in O(log 2 n) time using O(n + 
k~ log n) processors in the CREW PRAM model. 

6 Iso-Oriented Segments  

of v. This da ta  structure can be constructed in 
O(logn)  time using O(n) processors [3]. We con- 
struct  thi~ data  s tructure to represent a horizon- 
tal plane-sweep (e.g., [4]) and use it to perform a 
range query for every position i that  corresponds 
to a vertical segment. This takes O(logn) time 
using a total of O(n + k~ log n) processors in the 
CREW PRAM model. It also gives us all the ver- 
tical adjacencies in the segment arrangement. A 
similar method gives us the horizontal adjaceneies. 

T h e o r e m  6.1: Given a set S of n iso-oriented 
segments in the plane, one can construct the seg- 
ment  arrangement for S in O(logn)  time using 
O(n + k~ log n) processors in the CREW PRAM 
model, where k is the size of  the output, m 

7 Open P r o b l e m  

We have shown how construct  the segment ar- 
rangement of a set of line segments in the plane 
in parallel so that  total work performed is only 
a logn  factor from the sequential lower bound 
(which is achievable [9]). If all the segments are 
extended to infinite lines, then our algorithm be- 
comes equivalent to the brute-force method that  
runs in O(log n) time using O(n 2) processors. Can 
the arrangement  in this case be constructed in 
O(log n) t ime using only O(n~/log n) processors 
(which would match the sequential running time 
for this problem [10,14,16])? 

In this section we outline how to construct  the 
segment arrangement  when all the segments are 
parallel to the  x- and y-axes. We give the details 
in the full version of this paper. Our method runs 
in O(logn)  t ime using O(n + k/ logn) processors 
in the CREW PRAM model, which is optimal.  
Our method  uses the array-of-trees parallel da ta  
s tructure of Atallah, Goodrich, and Kosaraju [3]. 
Given a sequence a of i n s e r t ( p )  and de le te (p)  
operations tha t  operate on an initially empty  set, 
the array-of-trees allows one to perform queries in 
the past  (Le., for s o m e  posit ion i in a) as if one 
had all the elements present in the set at "time" i 
stored in a complete binary tree, where each inter- 
nal node stores O(1) labels that  are the values of 
associative operations applied to the descendents 

A c k n o w l e d g e m e n t s  

We thank Mikhail J. Atallah and S. Rao Kosaraju 
for helpful discussions, and Gregory Bachelis for 
pointing out an omission in an earlier version of 
the proof of Lemma 5.2. 

References  

[1] A. Aggarwal, B. Chazelle, L. Guibas, 
C. O'Ddnlaing, and C. Yap, "Parallel Com- 
putat ional  Geometry," Algorithrnica, 3 ( 3 ) ,  
1988, 293-328. 

[2] M.J. Atallah, R. Cole, and M.T. Goodrich, 
"Cascading Divide-and-Conquer: A Tech- 
nique for Designing Parallel Algorithms," 
28th FOCS, 1987, 151-160. 

135 



[3] M.J. Atallah, M.T. Goodrich, and 
S.R. Kosaraju, "Parallel Algorithms for Eval- 
uating Sequences of Set-Manipulation Oper- 
ations," Aegean Workshop on Comp., 1988, 
1-10. 

[4] J.L. Bentley and T. Ottmann, "Algorithms 
for Reporting and Counting Geometric Inter- 
sections," IEEE Trans. on Computers, C-28, 
1979, 643-647. 

[5] J.L. Bentley and D. Wood, "An Optimal 
Worst Case Algorithm for Reporting Inter- 
sections of Rectangles," IEEE Trans. on 

...... Computers, C-29(7), 1980, 571-576. 
[6] S. Bhatt and J.Y. Cai, "Take a Walk, Grow 

a Tree," 29th FOCS, 1988, 469-478. 
[7] R.P. Breng, "The Parallel Evalutation of 

General Arithmetic Expressions," J. A CM, 
Vol. 21, No. 2, 1974, pp. 201-206. 

[8] B. Chazelle, "Intersecting is Easier Than 
Sorting," 16th ACM Syrup. on Theory of 
Comp. (STOC), 1984, pp. 125-134. 

[9] B. Chazelle and H. Edelsbrunner, "An Op- 
timal Algorithm for Intersecting Line Seg- 
ments in the Plane," 29th FOCS, 1988, 590- 
600. 
B. Chazelle, L.J. Guibas, and D.T. Lee, "The 
Power of Geometric Duality," 24th FOCS, 
1983, 217-225. 
A. Chow, "Parallel Algorithms for Geometric 
Problems," Ph.D. thesis, Comp. Sci. Dept., 
Univ. of Illinois, 1980. 
R. Cole, "Parallel Merge Sort," SIAM J. 
Comput., 17(4), 1988, 770-785. 
H. Edelsbrunner, Algorithms in Combinato- 
rial Geometry, Springer-Verlag, NY, 1987. 
H. Edesbrunner and L.J. Guibas, "Topo- 
logically Sweeping anArrangement ,"  18th 
STOC, 1986, 389-403. 
H. Edelsbrunner, L.J. Guibas, d. Pach, 
R. Pollack, R. Seidel, and M. Sharir, 
"Arrangements of Curves in the Plane - 
Topology, Combinatorics, and Algorithms," 
UIUCDCS-R-88-1477, Dept. of Comp. Sci., 
Univ. of Illinois, 1988. 
H. Edelsbrunner, J. O'Rourke, and R. Seidel, 
"Constructing Arrangements of Lines and 
Hyperplanes with Applications," 24th FOCS, 
1983, 83-91. 
S.K. Ghosh and D.M. Mount, "An Output 
Sensitive Algorithm for Computing Visibility 
Graphs," 28th FOCS, 1987, 11-19. 

[10] 

[11] 

[12] 

[13] 

[14] 

[15] 

[16] 

[17] 

[18] M.T. Goodrich, "A Polygonal Approach 
to Hidden-Line Elimination," 25th Ailerton 
Conf., 1987, 849-858. 

[19] R.H. G/iting, "An Optimal Contour Algo- 
rithm for Iso-Oriented Rectangles," J. Alto. 
rithms, 5, 1984, 303--326. 

[20J J. Hershberger, "Finding the Visibility 
Graph of a Simple Polygon in Time Propor- 
tional to its Size," 3rd A CM Syrup. on Comp. 
Geom., 1987, 11-20. 

[21] Kruskal, C.P., Rudolph, L., and Snir, M., 
"The Power of Parallel Prefix," 1985 Int. 
Conf. on Parallel Processing, 180-185. 

[22] Ladner, R.E., and Fischer, M.J., "Paral- 
lel Prefix Computation," J. ACM, October 
1980, 831--838. 

[23] W. Lipski, Jr. and F.P. Preparata, "Finding 
the Contour of a Union of Iso-Oriented Rect- 
angles," J. Algorithms, 1, 1980, 235-246. 

[24] E.M. McCreight, "Priority Search Trees," 
SIAM J. on Comput., No. 14, 1985, 257-276. 

[25] O. Nurmi, "A Fast Line-Sweep Algorithm 
For Hidden Line Elimination," BIT, Vol. 25, 
1985~ 466-472. 

[26] F.P. Preparata and M.I. Shamos, Computa- 
tional Geometry: An Introduction, Springer- 
Verlag, NY, 1985. 

[27] J. Reif and S. Sen, "An Efficient Output- 
Sensitive Hidden-Surface Removal Algorithm 
and its Parallelization," 4th A CM Syrup. on 
Comp. Geom., 1988, 193-200. 

[28] A. Schmitt, "Time and Space Bounds for 
Hidden Line and Hidden Surface Algo- 
rithms," EUROGRAPHICS "81, 43-56. 

[29] D. Wood, "The Contour Problem for Rec- 
tilinear Polygons," Info. Proc. Let., Vo]. 19, 
1984, 229-236. 

[30] J.C. Wyllie, "The Complexity of Parallel 
Computation," Ph.D. thesis, TR 79-387, 
Dept. of Comp. Sci., Cornell Univ., 1979. 

136 


