
Deterministic Parallel Computational Geometry

Mikhail J. Atallah and Michael T. Goodrich

1 Introduction

Computational Geometry is concerned with the design and analysis of algorithms

for solving geometric problems. These problems generally deal with collections of

simple geometric objects, such as lines, points, planes, circles, etc., about which we

are asked to answer some basic questions. Many of the problems in computational

geometry come from applications in pattern recognition, computer graphics, statistics,

operations research, computer-aided design, robotics, etc. The problems that arise

from these areas are likely to come from real-time applications or situations in which

the input consists of a large number of geometric objects. This implies that these

problems need to be solved as fast as possible. For many of these problems, however,

we already are at the limits of what can be achieved through sequential computation.

Thus, it is natural to study what kinds of speed-ups can be achieved through parallel

computing. As an indication of the importance of this research direction, we note

that four of the eleven problems used as benchmark problems to evaluate parallel

architectures for the DARPA Architecture Workshop Benchmark Study of 1986 were

computational geometry problems.

Unfortunately, many of the techniques used to find efficient sequential algorithms

for computational geometry problems do not translate well into a parallel setting.

While providing elegant paradigms for designing sequential algorithms, these tech-

niques use methods that seem to be inherently sequential. Therefore, one needs to

develop new paradigms for computational geometry, ones better suited for finding

efficient parallel algorithms. This chapter gives a number of algorithms for solving

computational geometry problems efficiently in parallel. The algorithms all have lin-

ear or “almost” linear speed-ups over the best known sequential algorithms for these
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problems.

The geometric problems that we address in this chapter all deal with planar ob-

jects. The only exception is in Section 5, where we consider a problem dealing with

3-dimensional points. In each section in this chapter we address an important com-

putational geometry problem and show how one can solve this problem efficiently in

parallel. In some cases the parallel efficiency comes primarily from new geometric in-

sights, and in other cases it comes primarily from new algorithmic techniques, which

is an interesting aspect of parallel computational geometry. The specific problems we

address include computing convex hulls, constructing the intersection of half planes,

computing the visible region from a point in the presence of opaque obstacles, find-

ing the separation distance between two polygons, and computing three-dimensional

maxima points. Each of these problems are considered fundamental in computational

geometry; we have tried to motivate their significance where appropriate.

2 Convex Hull

This section deals with the problem of computing the convex hull of a set S of points

in the plane. We begin with a few definitions. A polygonal chain is a sequence

(p1, s1, p2, s2, . . . pn, sn, pn+1), where each si is a line segment with endpoints pi and

pi+1. This notational convention implies that si and si+1 share a common endpoint,

pi+1, since each si can alternately be denoted pipi+1. The si’s are called the edges of

the polygonal chain, and the pi’s are called its vertices. A polygonal chain is simple

if for every segment si in it, the only other segments that intersect si are si−1 and

si+1, and their respective intersections with si are pi and pi+1 (see Figure 1a). Note,

to simplify our discussions we sometimes use the the term n-gon as a shorthand for

“simple polygon with n edges.” Unless otherwise stated, every polygonal chain we

consider in this chapter is simple. A polygonal chain is the boundary of a simple

polygon if p1 = pn+1, in which case its sequence of vertices and edges can be viewed as

being circular, in the sense that one can write the sequence beginning at any vertex.

In this case the polygonal chain partitions the plane into two regions—one finite

region, the other infinite (this is due to a topological fact known as the Jordan Curve

Theorem). By convention, the finite region is called the interior of the polygon, the
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Figure 1: Examples of (a) a simple polygonal chain and (b) a polygon.

polygonal chain is called the boundary of the polygon, and the infinite region is called

the exterior of the polygon (see Figure 1b).

Let P = (p1, s1, p2, . . . , pn, sn, pn+1) be a polygon. A polygon P ′ =

(pi1 , s
′
i1
, pi2 , . . . , pik , s

′
ik
, pik+1

) is a subpolygon of P if 1 ≤ i1 < i2 < · · · < ik+1 ≤ n+1,

and each s′ij is the edge from pij to pij+1
. This definition is analogous to the notion

of a subsequence of a sequence of numbers.

A planar region R is convex if, given any two points p and q in R, the line segment

pq is also (entirely) in R. If R is a simple polygon, then this is equivalent to requiring

that the intersection ofR with any line is either empty or a line segment. The following

lemma establishes an interesting property of subpolygons of convex polygons.

Lemma 2.1 Any subpolygon of a convex polygon is itself a convex polygon.

Proof: See Exercise 5.

As we show in this section, this simple geometric observation has important con-

sequences for the design of an efficient parallel algorithm for constructing the convex

hull of a set S of n points in the plane. Given such a set of points, the convex hull of

S is the smallest convex polygon that contains no points of S in its exterior, i.e., each

point of S is either in its interior or on its boundary. The convex hull problem is to

produce a polygonal representation of the convex hull of S, with the vertices listed in

clockwise order (so the interior of the convex hull is always to the right of each convex

hull edge). Intuitively, we can imagine the plane to be a large wooden board with a

nail sticking up from the position of each point in S. If we were to stretch a rubber

band so that it surrounds all the nails, and let the rubber band shrink to a resting

state, then it would assume the contour of the boundary of the convex hull of S, with
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Figure 2: Illustrating the upper and lower hulls.

a nail at each vertex. Convex hulls have applications in a host of problem domains,

including computer vision, computer graphics, and statistics. They are often useful

any time one wishes to capture the “shape” of a set of points.

The problem of constructing the convex hull of a set S of n points in the plane is

known to have an O(n logn) time sequential solution (see Exercise 1), together with

an Ω(n log n) lower bound in the comparison model (see Exercise 2). In this section

we give an n-processor CREW PRAM algorithm that runs in O(logn) time.

Let S = {p1, p2, . . . , pn}. The convex hull of S consists of two portions: the upper

hull and the lower hull. The upper (resp., lower) hull consists of the edges of the hull

such that the interior of the hull polygon is below (resp., above) them. See Figure 2.

We shall focus on the problem of computing the upper hull UH(S). The problem of

computing the lower hull LH(S) is symmetrical and therefore omitted. We assume

that the recursive procedure returns an array UH(S) containing the points of the

upper hull in left to right order. It also returns the size of the upper hull (i.e.,

|UH(S)|).
To simplify the exposition, we assume that n is a power of 2, that no two points

in S have same x (respectively, y) coordinate, and that no three points in S lie on the

same line. We also assume that the points have already been sorted by x coordinate,

so that x(pi) < x(pi+1) for all i ∈ {1, 2, . . . , n − 1}. This can be accomplished

in O(logn) time using n processors in the CREW PRAM model by the parallel

mergesort procedure.

The main idea is to recursively solve the problem for the two point sets S1 =

{p1, p2, . . . , p(n/2)−1} and S2 = {p(n/2), p(n/2)+1, . . . , pn}. As we will show, when

these two recursive calls return UH(S1) and (respectively) UH(S2), we can com-
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Figure 3: Illustrating the definition of u and v.

bine their answers and obtain UH(S) in constant time and using a linear number

of processors on a CREW PRAM. Thus, the time and processor recurrences will be

T (n) = T (n/2) + c1 and P (n) = max{n, 2P (n/2)}, respectively with boundary con-

ditions T (1) = c2 and P (1) = 1. Their solutions are T (n) = O(logn) and P (n) = n,

respectively. We now show that the “combine” stage can indeed be done in constant

time with a linear number of processors.

Consider the line T that is above and tangent to both UH(S1) and UH(S2). Let

u (resp., v) be the point at which this tangent touches UH(S1) (resp., UH(S2)). See

Figure 3. The line segment uv is called the upper common tangent to UH(S1) and

UH(S2). Observe that UH(S) consists of the portion of UH(S1) to the left of u,

followed by u, the edge uv, v, and the portion of UH(S2) to the right of v. This

observation implies that, if we somehow knew the points u and v, then we could

obtain UH(S) in constant time with O(n) processors, as follows. Let α (resp., β) be

the rank of u (resp., v) in the array UH(S1) (resp., UH(S2)). We copy the first α

entries of UH(S1) into the first α positions of UH(S), add the edge uv, and then fill

the remainder of UH(S) with the last |UH(S2)| − β + 1 entries of UH(S2). Thus

the problem of obtaining UH(S) from UH(S1) and US(S2) is essentially that of

identifying these two points u and v.

Let UH(S1) = (p1, s1, p2, . . . , pl) and UH(S2) = (q1, t1, q2, . . . , qm), where l ≤
n/2 and m ≤ n/2. The procedure we now give for locating u and v uses l + m

(≤ n) processors. Before we describe this method, however, note that if we had

lm processors available, then it would be trivial to find the desired upper common

tangent in constant time by the following “brute force” algorithm: assign a processor

to each possible pair (pi, qj). This processor tests whether this pair is the one we seek
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Figure 4: Counterexample.

(i.e., whether pi = u and qj = v) by checking, in constant time, whether the segment

piqj is tangent to UH(S1) at pi and to UH(S2) at qj . This test is accomplished just

by looking locally around pi and qj. Our goal, however, is to use only l+m processors.

One may be tempted to give the following constant time, n processor “solution”

(which doesn’t work) :

1. Consider the subpolygon P of UH(S1) obtained by choosing every (k
√
l)-th ver-

tex of UH(S1), 1 ≤ k ≤
√
l. That is, P is the

√
l-gon P = (p√l, s

′√
l
, p2

√
l, . . . , pl).

2. Consider the subpolygon Q of UH(S2) obtained by choosing every (k
√
m)-

th vertex of UH(S2), 1 ≤ k ≤ √
m. That is, Q is the

√
m-gon Q =

(q√m, t
′√
m, q2

√
m, . . . , qm).

3. Use the above-mentioned brute force approach to find the common tangent to

P and Q in constant time. (It requires
√
lm ≤ l +m processors.) Say it is the

line joining pi
√
l ∈ P to qj√m ∈ Q.

4. The vertices of P divide UH(S1) (resp., UH(S2)) into
√
l portions, call them

P1, P2, . . ., P√
l. Similarly, The vertices of Q divide UH(S2) into

√
m portions,

call them Q1, Q2, . . ., Q√
m. Use the brute force algorithm between the 2

√
l

points in Pi ∪ Pi+1 and the 2
√
m points in Qj ∪ Qj+1 (i.e., between the two

portions of P adjacent to pi
√
l and the two portions of Q adjacent to qj√m).
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The reason the above approach fails is that the “locality” property needed for Step

4 need not hold. Namely, we do not necessarily have u ∈ Pi∪Pi+1 and v ∈ Qj ∪Qj+1.

Indeed, the portion of UH(S1) containing u might be quite far from pi
√
l, as might the

portion of UH(S2) containing v be quite far from qj√m. Figure 4 gives an example of

how this might happen. The correct solution to the common tangent problem makes

a more judicious use of the basic idea of the above (erroneous) steps 1–4. It also

makes use of the next two propositions.

Proposition 1 Let p be any point of UH(S1). Then the upper tangent to UH(S2)

passing through p can be computed in time O(k) by an m1/k processor CREW PRAM,

where k is any integer such that 2 ≤ k ≤ logm. Similarly, if p is any point of UH(S2),

then the upper tangent to UH(S1) passing through p can be computed in time O(k)

by an l1/k processor CREW PRAM, where k is any integer such that 2 ≤ k ≤ log l.

Proof. We give the proof for p ∈ UH(S1) (the proof for the p ∈ UH(S2) case is

similar). Let m′ = m1−1/k. Let Q′ be the subpolygon of UH(S2) consisting of every

m′-th vertex of UH(S2), i.e. Q
′ = (qm′ , q2m′ , . . . , qm). Since Q′ has m1/k vertices and

we have m1/k processors, it is easy to find in constant time the upper tangent to Q′

passing through p, say this tangent touches Q′ at qim′ (the tangent is found in constant

time by the same method as for searching for x in an array of n elements using n

CREW PRAM processors). Let qj be the vertex of UH(S2) at which the desired

tangent touches UH(S2). We can easily test whether qj = qim′ in constant time and

one processor, just by looking in the vicinity of qim′ in UH(S2). If the test is positive,

and qj = qim′ , then we are done. So suppose qj 6= qim′ . We then test whether qj is to

the left of qim′ or to the right of qim′ , as follows. Let L be the line through p and qim′ .

Also, let Lleft the portion of L strictly to the left of qim′ , and let Lright be the portion

of L strictly to the right of qim′ (so neither Lleft nor Lright contain qim′). If Lleft is

above segment qim′−1qim′ and Lright is below segment qim′qim′+1 (see Figure 5a), then

qj is to the right of qim′ . Otherwise, if Lleft is below segment qim′−1qim′ and Lright is

above segment qim′qim′+1, then qj is to the right of qim′ (see Figure 5b). Without loss

of generality, assume the test reveals that qj is to the left of qim′ , i.e., j < im′ (the

case im′ < j is symmetrical). Then it is not hard to prove that we have (i−1)m′ ≤ j

(see Exercise 8). Therefore, it suffices to find the upper tangent to the subpolygon
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Figure 5: Illustrating the proof of Proposition 1.

(qim′−m′ , s′im′−m′ , qim′−m′+1, . . . , qim′−1) passing through p. Thus, by doing a constant

amount of work, we have reduced the polygon size by a factor of m1/k. Doing this at

most k times finds the desired point of tangency.

Proposition 2 Given a vertex, p, on UH(S1), one can determine if u is to the left

of p, to the right of p, or at p in O(k) time using m1/k processors, where k is any

integer such that 2 ≤ k ≤ logm. Similarly, Given a vertex, q, on UH(S2), one can

determine if v is to the left of q, to the right of q, or at q in O(k) time using l1/k

processors, where k is any integer such that 2 ≤ k ≤ log l.

Proof. We only consider the case p ∈ UH(S1), since the case q ∈ UH(S2) is similar.

Use the previous proposition to find the tangent to UH(S2) passing through point p;

let T be this tangent. If T is tangent to P then u = p. Otherwise, let γ be the vertex

of P just to the left of p. Observe that u is to the left of p on UH(S1) if and only if

γ is above line T .

We can now give the algorithm TANGENTS for finding the upper common

tangent to UH(S1) and UH(S2) (and hence u and v). Recall that both UH(S1) and

UH(S2) are monotone in the x direction, i.e., the x-coordinate of pi is smaller than

that of pi+1 and the x-coordinate of qi is smaller than that of qi+1.

1. Set P ′ := UH(S1), Q
′ := UH(S2).

Comment. The algorithm will iteratively decrease the size of P ′ and/or Q′,

maintaining the property that the upper common tangent between UH(S1)

and UH(S2) is the same as the one between P ′ and Q′.

2. Repeat the following steps 3–7 until either P ′ is a single point or Q′ is a single

point. Without loss of generality, assume that it is P ′ that ends up becoming
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Figure 6: Illustrating algorithm TANGENTS.

a single point (call it pu); now use Proposition 1 to find, in constant time, the

tangent to Q′ passing through pu, and output the tangent thus found (this is

the desired upper common tangent between UH(S1) and UH(S2)).

3. Let P ′′ = (a1, s
′
1, a2, . . . , a

√
l) be the subpolygon obtained by considering every

√
l-th vertex of P ′, i.e., the

√
l vertices of P ′′ divide P ′ into

√
l equal portions.

Call these portions A1, A2, . . ., A√
l, so that ai is adjacent in P ′ to portions

Ai and Ai+1. By convention, ai belongs to Ai but not to Ai+1. Let Q′′ =

(b1, t
′
1, b2, . . . , b

√
m) be analogously defined for Q′, and let the resulting portions

of Q′ be B1, B2, . . ., B√
m. Use the already mentioned brute force method for

finding the common tangent between P ′′ and Q′′ (this is possible and takes

constant time because we have l+m ≥
√
lm processors). Say the tangent thus

found joins ai ∈ P ′′ to bj ∈ Q′′. (See Figure 6.)

4. Test whether the common tangent to P ′ and Q′ touches P ′ in Ai. (This is done

in constant time by using Proposition 2 twice, once at vertex pi−1 and once

at vertex pi.) If the answer is “yes” then do P ′ := Ai, otherwise P ′ remains

unchanged.

Implementation Note. The assignment P ′ := Ai is done in constant time simply

by remembering the new first and last vertex of P ′.

5. Test whether the common tangent to P ′ and Q′ touches P ′ in Ai+1. If it does

then do P ′ := Ai+1, otherwise P ′ remains unchanged.

6. Test whether the common tangent to P ′ and Q′ touches Q′ in Bj . If it does

then do Q′ := Bj , otherwise Q′ remains unchanged.
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7. Test whether the common tangent to P ′ and Q′ touches Q′ in Bj+1. If it does

then do Q′ := Bj+1, otherwise Q′ remains unchanged.

Since every usage of Proposition 2 takes constant time, the time complexity of

the algorithm is equal to the number of times that steps 3–7 get executed. We now

bound the number of times steps 3–7 are executed.

Lemma 2.2 Let ai, bj, P
′, Q′, P ′′, and Q′′ be as in Step 3 of the algorithm TAN-

GENTS. Also, let puqv be the common tangent to P ′ and Q′ (pu ∈ P ′, qv ∈ Q′).

Then at least one of the following statements (1), (2), (3), or (4) is true:

1. pu ∈ Ai;

2. pu ∈ Ai+1;

3. qv ∈ Bj;

4. qv ∈ Bj+1.

Proof. If pu = ai or qv = bj then the lemma holds, so suppose that pu 6= ai and

qv 6= bj . By its definition, the line through pu and qv is above both ai and bj . Therefore

at least one of pu or qv is above the line through ai and bj . If pu is above the line

through ai and bj , then we prove that (1) or (2) must hold by the following case

analysis:

Case 1: In P ′, pu is to the left of ai. Then we claim that pu ∈ Ai (and hence (1)

holds). Suppose to the contrary that pu /∈ Aw where w < i. By the definition of ai and

bj , the vertex aw ∈ P ′′ must lie on or below the line aibj . The three vertices pu, aw, ai

occur in that order on P ′ (see Figure 7). Consider the positions of these three vertices

relative to the line aibj : The first vertex is (by hypothesis) above that line, the second

is (as we have just argued) on or below it, and the third is (by definition) on it. This

contradicts the convexity of P ′. Thus, (1) holds.

Case 2: In P ′, pu is to the right of ai. An argument similar to that for Case 1 shows

that pu ∈ Ai+1; hence, (2) holds.

If qv is above line aibj , then an argument similar to that above shows that one of (3)

or (4) must hold.
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Figure 7: Illustrating Case 1.

Corollary 2.3 Steps 3–7 of algorithm TANGENTS are executed at most three

times.

Proof. Lemma 2.2 implies that, every time we execute steps 3–7, at least one of the

statements P ′ := Ai, P
′ := Ai+1, Q

′ := Bj , Q
′ := Bj+1 is executed. This implies that

either P ′ decreases in size by a factor of
√
l, or Q′ decreases in size by a factor of

√
m.

This proves the corollary.

We have thus established the following:

Theorem 1 Algorithm TANGENTS correctly computes the upper common tangent

between UH(S1) and UH(S2), in constant time with l +m processors.

Corollary 2.4 The convex hull of a planar set of n points can be computed in

O(logn) time using n processors on a CREW PRAM.

The next section uses the convex hull algorithm to solve the problem of computing

the intersection of n half-planes. That a convex hull algorithm can be used in this

way may seem surprising, since this problem is defined on a set of half-planes and

any convex hull algorithm assumes its given a set of points.

3 Intersections of Half-Planes

Let L = {l1, l2, . . . , ln} be a set of n planar lines. We let H(li) denote the half-

plane that is to the left of li, assuming a given orientation of li. One could, for

example, specify each line li by two points pi and qi that determine it, with the

convention that the orientation of li is from pi to qi. In this section we address the

problem of computing the intersection of the n half-planes, i.e., in computing the

region F = ∩n
i=1H(li). For the reader familiar with the terminology of operations
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research, this problem is equivalent to computing the feasible region defined by a

two-variable linear program. It has a number of applications, one of which we will

explore (in Section 3.1).

Without loss of generality, we assume that no li is parallel to the y-axis. If this is

not the case, then one can easily change the coordinate axes so that it is true. In this

section we show how to compute F in O(logn) time and using n processors. This

region is convex (see Exercise 4) and is described by a polygonal chain that may be

closed or may begin and end at semi-infinite edges.

Rather than give a new algorithm for solving this problem, we shall show how

it can actually be solved by using the convex hull algorithm of the previous section.

The main idea is based on a geometric transform f that maps a point into a line and

a line into a point: a point p = (a, b) is mapped into the line f(p) whose equation

is y = ax + b, and the line l whose equation is y = ax + b is mapped into the point

f(l) = (−a, b). It is easy to verify (Exercise 14) that the transform f maintains the

relative positions of lines and points: if one of {α, β} is a line and one is a point, then

α is below β if and only if f(α) is below f(β). If A is a set of lines or points, then we

use f(A) to denote the set {f(a) : a ∈ A}.
To simplify the description of our method, we partition L into two sets, L+ and

L−, where L+ is the subset of L containing the lines li such that H(li) is the half-

plane above li, and L− is the subset of L containing the lines li such that H(li) is

the half-plane below li. Let F+ = ∩l∈L+ H(l) and F− = ∩l∈L− H(l). Then, clearly

F = F+ ∩ F−. Therefore, since computing the intersection of two convex polygonal

chains can easily be done in O(logn) time with O(n/ logn) processors (see Exercise 4),

we can restrict our attention to the computation of F+ and F− separately. (See

Figure 8.)

Before we describe our algorithm, however, we must generalize our definition of

polygonal chains to allow for chains that begin and end with a ray (or “semi-infinite”

line), rather than requiring that chains begin and end with a point. Specifically, we

allow a polygonal chain P to be given as an alternating sequence of points and edges,

where each point is given by its coordinates and each edge is specified by the line

that contains it. This is essentially the same as the definition of the previous section,

except we now allow a polygonal chain to have an edge at each end, as well as allowing
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Figure 8: Examples of (a) C+, (b) C−, and (c) their intersection.

it have a point at each end, as before. An “edge” that is at the end of polygonal chain

has only one endpoint, hence, is a ray. The beauty of using this convention is that,

for any polygonal chain P , f(P ) is also a polygonal chain (see Exercise 15).

Since the computations of F+ and F− are symmetric, let us concentrate on the

construction of F+. Let C+ = (s1, p1, s2, p2 . . . , sm−1, pm−1, sm) denote the polygonal

chain defining F+, which, of course, starts and edges with a ray, one emanating from

p1 along the line specified by s1 and one emanating from pm−1 along the line specified

by sm. Our algorithm for constructing C+ is simply the following:

• Construct f(C+) and apply f−1 to get C+.

But what is f(C+)?

Lemma 3.1 f(C+) is the upper hull of the points in f(L+), i.e., f(C+) =

UH(f(L+)).

Proof: As we have already observed, since C+ is a polygonal chain having a ray at

each end, f(C+) is a polygonal chain having a point at each end. Let I+ be the set of

intersections between lines in L+, and observe that f(I+) is the set of lines determined

all pairs of points of f(L+). Note that the vertices of C+ are exactly those points

in I+ that are on or above all the lines in L+, listed from left to right. Thus, the

edges of f(C+) are determined by the lines of f(I+) that on are above all the points

of f(L+), listed by increasing slopes. In other words, f(C+) is the list of lines that

contain edges of the upper hull of f(L+), listed by increase slopes. Therefore, f(C+)

is, in fact, the upper hull of f(L+), listed right to left.
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Since f(L+) and its upper hull can be computed in O(logn) time by n CREW

PRAM processors, it follows that f(C+), and hence C+, can be computed within the

same bounds. A symmetrical argument shows that C− can be computed within the

desired complexity bounds. Combining this with the observation that computing F

is easy given F+ and F−, gives us the following theorem:

Theorem 2 Given a set L = {l1, l2, . . . , ln} of oriented lines in the plane, one can

compute F = ∩n
i=1H(li) in O(logn) time using n processors in the CREW PRAM

model.

We consider an application of this theorem in the next subsection.

3.1 The Kernel of a Simple Polygon

Let P = (p1, s1, p2, s2, . . . , sn−1, pn) be a simple polygon P (so p1 = pn). We consider

each edge si of P to be opaque, i.e., an observer in the plane cannot see through it.

We define the kernel of P , denoted K(P ), to be the set of points from each of which

all of P ’s boundary is visible; that is, point p is in K(P ) if for every point q on the

boundary of P , the segment joining p to q does not intersect any edge e of P except

possibly at e’s endpoints. Note that this implies that K(P ) is a subset of the interior

of P . Also note that the kernel may be empty. If the kernel of a polygon P is not

empty, then P is said to be star-shaped. The kernel of a convex polygon is, of course,

the polygon itself. Figure 9 shows a star-shaped polygon and its kernel (shaded in

the figure). Intuitively, if we imagine the polygon P to be the floor plan of an art

gallery, then the kernel of P can be viewed as the region where a guard could stand

and be able to see every painting on the walls of P .

It turns out that, as a consequence of the algorithm for computing the intersection

of n half-planes, the kernel of a polygon P can be computed in O(logn) time with n

processors. We consider each edge si of P to be an oriented line segment such that

the interior of P is on its right. We let H(si) denote the half-plane to the right of the

oriented line containing the edge si. It is not hard to show (see Exercise 6) that the

kernel of P is the intersection of the n half-planes determined by the edges in P , i.e.,

it is ∩n
i=1H(si). This implies that the kernel can be computed in O(logn) time by n

processors on a CREW PRAM.
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Figure 9: A polygon and its kernel.

The next section deals with the problem of computing the distance between two

convex polygons. There too, success will hinge on a careful exploitation of convexity.

4 The Distance Between Two Convex Polygons

In the problem we address in this section the input consists of two convex polygons

P = (p1, s1, p2, s2, . . . , sn−1, pn) and Q = (q1, t1, q2, t2, . . . , tn−1, qn), where the pi’s

(resp., qi’s) are given in clockwise cyclic order, that is, the interior of P is to the

right of each oriented segment pipi+1, and the similar property holds for Q. We are

interested in computing the shortest distance between P and Q. This distance is

formally defined as follows:

d(P,Q) = min
u∈P,w∈Q

d(u, w)

where d(u, w) denotes the Euclidean distance between points u and w, and the nota-

tion “u ∈ P” means that u is a point of P (either on the boundary of P or interior

to P ). This problem often arises in machine learning problems where one wishes to

determine if two sets of points A and B can be separated by a line, and if they can

be so separated, then one wishes to determine how “close” A is to B. Constructing

the convex hulls of A and B immediately reduces this learning problem to that of

computing the distance between two convex polygons, or determining if they intersect.

The algorithm we present in this section actually returns a pair of points u, w such

that d(P,Q) = d(u, w). It runs in O(c2) time with O(n1/c) processors on a CREW

PRAM. We give the algorithm assuming that P and Q are disjoint, so that there is

a line separating them. Exercise 17 deals with the case of possibly zero distance, i.e.,
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when P and Q intersect, in which case there is no separating line. Of course, once

we have these points, u and w, any perpendicular to the line segment joining u and

w is a line separating P from Q. Therefore the algorithm given below for the closest

distance can also be used to give us a separating line.

To simplify the exposition, we assume that no three successive vertices of either

polygon are collinear, and that no edge of P is parallel to an edge of Q. The assump-

tion that no edge of P is parallel to an edge of Q implies that the desired points u

and w are unique. The algorithm can easily be modified for the case when edges of P

might be parallel to edges of Q, e.g., by adopting a suitable convention for returning

a unique u, w pair in case d(P,Q) is the distance between two parallel edges of P and

Q respectively. In this latter case there is an infinite number of choices for u and w,

and this is the only case where u and w are not unique.

Let p be a point, which is not necessarily a vertex, on the boundary of P , and

define q similarly forQ. Let Tp (resp., Tq) be the line perpendicular to the line segment

pq at point p (resp. q). It is easy to show (see Exercise 16) that d(P,Q) = d(p, q) if

and only if (i) Tp and Tq are tangent to P and Q respectively, and (ii) P and Q are

on opposite sides of the region between Tp and Tq. Note, conditions (i) and (ii) are

“local” and can thus be tested by one processor in constant time for a given pair of

points p and q.

The above simple observation implies that, with O(n2) processors and in constant

time, it is possible to compute the closest distance between P and Q and a pair of

points achieving it. The brute force procedure for doing this assigns a processor to

each pair (a, b), where a is a vertex or edge of P , and b is a vertex or edge of Q (but not

when both a and b are edges—that case need not be considered, as it is subsumed by

one of the cases in which one of {a, b} is a vertex). Such a processor then computes,

in constant time, the points a′ ∈ a and b′ ∈ b such that d(a′, b′) = d(a, b). It then

tests, also in constant time, whether (i) Ta′ and Tb′ are tangent to (respectively) P

and Q, and (ii) P and Q are on opposite sides of the region between Ta′ and Tb′ (i.e.,

this region separates them). If so then the processor decides that u = a′ and w = b′,

and furthermore no other processor reaches such a decision about the identity of u

and w (by the uniqueness of u and w). Thus there are no “write conflicts” when that

processor writes the names of u and w in the specified registers for them.
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The algorithm we shall give still takes constant time, but it uses far fewer proces-

sors than n2: in fact it uses O(n1/k) processors for any constant k of our choice. It

relies on the above simple observations as well as on the next two propositions.

Proposition 3 Let p be a point external to Q. Then the point q ∈ Q such that

d(p, q) = d(p,Q) can be computed in time O(k) by an n1/k processor CREW PRAM,

where k is any integer of our choice.

Proof. Let l = n1−1/k. Let Q′ consist of every l-th vertex of Q, i.e., Q′ is the sub-

polygon (ql, s
′
l, q2l, s

′
2l, . . . , qn). Since Q

′ has n1/k vertices and we have n1/k processors,

it is trivial to find in constant time the point q′ ∈ Q′ such that d(p, q′) = d(p,Q′).

(Note that q′ need not be a vertex of Q′.) If the perpendicular to the line segment

pq′ at point q′ is tangent to Q, then we can stop and declare point q′ as the desired

point q. Otherwise, let α (resp. β) be the vertex of Q′ that immediately precedes

(resp. follows) point q′ when the boundary of Q′ is traced in a clockwise manner (see

Figure 10). Note that in Q, there are 2l+1 vertices between α and β (inclusive) if q′

is a vertex, and there are l+1 vertices between α and β otherwise. We leave it to the

reader to prove that, in Q, the desired point q occurs between α and β (inclusive).

Let γ be the median of the (at most 2l + 1) vertices between α and β (inclusive):

Test whether the desired point q is at γ, between α and γ, or between γ and β. This

test trivially takes constant time with one processor. If q = γ then we’re done, so

suppose (without loss of generality) that the test reveals that q is between α and γ.

If this occurs, then we can focus our search for q to the section of Q between α and

γ (excluding γ), which contains at most l vertices. Therefore, by doing a constant

amount of work, we have reduced the polygon size by a factor of at least n1/k. Doing

this at most k times finds the desired point q.

Proposition 4 Let pi and pj be any two vertices of P , i < j, and let pu be the vertex

of P such that d(pu, Q) = d(P,Q). Then for any integer k of our choice, an n1/k

processor CREW PRAM can, in O(k) time, locate where pu occurs with respect to

pi and pj in the sequence p1, p2, . . . , pn (i.e., it can determine whether u = i, u = j,

i < u < j, or none of these).

Proof. For any two indices 1 ≤ a, b ≤ n, let σa,b denote the sequence

σa,b = d(pa, Q), d(pa+1, Q), . . . , d(pb, Q)
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Figure 10: Illustrating the proof of Proposition 3.

(assuming index n+ 1 equals 1). For example,

σ9,2 = d(p9, Q), . . . , d(pn, Q), d(p1, Q), . . . , d(p2, Q).

Observe that, because of convexity, there exist two indices a and b, 1 ≤ a ≤ b ≤ n,

such that σa,b and σb,a are both sorted, one in increasing order and the other in

decreasing order. This implies that we can locate where pu occurs with respect to

any pair pi, pj in the sequence p1, p2, . . . , pn by performing a constant number of

distance computations of the type d(pl, Q). By Proposition 3, each such distance

computation can be done within the desired time and processor bounds.

The following algorithm shows that, for any integer c of our choice, an n1/c pro-

cessor CREW PRAM can find, in O(c2) time, the points u ∈ P and w ∈ Q such that

d(u, w) = d(P,Q).

Algorithm D for computing distance:

Input. Two disjoint convex polygons P = (p1, s1, p2, s2, . . . , pn) and Q =

(q1, t1, q2, t2, . . . , qn). The pi’s (resp., qj ’s) are given in clockwise cyclic order.

Output. Points u, w such that d(u, w) = d(P,Q).

1. Set P̂ := P , Q̂ := Q, s := n1/2c.

2. Repeat the following steps 3–5 until either P̂ is a single point or Q̂ is a single

point. Without loss of generality, assume it is P̂ that ends up becoming a single

point (call it x): Use Proposition 3 to find, in O(c) time, the point y ∈ Q such

that d(x, y) = d(x,Q). Output the points x and y (these are the desired points

u, w).
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Figure 11: Illustrating the algorithm for the distance.

3. Let P ′ = (a1, s
′
1, a2, s

′
2, . . . , as) be the subpolygon obtained by considering every

(|P̂ |/l)-th vertex of P̂ , i.e. the l vertices of P ′ divide P̂ into l equal portions.

Call these portions A1, A2, . . ., Al, so that ai is adjacent in P̂ to portions Ai and

Ai+1 By definition, ai belongs to Ai but not to Ai+1 Let Q
′ = (b1, t

′
1, b2, t

′
2, . . . , bl)

be analogously defined for Q̂, and let the resulting portions of Q̂ be B1, B2, . . .,

Bl. Use the already mentioned brute force method for finding the points a ∈ P ′

and b ∈ Q′ such that d(a, b) = d(P ′, Q′). Since we have l2 processors, this takes

constant time.

Let αP be the vertex of P ′ that immediately precedes a on the boundary of P ′,

and let βP be the vertex of P ′ that immediately follows a on the boundary of

P ′. (Figure 11 illustrates the case when a is not a vertex of P ′.) If a is a vertex

of P ′ then αP and βP are (respectively) its predecessor and successor vertices

on P ′, and hence there are then (2|P̂ |/l) + 1 vertices of P̂ between αP and βP

(inclusive). If a is not a vertex of P ′ then αP and βP are consecutive vertices of

P ′, point a is on the segment of P ′ that joins αP to βP , and there are (|P̂ |/l)+1

vertices of P̂ between αP and βP (inclusive). Let γP be the median of the (at

most (2|P̂ |/l) + 1) vertices of P̂ that are between αP and βP (inclusive). (Note

that, if a is a vertex of P ′, then γP = a.) We use P αβ to denote the portion of P

that is between αP and βP (excluding αP and βP ). P
αγ and P γβ are analogously

defined.

Let αQ, βQ, γQ, Q
αβ , Qαγ and Qγβ be similarly defined for b, Q′ and Q̂. (Fig-

ure 11 illustrates the case when b is a vertex of Q′.)
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4. Use Proposition 4 to detect whether u = αP , u = βP , u = γP , u ∈ P αγ, u ∈ P γβ,

or none of these. If u equals αP (resp. γP , βP ) then set P̂ equal to αP (resp.,

γP , βP ) and go to Step 5. Otherwise, if u ∈ P αγ then do P̂ := P αγ and go to

Step 5. Otherwise, if u ∈ P γβ then do P̂ := P γβ and go to Step 5. Otherwise

leave P̂ unchanged. (An assignment like P̂ := P αγ is done in constant time

simply by remembering the new first and last vertex of P̂ .)

5. Use Proposition 4 to detect whether w = αQ, w = βQ, w = γQ, w ∈ Qαγ ,

w ∈ Qγβ, or none of these. If w equals αQ (resp. γQ, βQ) then set Q̂ equal to

αQ (resp. γQ, βQ) and go to Step 3. Otherwise, if w ∈ Qαγ then do Q̂ := Qαγ

and go to Step 3. Otherwise, if w ∈ Qγβ then do Q̂ := Qγβ and go to Step 3.

Otherwise leave Q̂ unchanged.

Since every usage of Proposition 4 takes O(c) time, the time complexity of the

algorithm is equal to c multiplied by the number of times that steps 2-4 get executed.

We now bound the number of times steps 2-4 are executed.

Lemma 4.1 Let a, b, P αβ, Qαβ, u, and w be as in algorithm D. Assume that

u /∈ {αP , βP} and w /∈ {αQ, βQ}. Then at least one of the following statements (1) or

(2) is true:

1. u ∈ P αβ,

2. w ∈ Qαβ.

Proof. Let Ta be the line perpendicular at a to the segment ab, and let Tb be the

line perpendicular at b to the segment ab (see Figure 11). By definition, Ta is tangent

to P ′, and Tb is tangent to Q′. Without loss of generality, Ta and Tb are vertical, P ′

is to the left of Ta, and Q′ is to the right of Tb. If u = a or w = b then the lemma

holds, so suppose that u 6= a and w 6= b. By the definition of u and w, we must have

d(u, w) ≤ d(a, b). This implies that u is to the right of Ta or w is to the left of Tb

(possibly both). Hence, it suffices to show that if u is to the right of Ta, then (1)

holds, and if w is to the left of Tb, then (2) holds. We prove this by contradiction.

Suppose that u is to the right of Ta and (1) does not hold, i.e. u /∈ P αβ. Without loss

of generality, assume that u is below γP . Now, by walking from vertex γP clockwise
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along the boundary of P̂ , one encounters vertex βP before reaching u. Since γP is

on or to the right of Ta, βP on or to the left of Ta, and u to the right of Ta, this

contradicts the convexity of P . A similar argument shows that if w is to the left of

Tb, then (2) holds.

Corollary 4.2 Steps 3–5 of algorithm D are executed a total of at most 4c−1 times.

Proof. Lemma 2 implies that, every time we execute Steps 3–5, at least one of P̂ or

Q̂ decreases in size by a factor of at least s = n1/2c, thus proving the corollary.

We have thus established the following:

Theorem 3 Algorithm D correctly finds points u ∈ P and w ∈ Q such that d(u, w) =

d(P,Q). It uses n1/c processors and it runs in time O(c2), where c is any integer such

that 2 ≤ c ≤ logn.

Before proceeding to our next problem (3-dimensional maxima), we note that

there is another version of the definition of the distance: the boundary-to-boundary

distance, in which “u ∈ P” means that u is a point of the boundary of P . Interestingly,

if we use this notion of distance, then determining the distance between two convex

polygons has an Ω(log n) lower bound, as the following shows.

Theorem 4 The problem of computing the shortest boundary-to-boundary distance

between two convex polygons P and Q has an Ω(log n) lower bound on a CREW

PRAM having a polynomial number of processors.

Proof. We use the fact that there is a known Ω(log n) lower bound for the problem

of computing the logical OR of n bits x1, x2, . . . , xn. Therefore it suffices to show that

a CREW PRAM can compute the logical OR of n bits in time equal to a constant

plus the time for computing the distance between the boundaries of P and Q. We

do this by converting the problem of computing the OR of x1, x2, . . . , xn to that of

computing the distance between the boundaries of the following two convex n-gons P

and Q. Let P be any regular convex n-gon, so that all its edges have the same length.

Let Q0 consist of the regular convex n-gon whose vertices are the midpoints of the

n boundary edges of P . The convex n-gon Q is obtained from Q0 by “deforming”

Q0 very slightly so as to move some of its vertices slightly into the interior of P ,
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and others just outside of P . This deformation is governed by the Boolean values

x1, x2, . . . , xn: we associate the i-th vertex, qi, of Q0 with xi, and move qi slightly

inside of P if xi = 0 and move qi slightly outside of P if xi = 1. The polygon Q so

obtained has the property that its boundary is at a distance of zero from the boundary

of P if and only if the logical OR of the xi’s is 1. The construction of P and Q from

x1, x2, . . . , xn can clearly be done in constant time with n processors. This establishes

the lower bound.

The rest of this chapter illustrates how the technique presented in the earlier

chapter on parallel mergesorting, can be used to solve geometric problems.

5 3-Dimensional Maxima

Let V = {p1, p2, . . . , pn} be a set of points in ℜ3. For simplicity, we assume that no

two input points have the same x (resp., y, z) coordinate. We denote the x, y, and

z coordinates of a point p by x(p), y(p), and z(p), respectively. We say that a point

pi 1-dominates another point pj if x(pi) > x(pj), 2-dominates pj if x(pi) > x(pj) and

y(pi) > y(pj), and 3-dominates pj if x(pi) > x(pj), y(pi) > y(pj), and z(pi) > z(pj).

A point pi ∈ V is said to be a maximum if it is not 3-dominated by any other point in

V . The 3-dimensional maxima problem, then, is to compute the set, M , of maxima

in V . We show how to solve the 3-dimensional maxima problem efficiently in parallel

in the following algorithm.

5.1 Maximal Elements

The method is based on a divide-and-conquer strategy in which the subproblem merg-

ing step involves the computation of two labeling functions for each point, but is

otherwise similar to the parallel mergesort algorithm described earlier in this book.

We call such a divide-and-conquer scheme a cascading divide-and-conquer, since it

involves a cascading merge. Specifically, for each point pi we compute the maximum

z-coordinate from among all points that 1-dominate pi and use that label to also

compute the maximum z-coordinate from among all points that 2-dominate pi. We

can then test if pi is a maximum point by comparing z(pi) to this latter label. The

details follow.
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Without loss of generality, we assume the input points are given sorted by in-

creasing y-coordinates, i.e., y(pi) < y(pi+1), since if they are not given in this

order we can sort them in O(logn) time using n processors. Let T be a com-

plete binary tree with leaf nodes v1, v2, . . . , vn (in this order). In each leaf node

vi we store the list B(vi) = (−∞, pi), where −∞ is a special symbol such that

x(−∞) < x(pj) and y(−∞) < y(pj) for all points pj in V . Initializing T in this

way can be done in O(logn) time using n processors. We then perform a cas-

cading merge from the leaves of T upwards, basing comparisons on increasing x-

coordinates of the points (not their y-coordinates). Let U(v) denote the sorted

array of the points stored in the descendants of v ∈ T sorted by increasing x-

coordinates. For each point pi in U(v) we store two labels: zod(pi, v) and ztd(pi, v),

where zod(pi, v) is the largest z-coordinate of the points in U(v) that 1-dominate

pi, and ztd(pi, v) is the largest z-coordinate of the points in U(v) that 2-dominate

pi. Initially, zod and ztd labels are only defined for the leaf nodes of T . That is,

zod(pi, vi) = ztd(pi, vi) = −∞ and zod(−∞, vi) = ztd(−∞, vi) = z(pi) for all leaf

nodes vi in T (where U(vi) = (−∞, pi)). In order to be more explicit in how we

refer to various ranks, we let pred(pi, v) denote the predecessor of pi in U(v) (which

would be −∞ if the x-coordinates of the input points are all larger than x(pi)). (See

Figure 12.) As we are performing the merge, we update the labels zod and ztd based

on the equations in the following lemma:

Lemma 5.1 Let pi be an element of U(v) and let u = lchild(v) and w = rchild(v).

Then we have the following:

zod(pi, v) =











max{zod(pi, u), zod(pred(pi, w), w)} if pi ∈ U(u)

max{zod(pred(pi, u), u), zod(pi, w)} if pi ∈ U(w)
(1)

ztd(pi, v) =











max{ztd(pi, u), zod(pred(pi, w), w)} if pi ∈ U(u)

ztd(pi, w) if pi ∈ U(w)
(2)

Proof: Consider Equation 1. If pi ∈ U(u), then every point that 1-dominates

pi’s predecessor in U(w) also 1-dominates pi, since pi’s predecessor in U(w) is the

point with largest x-coordinate less than x(pi) (or −∞ if every point in U(w) has

larger x-coordinate than pi). Thus zod(pi, v) is the maximum of zod(pi, u) and
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Figure 12: The combining step for 3-dimensional maxima Points to the right of the

thin dotted line 1-dominate pi (resp. pj), and points enclosed in the thick dotted lines

2-dominate pi (pj).

zod(pred(pi, w), w) in this case. The case when pi ∈ U(w) is similar. Next, con-

sider Equation 2. We know that every point in U(w) has y-coordinate greater than

every point in U(u), by our construction of T . Therefore, if pi ∈ U(u), then every

point in U(w) that 1-dominates pi’s predecessor in U(w) must 2-dominate pi. Thus,

ztd(pi, v) is the maximum of ztd(pi, u) and zod(pred(pi, w), w). On the other hand,

if pi ∈ U(w) then no point in U(u) can 2-dominate pi; thus, ztd(pi, v) = ztd(pi, w).

We use these equations during the cascading merge to maintain the labels for

each point. By Lemma 5.1, when v becomes full (and we have U(u), U(w), and

U(v) = U(u) ∪ U(w) available), we can determine the labels for all the points in

U(v) in O(1) additional time using |U(v)| processors. Thus, the running time of the

cascading merge algorithm, even with these additional label computations, is still

O(logn) using n processors. Moreover, after v’s parent becomes full we no longer

need U(v) any more, and can deallocate the space it occupies, resulting in an O(n)

space algorithm. After we complete the merge, and have computed U(root(T )), along

with all the labels for the points in U(root(T )), note that a point pi ∈ U(root(T )) is

a maximum if and only if ztd(pi, root(T )) ≤ z(pi) (there is no point that 2-dominates

pi and has z-coordinate greater than z(pi)). Thus, after completing the cascading

merge we can construct the set of maxima by compressing all the maximum points

into one contiguous list using a simple parallel prefix computation. We summarize in
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Figure 13: The shaded region is visible from p.

the following theorem:

Theorem 5 Given a set V of n points in ℜ3, one can construct the set M of maxima

points in V in O(logn) time and O(n) space using n processors in the CREW PRAM

model.

6 Visibility from a Point

Given a set of line segments S = {s1, s2, . . . , sn} in the plane that do not intersect,

except possibly at endpoints, and a point p, the visibility from a point problem is to

determine the part of the plane that is visible from p assuming every si is opaque.

Intuitively, one can think of the point p as a specular light source, the segments as

walls, and the problem to determine all the parts of the plane that are illuminated

(see Figure 13).

We can use the cascading divide-and-conquer technique to solve this problem in

O(logn) time and O(n) space using n processors. Without loss of generality, we as-

sume that the point p is at negative infinity below all the segments. The algorithm

is essentially the same if p is a finite point, except that the notion of segment end-

points being ordered by x-coordinate is replaced by the notion that they are ordered

radially around p. In other words, it suffices to compute the lower envelope of the n

segments to give a method for computing the visibility from a point. For simplicity

of expression, we also assume that the x-coordinates of the endpoints are distinct.

In the previous section the set of objects consisted of points, but in the visibility
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Figure 14: An example of visibility merging. The dashed segments correspond to

the visible region for x(u) and the solid segments correspond to the visible region

for x(w). For simplicity, we store the pointers pred(pi, u), and pred(pi, w) in arrays

and denote each point pi by its index i. Note that points are never removed, even if

the same segment defines the visible region for many consecutive intervals (e.g., p3

through p7).
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problem we are dealing with line segments. The method is slightly different in this

case. In this case we store the segments in the leaves of a binary tree and perform a

cascading merge of the x-coordinates of intervals of the x-axis determined by segment

endpoints. We maintain a single label for each interval that represents the segment

that is visible from −∞ on that interval. The details follow.

Let T be a complete binary tree with leaf nodes v1, v2, . . . , vn ordered from left

to right. We associate the segment si with the leaf vi and at vi store the list

U(vi) = (−∞, p1, p2), where p1 and p2 are the two endpoints of si, with x(p1) < x(p2),

and −∞ is defined such that x(−∞) < x(p) and y(−∞) < y(p) for all points p. We

then perform a generalized cascading-merge from the leaves of T , basing compar-

isons on increasing x-coordinates of the points. For each internal node v we let U(v)

denote an array of the points stored in the descendants of v ∈ T sorted by increasing x-

coordinates. For each point pi in U(v) we store a label vis(pi, v), which stores the seg-

ment with endpoints in U(v) that is visible in the interval (x(pi), x(succ(pi, v))), where

succ(pi, v) denotes the successor of pi in U(v) (based on x-coordinates). Initially, the

vis labels are only defined for the leaf nodes of T . That is, if U(v) = (−∞, p1, p2),

where si = p1p2, then vis(−∞) = +∞, vis(p1) = si, and vis(p2) = +∞. We

use pred(pi, v) to denote the predecessor of pi in U(v). As we are performing the

cascading-merge, we update the vis labels based on the equation in the following

lemma (see Figure 14):

Lemma 6.1 Let pi be an element of U(v) and let u = lchild(v) and w = rchild(v).

Then we have the following (if two segments si and sj are comparable by the “above”

relation, then we let min{si, sj} denote the lower of the two):

vis(pi, v) =











min{vis(pi, u), vis(pred(pi, w), w)} if pi ∈ U(u)

min{vis(pred(pi, u), u), vis(pi, w)} if pi ∈ U(w)

Proof: If we restrict our attention to the segments with an endpoint in

U(u), then for any point pi ∈ U(u) the segment visible (from −∞) on

the interval (x(pi), x(succ(pi, v))) is the minimum of the segment visible on

the interval (x(pi), x(succ(pi, u))) and the segment that is visible on the in-

terval (x(pred(pi, w)), x(succ(pred(pi, w), w))). This is because the interval

(x(pi), x(succ(pi, v))) is exactly the intersection of the interval (x(pi), x(succ(pi, u)))
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and the interval (x(pred(pi, w)), x(succ(pred(pi, w), w))), and there is no segment in

U(v) with an endpoint interior to the interval (x(pi), x(succ(pi, v))). Thus, vis(pi, v) is

equal to the minimum of vis(pi, u) and vis(pred(pi, w), w). The case when pi ∈ U(v)

is similar.

By Lemma 6.1, after merging the lists U(lchild(v)) and U(rchild(v)) we can

determine the labels for all the points in U(v) in O(1) additional time us-

ing |U(v)| processors. Thus, the running time of this generalized cascading-

merge algorithm is still O(logn) using n processors. After we complete the

merge, and have computed U(root(T )), along with all the vis labels for the

points in U(root(T )), then we can compress out duplicate entries in the list

(vis(p1, root(T )), vis(p2, root(T )), . . . , vis(p2n, root(T ))) using a parallel prefix com-

putation to construct a compact representation of the visible portion of the plane.

We summarize in the following theorem:

Theorem 6 Given a set S of n non-intersecting segments in the plane, one can find

the lower envelope of S in O(logn) time and O(n) space using n processors in the

CREW PRAM model, and this is optimal.

Proof: The correctness and complexity bounds follow from the discussion above.

Since we require that the points in the description of the lower envelope be given by

increasing x-coordinates, we can reduce sorting to this problem, and thus can do no

better than O(logn) time using n processors (in the comparison model).

7 Exercises

Exercise 1 Prove an O(n logn) time sequential upper bound for the convex hull prob-

lem.

Exercise 2 Prove an Ω(n log n) time sequential lower bound for the convex hull prob-

lem in the comparison model. Hint: find a way to reduce the sorting problem to the

convex hull problem.

Exercise 3 Prove an Ω(log n) time lower bound for the convex hull problem and a

CREW PRAM with a polynomial number of processors.
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Exercise 4 Prove that the intersection of two convex regions is also convex. Also,

give an O(logn) time algorithm, using O(n/ logn) processors in the CREW PRAM

model, for computing the intersection of two convex regions. Your method should work

even if either of the regions is unbounded. (Hint: use the fact that one can merge

two n-element sorted lists in O(logn) time using O(n/ logn) processors in the CREW

PRAM model.)

Exercise 5 Let P = (p1, s1, p2, . . . , pn) be a simple polygon, and let P ′ =

(pi1 , s
′
i1, pi2 , . . . , pik) be a subpolygon of P , i.e., 1 ≤ i1 < i2 < · · · < ik ≤ n. Prove or

disprove the following statements:

1. If P is simple and convex, then P ′ is simple and convex.

2. If P is simple, then P ′ is simple.

3. If P is simple and star-shaped, then P ′ is simple and star-shaped.

Exercise 6 Prove that the two definitions of “kernel” given in Section 3.1 are equiv-

alent.

Exercise 7 Let P be a star-shaped polygon, P ′ be a subpolygon of P . Prove or

disprove the following statement: “the kernel of P ′ is inside the kernel of P .”

Exercise 8 Let p, Q′, qj and qim be as in the proof of Proposition 1, with j < im.

Prove that (i− 1)m ≤ j.

Exercise 9 Generalize Proposition 2 to arbitrary convex polygons P and Q, rather

than just upper hulls.

Exercise 10 Generalize the algorithm for finding the upper common tangent between

UH(S1) and UH(S2) so that it runs in O(k2) time and uses O(n1/k) processors, where

k is a constant.

Exercise 11 Design an algorithm for determining whether a given line L and the

boundary of a given convex polygon P intersect or not. If they do intersect, your

algorithm should give both points of this intersection, and your algorithm should run

in O(k) time with O(n1/k) processors, where 2 ≤ k ≤ n is any integer.
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Exercise 12 Let S be a set of points in the plane. We wish to “mark” the points of

S that belong to the convex hull of S. Give a constant-time CRCW algorithm for this

problem, using a polynomial number of processors.

Exercise 13 Let S be a set of points in the plane, given in sorted order by their

x-coordinates. We wish to “mark” each point of S that belongs to the upper hull of

S as “on hull”, and also mark each each point p that is not on the upper hull of S

with the name of the upper hull edge that is directly above p. Derive an O(log log n)

time algorithm that uses only n processors. (Hint: use the fact that the maximum

of n items can be found in constant time using n2 processors in the CRCW PRAM

model.)

Exercise 14 Let f be the transform defined in Section 3. Prove that f maintains

the relative positions of lines and points: if one of {α, β} is a line and one is a point,

then α is below β if and only if f(α) is below f(β).

Exercise 15 Let f be the transform defined in Section 3, as in the previous exercise.

Prove or disprove the following statement: “If P is a simple polygon, then f(P ) is a

simple polygon.”

Exercise 16 Let p be a point on the boundary of a convex polygon P , and define q

similarly for a convex polygon Q. Note, p and q need not be vertices. Let Tp (resp.

Tq) be the line perpendicular to the line segment pq at p and q, respectively. Prove

that d(P,Q) = d(p, q) if and only if (i) Tp and Tq are tangent to P and Q respectively,

and (ii) P and Q are on opposite sides of the region between Tp and Tq.

Exercise 17 Modify the algorithm for computing the distance between two convex

polygons so that it also works if they are not disjoint. That is, the distance between

them may be zero (this happens either by one of them being contained inside the other,

or by their two boundaries intersecting).

Exercise 18 Show that 2-dimensional maxima problem can be solved in O(logn)

time and O(n) space by a sorting step followed by a parallel prefix step.
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8 Bibliographic Notes

The convex hull problem is probably the most-studied of all computational geom-

etry problems. See the book by Edelsbrunner [33] or the book by Preparata and

Shamos [62] for further references on this and other sequential algorithms for com-

putational geometry. A proof of the Jordan Curve Theorem can be found in the

book by Munkres [57]. The convex hull algorithm presented in this chapter is due

to Atallah and Goodrich [12], who also give the algorithm for computing the dis-

tance between convex polygons. The solutions to Exercises 10 and 17 can be found

in [12]. Dadoun and Kirkpatrick [31] show how to achieve O(k) time using O(n1/k)

processors for the polygon separation problem, which improves the running time for

larger values of k. Other efficient parallel convex hull algorithms can be found in

[11, 1, 56, 80], and a solution to Exercise 13 can be found in [17]. Although it is

a good example of applying geometric duality in parallel computational geometry,

the algorithm given in this chapter for computing the kernel of a simple polygon is

not the best possible, for Cole and Goodrich [25] show how to solve this problem in

O(logn) time algorithm for using only O(n/ logn) processors in the EREW PRAM

model. For more information about this problem and other “art gallery” problems,

see the excellent book by O’Rourke [58]. The algorithm for the 3-dimensional max-

ima and visibility from a point is due to Atallah, Cole, and Goodrich [10]; they also

give a number of other geometric applications of the cascading divide-and-conquer

technique. Recently, Atallah and Chen [9] show how one can improve the processor

bound for visibility from a point to O(n/ logn) for the case when the segments form

a simple polygon. Exercise 12 is from Akl [4].

The field of parallel computational geometry is relatively young; hence, the body

of literature in this field is rather sparse. Still, the bibliography given below attempts

to cover most of the papers covering this area to date. It is by no means exhaustive,

however, and, if fact, omits a number of papers dealing with geometric algorithms

for network models (these network algorithms are outside the scope of this chapter,

but are covered in a book by Miller and Stout [55], which also contains an extensive

bibliography of geometric algorithms for network models).
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