
iSimplified Analyses of Randomized Algorithms
for Searching, Sorting, and Selection∗

Michael T. Goodrich† Roberto Tamassia‡

Dept. of Info. & Computer Science Dept. of Computer Science
University of California Brown University
Irvine, CA 92697-3425 Providence, RI 02912
goodrich @ acm.org rt @ cs.brown.edu

Abstract We describe simplified analyses of well-known randomized algorithms for searching, sorting, and selection. The
proofs we include are quite simple and can easily be made a part of a Freshman-Sophomore Introduction to Data
Structures (CS2) course and a Junior-Senior level course on the design and analysis of data structures and algorithms
(CS7/DS&A). We show that using randomization in data structures and algorithms is safe and can be used to
significantly simplify efficient solutions to various computational problems.

1. INTRODUCTION

We live with probabilities all the time, and we easily dismiss as “impossible” events with very low
probabilities. For example, the probability of a U.S. presidential election being decided by a single vote
is estimated at 1 in 10 million1. The probability of being killed by a bolt of lightning in any given year is
estimated at 1 in 2.5 million2. And, in spite of Hollywood’s preoccupation with it, the probability that a large
meteorite will impact the earth in any given year is about 1 in 100 thousand3. Because the probabilities of
these events are so low, we safely assume they will not occur in our lifetime.

Why is it then that computer scientists have historically preferreddeterministiccomputations over ran-
domized computations? Deterministic algorithms certainly have the benefit of provable correctness claims
and often have good time bounds that hold even for worst-case inputs. But as soon as an algorithm is actually
implemented in a programP , we must again deal with probabilistic events, such as the following:

P contains a bug,
we provide an input toP in an unexpected form,
our computer crashes for no apparent reason,
P ’s environment assumptions are no longer valid.

Since we are already living with bad computer events such as these, whose probabilities are arguably much
higher than the bad “real-world” events listed in the previous paragraph, we should be willing to accept
probabilistic algorithms as well. In fact, fast randomized algorithms are typically easier to program than fast
deterministic algorithms. Thus, using a randomized algorithm may actually be safer than using a deterministic
algorithm, for it is likely to reduce the probability that a program solving a given problem contains a bug.

∗This work was announced in preliminary form in the Proceedings of the 13th SIGCSE Technical Symposium on Computer Science Education,
1999, 53–57.
†The work of this author was supported in part by the U.S. Army Research Office under grant DAAH04–96–1–0013, and by the National Science
Foundation under grant CCR–9625289.
‡The work of this author was supported in part by the U.S. Army Research Office under grant DAAH04–96–1–0013, and by the National Science
Foundation under grants CCR–9732327 and CDA–9703080.
1wizard.ucr.edu/polmeth/workingpapers97/gelma97b.html
2www.nassauredcross.org/sumstorm/thunder2.htm
3newton.dep.anl.gov/newton/askasci/1995/astron/AST63.HTM

ii1.1 SIMPLIFYING ANALYSES

In this paper we describe several well-known randomized algorithms but provide new, simplified analyses
of their asymptotic performance bounds. In fact, our proofs use only the most elementary of probabilistic
facts. We contrast this approach with traditional “average-case” analyses by showing that the analyses
for randomized algorithms need not make any restrictive assumptions about the forms of possible inputs.
Specifically, we describe how randomization can easily be incorporated into discussions of each of the
following standard algorithmic topics:

searching in dictionaries,
sorting,
selection.

We discuss each of these topics in the following sections.

2. SEARCHING IN DICTIONARIES

A dictionary is a data structure that stores key-value pairs, called items, and supports search, insertion
and deletion operations. We considerordered dictionarieswhere an ordering is defined over the keys. An
interesting alternative to balanced binary search trees for efficiently realizing the ordered dictionary abstract
data type (ADT) is theskip list [3, 4, 7, 5, 6]. This structure makes random choices in arranging items in
such a way that searches and updates takeO(log n) timeon average, wheren is the number of items in the
dictionary. Interestingly, the notion of average time used here does not depend on any probability distribution
defined on the keys in the input. Instead, the running time is averaged over all possible outcomes of random
choices used when inserting items in the dictionary.

2.1 SKIP LISTS

A skip listS for an ordered dictionaryD consists of a series of sequences{S0, S1, . . . , Sh}. Each sequence
Si stores a subset of the items ofD sorted by nondecreasing key plus items with two special keys, denoted
−∞ and+∞, where−∞ is smaller than every possible key that can be inserted inD and+∞ is larger than
every possible key that can be inserted inD. In addition, the sequences inS satisfy the following:

SequenceS0 contains every item of dictionaryD (plus the special items with keys−∞ and+∞).
For i = 1, . . . , h− 1, sequenceSi contains (in addition to−∞ and+∞) a randomly generated subset
of the items in sequenceSi−1.
SequenceSh contains only−∞ and+∞.

An example of a skip list is shown in Figure 0.1. It is customary to visualize a skip listS with sequenceS0

at the bottom and sequencesS1, . . . , Sh−1 above it. Also, we refer toh as theheightof skip listS.
Intuitively, the sequences are set up so thatSi+1 contains more or less every other item inSi. As we shall

see in the details of the insertion method, the items inSi+1 are chosen at random from the items inSi by
picking each item fromSi to also be inSi+1 with probability1/2. That is, in essence, we “flip a coin” for
each item inSi and place that item inSi+1 if the coin comes up “heads.” Thus, we expectS1 to have about
n/2 items,S2 to have aboutn/4 items, and, in general,Si to have aboutn/2i items. In other words, we
expect the heighth of S to be aboutlog n.

Using thepositionabstraction used previously by the authors [2] for nodes in sequences and trees, we
view a skip list as a two-dimensional collection of positions arranged horizontally intolevelsand vertically
into towers. Each level corresponds to a sequenceSi and each tower contains positions storing the same item
across consecutive sequences. The positions in a skip list can be traversed using the following operations:

after(p): the position followingp on the same level.

iii

17 31 38

555012 17 20 25 31 38 39 44

4412

17 5531

17

17 55

55

25

25

25

S6

S5

S4

S3

S2

S1

find(50)

8-

8-

8-

8-

8-

8- 8+

8+

8+

8+

8+

8+

Figure 0.1: Example of a skip list. The dashed lines show the traversal of the structure performed when searching for key50.

before(p): the position precedingp on the same level.

below(p): the position belowp in the same tower.

above(p): the position abovep in the same tower.

Without going into the details, we note that we can easily implement a skip list by means of a linked structure
such that the above traversal methods each takeO(1) time, given a skip-list positionp.

2.2 SEARCHING

The skip list structure allows for simple dictionary search algorithms. In fact, all of the skip list search
algorithms are based on an elegantSkipSearch method that takes a keyk and finds the item in a skip list
S with the largest key (which is possibly−∞) that is less than or equal tok. Suppose we are given such a
keyk. We begin theSkipSearch method by setting a position variablep to the top-most, left position in the
skip list S. That is,p is set to the position of the special item with key−∞ in Sh. We give a pseudo-code
description of the skip-list search algorithm in Code Fragment 1 (see also Figure 0.1).

Algorithm SkipSearch(k):

Input: A search keyk

Output: Positionp in S0 such that the item atp has the largest key less than or equal tok

Let p be the topmost-left position ofS (which should have at least 2 levels).
while below(p) 6= null do

p← below(p) {drop down}
while key(after(p)) ≤ k do

Let p← after(p) {scan forward}
end while

end while
return p.

Code Fragment 1:A generic search in a skip listS.

2.3 UPDATE OPERATIONS

Another feature of the skip list data structure is that, besides having an elegant search algorithm, it also
provides simple algorithms for dictionary updates.

ivInsertion

The insertion algorithm for skip lists uses randomization to decide how many references to the new item
(k, e) should be added to the skip list. We begin the insertion of a new item(k, e) into a skip list by performing
a SkipSearch(k) operation. This gives us the positionp of the bottom-level item with the largest key less
than or equal tok (note thatp may be the position of the special item with key−∞). We then insert(k, e)
in this bottom-level list immediately after positionp. After inserting the new item at this level we “flip” a
coin. That is, we call a methodrandom() that returns a number between0 and1, and if that number is less
than1/2, then we consider the flip to have come up “heads;” otherwise, we consider the flip to have come
up “tails.” If the flip comes up tails, then we stop here. If the flip comes up heads, on the other hand, then
we backtrack to the previous (next higher) level and insert(k, e) in this level at the appropriate position. We
again flip a coin; if it comes up heads, we go to the next higher level and repeat. Thus, we continue to insert
the new item(k, e) in lists until we finally get a flip that comes up tails. We link together all the references
to the new item(k, e) created in this process to create thetower for (k, e).

We give the pseudo-code for the above insertion algorithm in Code Fragment 2. The uses an operation
insertAfterAbove(p, q, (k, e)) that inserts a position storing the item(k, e) after positionp (on the same level
asp) and above positionq, returning the positionr of the new item (and setting internal references so that
after, before, above, andbelow methods will work correctly forp, q, andr). We note that this pseudo-code
assumes that the insertion process never goes beyond the top level of the skip list. This is not a completely
reasonable assumption, for some insertions will most likely continue beyond this level. There are two simple
ways of dealing with this occurance, however. The first is to extend the height of the skip list as long as an
insertion wishes to go to higher levels. We leave it as a simple exercise to show that it is very unlikely that
any insertion will go beyond level3 log n in this case. The second possibility is to cut off any insertion that
tries to go beyond a reasonable notion of what should be the top level of the skip list. For example, one could
maintain the top level to be at height3dlog ne, and then stop any insertion from going beyond that level. One
can show that the expected number of elements that would ever be inserted at this level is actually less than
1.

Algorithm SkipInsert(k, e):
p← SkipSearch(k)
q ← insertAfterAbove(p, null, (k, e))
while random() < 1/2 do

while above(p) = null do
p← before(p) {scan backward}

end while
p← above(p) {jump up to higher level}
q ← insertAfterAbove(p, q, (k, e))

end while

Code Fragment 2: Insertion in a skip list, assumingrandom() returns a random number between0 and1, and we never insert past
the top level.

Removal

Like the search and insertion algorithms, the removal algorithm for a skip listS is quite simple. In fact, it is
even easier than the insertion algorithm. Namely, to perform aremove(k) operation, we begin by performing
a search for the given keyk. If a positionp with key k is not found, then we indicate an error condition.
Otherwise, if a positionp with keyk is found (on the bottom level), then we remove all the positions abovep,

vwhich are easily accessed by usingabove operations to climb up the tower of this item inS starting at position
p (see Figure 0.2).

38

555012 17 38 39 44

4412

17 55

17

55

55

S6

S5

S4

S3

S2

S1 42

42

42

42

p

31

31

31

25

25

25

2520

17

8-
8-

8-

8-

8-

8-

17

8+

8+

8+

8+

8+

8+

Figure 0.2: Removal of the item with key25 from a skip list. The positions visited are in the tower for key25.

2.4 A SIMPLE ANALYSIS OF SKIP LISTS

Our probabilistic analysis of skip lists, which is a simplified version of an analysis of Motwani and
Raghavan [4], requires only elementary probability concepts, and does not need any assumptions about input
distributions. We begin this analysis by studying the heighth of S.

The probability that a given item is stored in a position at leveli is equal to the probability of gettingi
consecutive heads when flipping a coin, that is, this probability is1/2i. Thus, the probabilityPi that leveli
has at least one item is at most

Pi ≤ n

2i
,

for the probability that any one ofn different events occurs is at most the sum of the probabilities that each
occurs.

The probability that the heighth of S is larger thani is equal to the probability that leveli has at least one
item, that is, it is no more thanPi. This means thath is larger than, say,3 log n with probability at most

P3 log n ≤ n

23 log n
=

n

n3
=

1
n2

.

More generally, given a constantc > 1, h is larger thanc log n with probability at most1/nc−1. Thus, with
high probability, the heighth of S is O(log n).

Consider the running time of a search in skip listS, and recall that such a search involves two nestedwhile
loops. The inner loop performs a scan forward on a level ofS as long as the next key is no greater than the
search keyk, and the outer loop drops down to the next level and repeats the scan forward iteration. Since
the heighth of S is O(log n) with high probability, the number of drop-down steps isO(log n) with high
probability.

So we have yet to bound the number of scan-forward steps we make. Letni be the number of keys examined
while scanning forward at leveli. Observe that, after the key at the starting position, each additional key
examined in a scan-forward at leveli cannot also belong to leveli + 1. If any of these items were on the
previous level, we would have encountered them in the previous scan-forward step. Thus, the probability
that any key is counted inni is 1/2. Therefore, the expected value ofni is exactly equal to the expected
number of times we must flip a fair coin before it comes up heads. This expected value is2. Hence, the
expected amount of time spent scanning forward at any leveli is O(1). SinceS hasO(log n) levels with
high probability, a search inS takes the expected timeO(log n). By a similar analysis, we can show that the
expected running time of an insertion or a removal isO(log n).

vi Finally, let us turn to the space requirement of a skip listS. As we observed above, the expected number
of items at leveli is n/2i, which means that the expected total number of items inS is

h∑

i=0

n

2i
= n

h∑

i=0

1
2i

< 2n.

Hence, the expected space requirement ofS is O(n).

3. SORTING

One of the most popular sorting algorithms is the quick-sort algorithm, which uses apivot element to split
a sequence and then it recursively sorts the subsequences. One common method for analyzing quick-sort
is to assume that the pivot will always divide the sequence almost equally. We feel such an assumption
would presuppose knowledge about the input distribution that is typically not available, however. Since the
intuitive goal of the partition step of the quick-sort method is to divide the sequenceS almost equally, let us
introduce randomization into the algorithm and pick as the pivot arandom elementof the input sequence.
This variation of quick-sort is calledrandomized quick-sort, and is provided in Code Fragment 3.

Algorithm quickSort(S):

Input: SequenceS of n comparable elements

Output: A sorted copy ofS

if n = 1 then
return S.

end if
pick a random integerr in the range[0, n − 1]
let x be the element ofS at rankr.
put the elements ofS into three sequences:

SL, storing the elements inS less thanx
SE, storing the elements inS equal tox
SG, storing the elements inS greater thanx.

let S′
L ← quickSort(SL)

let S′
G ← quickSort(SG)

return S′
L + SE + S′

G.

Code Fragment 3:Randomized quick-sort algorithm.

There are several analyses showing that the expected running time of randomized quicksort isO(n log n)
(e.g., see [1, 4, 8]), independent of any input distribution assumptions. The analysis we give here simplifies
these analyses considerably.

Our analysis uses a simple fact from elementary probability theory: namely, that the expected number of
times that a fair coin must be flipped until it shows “heads”k times is2k. Consider now a single recursive
invocation of randomized quick-sort, and letm denote the size of the input sequence for this invocation. Say
that this invocation is “good” if the pivot chosen is such that subsequencesL andG have size at leastm/4
and at most3m/4 each. Thus, since the pivot is chosen uniformly at random and there arem/2 pivots for
which this invocation is good, the probability that an invocation is good is1/2.

Consider now the recursion treeT associated with an instance of the quick-sort algorithm. If a nodev of T
of sizem is associated with a “good” recursive call, then the input sizes of the children ofv are each at most

vii3m/4 (which is the same asm/(4/3)). If we take any path inT from the root to an external node, then the
length of this path is at most the number of invocations that have to be made (at each node on this path) until
achievinglog4/3 n good invocations. Applying the probabilistic fact reviewed above, the expected number
of invocations we must make until this occurs is at most2 log4/3 n. Thus, the expected length of any path
from the root to an external node inT is O(log n). Observing that the time spent at each level ofT is O(n),
the expected running time of randomized quick-sort isO(n log n).

4. SELECTION

Theselectionproblem asks that we return thekth smallest element in an unordered sequenceS. Again
using randomization, we can design a simple algorithm for this problem. We describe in Code Fragment 4
a simple and practical method, calledrandomized quick-select, for solving this problem.

Algorithm quickSelect(S, k):

Input: SequenceS of n comparable elements, and an integerk ∈ [1, n]

Output: Thekth smallest element ofS

if n = 1 then
return the (first) element ofS.

end if
pick a random integerr in the range[0, n − 1]
let x be the element ofS at rankr.
put the elements ofS into three sequences:

SL, storing the elements inS less thanx
SE, storing the elements inS equal tox
SG, storing the elements inS greater thanx.

if k ≤ |SL| then
quickSelect(SL, k)

else if k ≤ |SL|+ |SE| then
return x {each element inSE is equal tox}

else
quickSelect(SG, k − |SL| − |SE|)

end if

Code Fragment 4:Randomized quick-select algorithm.

We note that randomized quick-select runs inO(n2) worst-casetime. Nevertheless, it runs inO(n)
expectedtime, and is much simpler than the well-knowndeterministicselection algorithm that runs inO(n)
worst-case time (e.g., see [1]). As was the case with our quick-sort analysis, our analysis of randomized
quick-select is simpler than existing analyses, such as that in [1].

Lett(n) denote the running time of randomized quick-select on a sequence of sizen. Since the randomized
quick-select algorithm depends on the outcome of random events, its running time,t(n), is a random variable.
We are interested in boundingE(t(n)), the expected value oft(n). Say that a recursive invocation of
randomized quick-select is “good” if it partitionsS, so that the size ofSL andSG is at most3n/4. Clearly, a
recursive call is good with probability1/2. Letg(n) denote the number of consecutive recursive invocations
(including the present one) before getting a good invocation. Then

t(n) ≤ bn · g(n) + t(3n/4),

viiiwhereb ≥ 1 is a constant (to account for the overhead of each call). We are, of course, focusing in on the
case wheren is larger than1, for we can easily characterize in a closed form thatt(1) = b. Applying the
linearity of expectation property to the general case, then, we get

E (t(n)) ≤ E (bn · g(n) + t(3n/4)) = bn · E (g(n)) + E (t(3n/4)) .

Since a recursive call is good with probability1/2, and whether a recursive call is good or not is independent
of its parent call being good, the expected value ofg(n) is the same as the expected number of times we
must flip a fair coin before it comes up “heads.” This implies thatE(g(n)) = 2. Thus, if we letT (n) be a
shorthand notation forE(t(n)) (the expected running time of the randomized quick-select algorithm), then
we can write the case forn > 1 asT (n) ≤ T (3n/4) + 2bn. Converting this recurrence relation to a closed
form, we get that

T (n) ≤ 2bn ·
dlog4/3 ne∑

i=0

(3/4)i.

Thus, the expected running time of quick-select isO(n).

5. CONCLUSION

We have discussed some simplified analyses of well-known algorithms and data structures. In particular,
we have presented simplified analyses for skip lists and randomized quick-sort, suitable for a CS2 course,
and for randomized quick-select. These simplified analyses, in slightly different form, along with further
discussions of simple data structures and algorithms, can be found in the recent book on data structures and
algorithms by the authors [2].

References

[1] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction to Algorithms. MIT Press, Cambridge,
MA, 1990.

[2] M. T. Goodrich and R. Tamassia.Data Structures and Algorithms in Java. John Wiley and Sons, New
York, 1998.

[3] P. Kirschenhofer and H. Prodinger. The path length of random skip lists.Acta Informatica, 31:775–792,
1994.

[4] R. Motwani and P. Raghavan.Randomized Algorithms. Cambridge University Press, New York, NY,
1995.

[5] T. Papadakis, J. I. Munro, and P. V. Poblete. Average search and update costs in skip lists.BIT, 32:316–
332, 1992.

[6] P. V. Poblete, J. I. Munro, and T. Papadakis. The binomial transform and its application to the analysis
of skip lists. InProceedings of the European Symposium on Algorithms (ESA), pages 554–569, 1995.

[7] W. Pugh. Skip lists: a probabilistic alternative to balanced trees.Commun. ACM, 33(6):668–676, 1990.

[8] R. Seidel. Backwards analysis of randomized geometric algorithms. In J. Pach, editor,New Trends
in Discrete and Computational Geometry, volume 10 ofAlgorithms and Combinatorics, pages 37–68.
Springer-Verlag, 1993.

ix

