
Chapter 1

Approximate Geometric Query
Structures

Specialized data structures are essential for answering geometric problems. In general
one wishes to preprocess a data set so as to efficiently answer certain geometric prob-
lems quickly. Of considerable importance is identifying the nearest neighbor to a query
point and counting or reporting the number of objects from the data set within a given
region. The literature is full of theoretical results on many of these problems. Unfortu-
nately, there are several drawbacks in the theoretical nature of many of these structures.
In many cases, the optimal running time or storage requirements are extremely ineffi-
cient. For example, Chazelle and Welzl [7] showed that triangle range queries can be
solved inO(

√
nlogn) time using linear space but this holds only in the plane. In higher

dimensions, the dependency goes up dramatically. In general, the time needed to per-
form an exact simple range query and still use small linear space is roughlyΩ(n1−1/d),
ignoring logarithmic factors [6]. For specialized queries like orthogonal queries, some
improvement is given if space is sacrificed. Range trees solve orthogonal range queries
in O(logd−1n) time but useO(nlogd−1n) space [17]. Besides the space requirement,
this structure only works well for orthogonal range queries.

As a result, many applied researchers have turned to more practically efficient, if
not theoretically efficient, structures. A compromise between theoretical and practi-
cal algorithms is often obtained by trying to solve the problem approximately. In re-
cent years several data structures have emerged that efficiently solve several geometric
queries approximately. Aryaet al. [1] introduced the idea of efficiently approximat-
ing nearest-neighbor queries in low-dimensional space. Their work developed a new
structure known as the balanced box decomposition (BBD) tree. The BBD tree is a
variant of the quadtree and octree [14] but is most closely related to the fair-split tree,
see [5]. In [3], Arya and Mount extend the structure to the analysis of approximate
range queries. Another structure capable of efficiently answering approximate geomet-
ric queries is the balanced aspect ratio tree [11, 12, 13], which is similar in nature to the
k-d tree [16]. Extremely popular in practicek-d trees have long been known to exhibit
excellent performance bounds in practice but little theoretical results had been known.

1

2 CHAPTER 1. APPROXIMATE GEOMETRIC QUERY STRUCTURES

In [9, 11], Dickersonet al. show that one of the more common variants, the maximum-
spreadk-d tree, exhibits properties similar to BBD trees and BAR trees and present
efficient bounds on approximate geometric queries for this variant. Unfortunately, the
bounds are not as efficient as the BBD tree or BAR tree but are comparable. In the
following chapter, we shall cover several standard approximate geometric queries and
discuss BBD trees, BAR trees, and maximum-spreadk-d trees.

1.1 General Terminology

In order to discuss approximate geometric queries and the efficient structures on them
without confusion, we must cover a few fundamental terms. First, we distinguish be-
tween general points in IRd and points given as input to the structures.

For a given metric space IRd, the coordinates of any pointp∈ IRd are(p1, p2, . . . , pd).
When necessary to avoid confusion, we refer to points given as input in a setSasdata
pointsand general points in IRd asreal points. For two pointsp,q∈ IRd, theLm metric
distancebetweenp andq is

δ(p,q) = (
d

∑
i=1
|pi−qi |m)

1
m .

Although our analysis will concentrate on the EuclideanL2 metric space, the data struc-
tures mentioned in this chapter work in all of theLm metric spaces.

In addition, we use the standard notions of (convex) regionsR, rectangular boxes,
hyperplanesH, and hyperspheresB. For each of these objects we define two distance
values. LetP andQ be any two regions in IRd, the minimumandmaximummetric
distances betweenP andQ are

δ(P,Q) = min
p∈P,q∈Q

δ(p,q) and

∆(P,Q) = max
p∈P,q∈Q

δ(p,q) respectively.

Notice that this definition holds even if one or both regions are simply points.
Let Sbe a finite data setS⊂ IRd. For a subsetS1 ⊆ S, thesizeof S1, written |S1|,

is the number of distinct data points inS1. More importantly, for any regionR⊂ IRd,
the size is|R| = |R∩S|. That is, thesizeof a region identifies the number of data
points in it. To refer to the physical size of a region, we define the outer radius as
OR = minR⊆Br r, whereBr is defined as the hypersphere with radiusr. The inner radius
of a region isIR = maxBr⊆Rr. The outer radius, therefore, identifies the smallest ball
that contains the regionR whereas the inner radius identifies the largest ball contained
in R.

In order to discuss balanced aspect ratio, we need to define the term.

Definition 1.1 A convex region R inIRd has aspect ratioasp(R) = OR/IR with respect
to some underlying metric. For a given balancing factorα, if asp(R) ≤ α, R has
balanced aspect ratioand is called anα-balancedregion. Similarly, a collection of
regionsR has balanced aspect ratio for a given factorα if each region R∈ R is an
α-balanced region.

1.2. APPROXIMATE QUERIES 3

For simplicity, when referring to rectangular boxes, we consider the aspect ratio as
simply the ratio of the longest side to the shortest side. It is fairly easy to verify that
the two definitions are equal within a constant factor. As is commonly used, we refer
to regions as being eitherfat or skinnydepending on whether their aspect ratios are
balanced or not.

The class of structures that we discuss in this chapter are all derivatives of binary
space partition (BSP) trees, see for example [18]. Each nodeu in a BSP treeT rep-
resents both aregion Ru in space and thedata subset Su ⊆ Sof objects, points, lying
insideRu. For simplicity, regions are considered closed and points falling on the bound-
ary of two regions can be in either of the two regions but not both. Each leaf node in
T represents a region with a constant number of data objects, points, fromS. Each
internal node inT has an associated cut partitioning the region into two subregions,
each a child node. The root ofT is associated with some bounding (rectangular box)
region containingS. In general, BSP trees can store any type of object, points, lines,
solids, but in our case we focus on points. Typically, the partitioning cuts used are hy-
perplanes resulting in convex regions. However, the BBD tree presented in Section 1.4
is slightly different and can introduce regions with a single interior hole. Therefore, we
have generalized slightly to accommodate this in our definition.

1.2 Approximate Queries

Before elaborating on the structures and search algorithms used to answer certain
geometric queries, let us first introduce the basic definitions of approximate nearest-
neighbor, farthest-neighbor, and range queries, see [1, 2, 3, 11, 13].

Definition 1.2 Given a set S of points inIRd, a query point q∈ IRd, a (connected)
query region Q⊂ IRd, andε> 0, we define the following queries (see Figure 1.1):

• A point p∗ ∈ S is a nearest neighbor of q ifδ(p∗,q)≤ δ(p,q) for all p ∈ S.

• A point p∗ ∈ S is a farthest neighbor of q ifδ(p∗,q)≥ δ(p,q) for all p ∈ S.

• A point p∈S is a(1+ε)-nearest neighbor ofq if δ(p,q)≤ (1+ε)δ(p∗,q), where
p∗ is the true nearest neighbor of q.

• A point p∈S is a(1−ε)-farthest neighbor ofq if δ(p,q)≥ δ(p∗,q)−εOS, where
p∗ is the true farthest neighbor of q.

• Anε-approximate range queryreturns or counts a subset S′⊆S such that S∩Q⊆
S′ and for every point p∈ S′,δ(p,Q)≤ εOQ.

To clarify further, a pointp is a(1+ε)-approximate nearest neighbor if its distance
is within a constant error factor of the true nearest distance. Although we do not discuss
it here, we can extend the definitions to report a sequence ofk (1+ ε)-nearest (or(1−
ε)-farthest) neighbors. One may also wonder why the approximate farthest neighbor
is defined in absolute terms instead of relative terms as with the nearest version. By
observing that the distance from any query point to its farthest neighbor is always at

4 CHAPTER 1. APPROXIMATE GEOMETRIC QUERY STRUCTURES

p*

p

qq

p
p*

(c)(b)(a)

Figure 1.1: Examples of (a) an approximate nearest-neighbor query, (b) an approxi-
mate farthest-neighbor query, and (c) an approximate range query, here dark points are
report/counted and lighter points are not.

least the radius of the point setOS, one can see that the approximation is as good
as the relative approximation. Moreover, if the query point is extremely far from the
point set, then a relative approximation could return any point inSwhereas an absolute
approximation would require a much more accurate distance.

Although we do not modify our definition here, one can extend this notion and our
later theorems to compensate for the problem of query points distant from the point set
in nearest-neighbor queries as well. In other words, when the query point is relatively
close to the entire data set, we can use the relative error bound and when it is relatively
far away from the entire data set, we can use the absolute error bound.

The approximate range searching problem described above has one-sided false-
positive errors. We do not miss any valid points, but we may introduce erroneous points
near the range boundary. It is a simple modification of the query regions to instead get
false-negative errors. That is, we could instead require that we do not include any
points outsideQ but allow missing some points insideQ if they are near the border. In
fact, for any regionQ one could define two epsilon rangesεi andεo for both interior
and exterior error bounds and then treat the approximation factor asε = εi + εo.

There are numerous approaches one may take to solving these problems. Arya
et al. [1] introduced a priority search algorithm for visiting nodes in a partition tree to
solve nearest-neighbor queries. Using their BBD tree structure, they were able to prove
efficient query times. Duncanet al. [13] extended the priority search and analysis to
solving farthest-neighbor queries. The nearest and farthest neighbor priority searching
algorithms shown in Figures 1.2 and 1.3 come from [11]. In the approximate nearest-
neighbor, respectively farthest-neighbor, search, nodes are visited in order of closest
node, respectively farthest node. Nodes are extracted via an efficient priority queue,
such as the Fibonacci heap [10, 15].

Introduced by [3], the search technique used for the approximate range query is a
modification to the standard range searching algorithm for regular partition trees. We
present the algorithm from [11] in Figure 1.4. In this algorithm, we have two different
query regions, the inner regionQ and the outer regionQ′ ⊇ Q. The goal is to return
all points inS that lie insideQ, allowing some points to lie insideQ′ but none outside
of Q′. That isQ′−Q defines a buffer zone that is the only place allowed for erroneous
points. Whenever a nodeu is visited, if u is a leaf node, we simply check all ofu’s

1.3. QUASI-BAR BOUNDS 5

AP P R O X I M A T ENE A R E S TNE I G H B O R(T, q, ε)
Arguments: BSP tree, T, query point q, and error factor ε
Returns: A (1+ ε)-nearest neighbor p
Q← root (T)
p← ∞
do u←Q.extractMin ()

if δ(u,q)> δ(p,q)/(1+ ε)
return p

while u is not a leaf
u1← leftChild (u)
u2← rightChild (u)
if δ(u1,q)≤ δ(u2,q)

Q.insert (δ(u2,q),u2)
u← u1

else
Q.insert (δ(u1,q),u1)
u← u2

end while
// u is now a leaf
for all p′ in dataSet(u)

if δ(p′,q)< δ(p,q)
p← p′

repeat

Figure 1.2:The basic algorithm to perform nearest-neighbor priority searching.

associated data points. Otherwise, ifRu does not intersectQ, we know that none of its
points can lie inQ and we therefore ignoreu and its subtree. IfRu lies completely inside
Q′ then all of the data points in its subtree must lie insideQ′, and we report all points.
Otherwise, we repeat the process onu’s two child nodes. For anε-approximate range
search, we defineQ′ = {p∈ IRd|δ(p,Q) ≤ εOQ}. We note that this search algorithm
can also be modified to return the count or sum of the weights of the points inside the
approximate range rather than explicitly reporting the points.

In all of these search algorithms, the essential criteria behind the running time is
the observation that a non-terminating node in the search, one that requires expansion
of its child nodes, is a node that must cross certain size boundaries. For example, in
the approximate range searching algorithm, the only nodes expanded are those whose
region lies partially insideQ, else it would be discarded, and partially outsideQ′, else
it would be completely counted in the output size. A slightly more complex but similar
argument applies for nearest and farthest neighbor algorithms. In the next section, we
discuss a general theorem providing provable running time bounds for partition trees
satisfying a fundamental packing argument.

1.3 Quasi-BAR bounds

We are now ready to examine closely a sufficient condition for a data structure to guar-
antee efficient performance on the aforementioned searches. Before we can proceed,
we must first discuss a few more basic definitions presented in Dickersonet al. [9].

Definition 1.3 For any region R, theregion annulus with radiusr, denoted AR,r is the

6 CHAPTER 1. APPROXIMATE GEOMETRIC QUERY STRUCTURES

APPROXIMATEFARTHESTNEIGHBOR(T, q, ε)
Arguments: BSP tree, T, query point q, and error factor ε
Returns: A (1− ε)-farthest neighbor p
Q← root (T)
p← q
do u←Q.extractMax ()

if ∆(u,q)≤ δ(p,q)+ εD
return p

while u is not a leaf
u1← leftChild (u)
u2← rightChild (u)
if ∆(u1,q)≥ ∆(u2,q)

Q.insert (∆(u2,q),u2)
u← u1

else
Q.insert (∆(u1,q),u1)
u← u2

end while
// u is now a leaf
for all p′ in dataSet(u)

if δ(p′,q)> δ(p,q)
p← p′

repeat

Figure 1.3:The basic algorithm to perform farthest-neighbor priority searching.

AP P R O X I M A T ERA N G ESE A R C H(u, Q, Q′)
Arguments: Node u in a BSP tree, inner region Q, outer region Q′

Initially, u← root (T).
Reports: All points in the approximate range defined by Q and Q′

if u is a leaf node
for all p in dataSet(u)

if p∈Q
output p

else if Ru ⊆Q′

// The region lies completely inside Q′

output all points p in the subtree of u
else if Ru∩Q 6= /0

// The region lies partially inside Q
call A P P R O X I M A T ERA N G ESE A R C H(leftChild(u), Q, Q′)
call A P P R O X I M A T ERA N G ESE A R C H(rightChild(u), Q, Q′)

Figure 1.4:The basic range search algorithm.

1.3. QUASI-BAR BOUNDS 7

(b)(a)

Figure 1.5:An example of a simple annulus region (a) with three other regions which
pierce this annulus and (b) with several “fat” square regions. Observe that only a limited
number of such “fat” squares can pierce the annulus.

set of all points p∈ IRd such that p/∈R andδ(p,R)< r. A region R′ piercesan annulus
AR,r if and only if there exist two points p,q∈ R′ such that p∈ R and q/∈ R∪AR,r .

In other words, an annulusAR,r contains all points outside but near the regionR. If
R were a sphere of radiusr ′, this would be the standard definition of an annulus with
inner radiusr ′ and outer radiusr ′+ r. For convenience, when the region and radius of
an annulus are understood, we useA. Figure 1.5 illustrates the basic idea of a spherical
annulus with multiple piercing regions.

The core of the performance analysis for the searches lies in a critical packing
argument. The packing lemmas work by bounding the number of disjoint regions that
can pierce an annulus and hence simultaneously fit inside the annulus, see Figure 1.5b.
When this packing size is small, the searches are efficient. Rather than cover each
structure’s search analysis separately, we use the following more generalized notion
from Dickersonet al, [9].

Definition 1.4 Given a BSP tree T and a region annulus A, letP (A) denote the largest
set of disjoint nodes in T whose associated regions pierce A. A class of BSP trees is a
ρ(n)-quasi-BAR treeif, for any tree T in the class constructed on a set S of n points
in IRd and any region annulus AR,r , |P (AR,r)| ≤ ρ(n)VA/rd, where VA is the volume of
AR,r . The functionρ(n) is called thepackingfunction.

Basically, the packing functionρ(n) represents the maximum number of regions
that can pierce any query annulus. By proving that a class of BSP trees is aρ(n)-quasi-
BAR tree, we can automatically inherit the following theorems proven in [1, 3, 13]
and generalized in [9]:

Theorem 1.5 Suppose we are given aρ(n)-quasi-BAR tree T with depth DT = Ω(logn)
constructed on a set S of n points inIRd. For any query point q, the priority search al-
gorithms in Figures 1.2 and 1.3 find respectively a(1+ε)-nearest and a(1−ε)-farthest
neighbor to q in O(ε1−dρ(n)DT) time.

Theorem 1.6 Suppose we are given aρ(n)-quasi-BAR tree T with depth DT con-
structed on a set S of n points inIRd. For any convex query region Q, the search algo-
rithm in Figure 1.4 solves anε-approximate range searching query in T in O(ε1−dρ(n)DT)

8 CHAPTER 1. APPROXIMATE GEOMETRIC QUERY STRUCTURES

(b)(a)

pp

Figure 1.6: (a) A bad corner of a simple rectangular region with nearly all of
the points clustered near a corner. Notice a cut in either the x or y direction
dividing the points located inside p would cause a “skinny” region. (b) The
same situation in IR3.

time (plus output size in the reporting case). For any general non-convex query region
Q, the time required is O(ε−dρ(n)DT) (plus output size).1

Trivially, ρ(n) is always less thann but this accomplishes little in the means of
getting good bounds. Having a class of trees with a good packing function helps guar-
antee good asymptotic performance in answering geometric queries. One approach to
finding such classes is to require that all regions produced by the tree be fat. The idea
behind this is that there is a limit to the number of disjoint fat regions that pierce an
annulus dependent upon the aspect ratio of the regions and the thickness of the annulus.
Unfortunately, guaranteeing fat regions is not readily possible using the standard BSP
trees likek-d trees and octrees. Imagine building ak-d tree using only axis-parallel par-
titioning cuts. Figure 1.6 illustrates such an example. Here the majority of the points
are concentrated at a particular corner of a rectangular region. Now, any axis-parallel
cut is either too close to the opposing face or does not partition the points in the region
well, resulting in large tree depth.

Fortunately, there are structures that can provably be shown to beρ(n)-quasi-BAR
trees for good values ofρ(n). The next few sections discuss some of these structures.

1.4 BBD trees

Arya et al. [1] introduced the first BSP tree structure to guarantee both balanced aspect
ratio andO(logn) depth. In addition, the aspect ratio achieved allowed them to prove
an essential packing constraint. From this, once can verify that the BBD tree has a
packing function ofρ(n) = O(1) where the constant factor depends on the dimension
d. In the following section, we describe the basic construction of the BBD tree using
terminology from [3].

1Actually, BBD trees and BAR trees have a slightly better running time for these searches and we mention
this in the respective sections.

1.4. BBD TREES 9

Every regionRu associated with a nodeu in a BBD tree is either anouter rectan-
gular box or the set theoretic difference between anouterrectangular box and aninner
rectangular box. Thesizeof a box is the length of its longest side and thesizeof Ru

is the size of the outer box. In order to guarantee balanced aspect ratio for these cells,
Arya et al. [1] introduced astickinessrestriction on the inner box. Briefly described,
an inner box isstickyif the distance between the inner box and every face on the outer
box is either 0 or not less than the size of the inner box. Although not essential to the
structure, we shall assume that the aspect ratio of the outer box is no more than two.

The construction of the BBD tree is done by a sequence of alternating splitting
and shrinking operations. In the(midpoint) splitoperation, a region is bisected by a
hyperplane cut orthogonal to one of the longest sides. This is essentially the standard
type of cut used in a quadtree or octree. Its simplicity, speed of computation, and
effectiveness are major reasons for preferring these operations.

Theshrinkoperation partitions a region by a box lying inside the region, essentially
creating an inner region. The shrink operation is actually part of a sequence of up to
three operations called acentroid shrink. The centroid shrink attempts to partition the
region into a small number of subregionsRi such that|Ri | ≤ 2|Ru|/3.

WhenRu is simply an outer box, with no inner box, a centroid operation is per-
formed with one shrink operation. The inner partitioning box is found by conceptually
applying midpoint split operations recursively on the subregion with the larger number
of points. The process stops when the subregion contains no more than 2|Ru|/3 points.
The outer box of this subregion is the inner partitioning box for the shrink operation.
The other merely conceptual midpoint splits are simply ignored. Choosing this inner
box guarantees that both subregions produced by the split have no more than 2|Ru|/3
points. This can be seen by observing that the inner box has no more than 2|Ru|/3
points and also must contain at least|Ru|/3 points. The technique as stated is not the-
oretically ideal because the number of midpoint split operations computed cannot be
bounded. Aryaet al. [1, 3] describe a simple solution by repeatedly computing the
smallest bounding midpoint box using a technique due to Clarkson [8].

WhenRu has an inner box associated with it, we cannot simply find another inner
box as this would violate the restriction on having only one inner box. Letbi represent
the original inner box. The solution is to proceed as in the previous centroid shrink op-
eration, repeatedly applying midpoint split operations on the subregion with the larger
number of points. However, we now stop in one of two situations; either the size of the
larger subregion has no more than 2|Ru|/3 points or the subregion no longer contains
bi . In the former case, letb be the outer box of this subregion. In the latter case, or
in the event both cases happen, letb represent the outer box of the subregion prior to
this final split. We perform a shrink operation usingb as the inner box. Sinceb clearly
containsbi , the subregion associated with the original outer box continues to have one
inner box, albeit a slightly larger one than its parent. The subregionR1, whose outer
box isb, also has one inner box,bi . If |R1|> 2|Ru|/3, we perform a midpoint split on
this subregion. LetR2 be the subregion formed by this last split that does not contain
bi . SinceR2 does not contain an inner box, ifR2 contains more than 2|Ru|/3 points, we
simply perform the previous shrink operation thus dividingR2 into two smaller sub-
regions as well. Clearly, all the subregions produced by this centroid shrink have less
than 2|Ru|/3 points. Figure 1.7 shows the three main operations, splitting, shrinking,

10 CHAPTER 1. APPROXIMATE GEOMETRIC QUERY STRUCTURES

(c)(b)(a)

Figure 1.7: Examples of (a) multiple iterations of the midpoint split rule, (b) centroid
shrinking, with dashed lines representing the conceptual midpoint splits and the high-
lighted inner box being the actual partition cut, (c) centroid shrinking with an inner box.
In the final example, the original inner box is solid, the final midpoint split is shown with
dotted lines and the new inner box partition cuts is shown shaded in gray.

and the three-step shrinking process.
In addition to this simple version of the BBD tree, Aryaet al. [1, 3] present sev-

eral more practical variations on this approach. The reader should refer to [1, 3] for
details on an efficientO(dnlogn) construction algorithm and for discussions on more
practical variations on the above approach. To highlight a few options, at any stage in
the construction, rather than alternate between shrinking and splitting operations, it is
ideal to perform split operations whenever possible, so long as the point set is divided
evenly after every few levels, and use the more costly shrinking operations only when
necessary. Another approach is to use a more flexible split operation, afair split, which
attempts to partition the region more evenly. In this case, more care has to be taken to
avoid producing skinny regions and to avoid violating the essential stickiness property;
however, as was shown experimentally, the flexibility provides for better experimental
performance.

The following theorem summarizes the result:

Theorem 1.7 Given a set S of n data points inIRd, in O(dnlogn) time it is possible to
construct a BBD tree such that

1. the tree has O(n) nodes and depth O(logn),

2. the regions have outer boxes with balanced aspect ratio and inner boxes that are
sticky to the outer box,

3. the sizes of the regions are halved after every2d levels in the tree.

The above conditions imply that the BBD tree is an O(1)-quasi-BAR tree.

The size reduction constraint above is essential in showing a slightly better per-
formance for geometric queries than given for general quasi-BAR trees. In particu-
lar, Arya and Mount [3] show that the size reduction allows range queries on BBD
trees to be solved inO(2d logn+d(3

√
d/ε)d) time, orO(2d logn+d3(3

√
d/ε)d−1) for

1.5. BAR TREES 11

convex queries. Duncan [11] later extended the separation of then andε dependen-
cies to nearest and farthest neighbor queries showing that the running time for both is
O(logn+ ε1−d log(1/ε)) for fixed dimensiond.

1.5 BAR trees

The balanced aspect ratio tree introduced in [12] for the basic two-dimensional case
and subsequently revised to higher dimensions in [11, 13] can be shown to have a
packing function ofρ(n) = O(1) where the constant factor depends on the dimension
d and a user-specified aspect ratio parameterα. In the following section, we borrow
terminology from [11, 13].

Unlike BBD trees,k-d trees, and octrees, BAR trees do not exclusively use axis-
orthogonal hyperplane cuts. Instead, to achieve simultaneously the goals of good as-
pect ratio, balanced depth, and convex regions, cuts in several different directions are
used. These directions are called canonical cuts and the particular choice and size of
canonical cuts is essential in creating good BAR trees.

Definition 1.8 The following terms relate to specific cutting directions:

• A canonical cut set, C = {~v1,~v2, . . . ,~vγ}, is a collection ofγ not necessarily inde-
pendent vectors that spanIRd (thus,γ≥ d).

• A canonical cut directionis any vector~vi ∈ C .

• A canonical cutis any hyperplane, H, inIRd with a normal inC .

• A canonical regionis any region formed by the intersection of a set of hyper-
spaces defined by canonical cuts, i.e., a convex polyhedron inIRd with every
facet having a normal inC .

Figure 1.8a shows a region composed of three cut directions(1,0), (0,1), and
(1,−1), or simply cuts along thex, y, andx− y directions. After cutting the region
at the dashed linec, we have two regionsR1 andR2. In R2 notice the left side is re-
placed by the new cutc, and more importantly the diagonal cut is no longer tangential
to R2. The following definition describes this property more specifically.

Definition 1.9 A canonical cut cdefinesa canonical region R, written c∈ R, if and
only if c is tangential to R. In other words, c intersects the border of R. For a canonical
region R, any two parallel canonical cuts b,c∈R areopposing canonical cuts. For any
canonical region R, we define thecanonical bounding cutswith respect to a direction
~vi ∈ C to be the two unique opposing canonical cuts normal to~vi and tangent to R. We
often refer to these cuts as bi and ci or simply b and c when i is understood from the
context. Intuitively, R is “sandwiched” between bi and ci . To avoid confusion, when
referring to a canonical cut of a region R, wealwaysmean a canonical bounding cut.

For any canonical bounding cut, c, thefacetof c∈ R,facetc(R), is defined as the
region formed by the intersection of R with c.

12 CHAPTER 1. APPROXIMATE GEOMETRIC QUERY STRUCTURES

(b)(a)

c

R2R1 min

max

Figure 1.8:(a) An example of a canonical region of three cut directions, x, y, and x−y.
Observe the three widths highlighted with lines and the min and max widths of the re-
gion. The left facet associated with the x direction is drawn in bold. The bold dashed line
in the center represents a cut c and the respective subregions R1 and R2. (b) An exam-
ple of a similar region highlighting the two shield regions associated with the x-direction
for α ≈ 4. Notice the size difference between the two shield regions corresponding to
the associated facet sizes.

The canonical set used to define a partition tree can vary from method to method.
For example, the standardk-d tree algorithm [4] uses a canonical set composed of all
axis-orthogonal directions.

Definition 1.10 For a canonical setC and a canonical region R, we define the follow-
ing terms (see also Figure 1.8):

• For a canonical direction~vi ∈ C , the width of R in the direction~vi , written
widthi(R), is the distance between bi and ci , i.e.,widthi(R) = δ(bi ,ci).

• Themaximum side ofR ismax(R) = maxi∈C (widthi(R)).

• Theminimum side ofR ismin(R) = mini∈C (widthi(R)).

• R hascanonical aspect ratio, casp(R) = max(R)/min(R).

For simplicity, we also refer to the facets of a region in the same manner. We define
the following terms for a facet of a region R, f= facetc(R):

• Thewidth of f in the direction~vi is widthi(f) = δ(bi ,ci) where bi and ci are the
opposing bounding cuts of f in the direction~vi .

• Themaximum side off is max(f) = maxi∈C (widthi(R)).

• In addition, for any canonical cut c∈ R, thelengthof c, lenc(R), is defined as
max(facetc(R)).

When using a canonical cutci to partition a regionR into two piecesR1 andR2 as
the cut gets closer to a side ofR, one of the two respective regions gets increasingly
skinnier. At some point, the region is no longerα-balanced. This threshold region is
referred to as shield region and is defined in [11] as the following:

1.5. BAR TREES 13

Definition 1.11 Given anα-balanced canonical region R and a canonical cut direction
~vi , sweep a cut c′ from the opposing cut bi toward ci . Let P be the region of R between
c′ and ci . Sweep c′ until either region P is empty or just beforecasp(P)> α. If P is not
empty, then P has maximum aspect ratio. Call the region P theshield region ofci in R,
shieldci (R). Let themaximal outer shield, mosi(R), be the shield regionshieldbi (R)
or shieldci (R) such that|mosi(R)| = max(|shieldbi (R)|, |shieldci (R)|), i.e., the
maximal outer shield is the shield region with the greater number of points. See Fig-
ure 1.8b.

Definition 1.12 Anα-balanced canonical region, R, isone-cuttablewith reduction fac-
tor β, where1/2≤ β< 1, if there exists a cut c1 ∈ C , called aone-cut, dividing R into
two subregions R1 and R2 such that the following conditions hold:

1. R1 and R2 are α-balanced canonical regions,

2. |R1| ≤ β|R| and|R2| ≤ β|R|.

Definition 1.13 Anα-balanced canonical region, R, is k-cuttablewith reduction factor
β, for k> 1, if there exists a cut ck ∈ C , called a k-cut, dividing R into two subregions
R1 and R2 such that the following conditions hold:

1. R1 and R2 are α-balanced canonical regions,

2. |R2| ≤ β|R|,

3. Either |R1| ≤ β|R| or R1 is (k−1)-cuttable with reduction factorβ.

In other words, the sequence of cuts, ck,ck−1, . . . ,c1, results in k+ 1 α-balanced
canonical regions each containing no more thanβ|R| points. If the reduction factorβ
is understood, we simply say R is k-cuttable.

Definition 1.14 For a canonical cut set,C , a binary space partition tree T constructed
on a set S is aBAR tree with maximum aspect ratioα if every region R∈ T is α-
balanced.

Figure 1.9 illustrates an algorithm to construct a BAR tree from a sequence ofk-
cuttable regions.

Theorem 1.15 For a canonical cut set,C , if every possibleα-balanced canonical re-
gion is k-cuttable with reduction factorβ, then a BAR tree with maximum aspect ratio
α can be constructed with depth O(k log1/β n), for any set S of n points inIRd.

The main challenge in creating a specific instance of a BAR tree is in defining
a canonical setC such that every possibleα-balanced canonical region isk-cuttable
with reduction factorβ for reasonable choices ofα, β, andk. Theα-balanced regions
produced help BAR trees have the following packing function.

Theorem 1.16 For a canonical cut set,C , if every possibleα-balanced canonical re-
gion is k-cuttable with reduction factorβ, then the class of BAR trees with maximum
aspect ratioα has a packing functionρ(n) = O(αd) where the hidden constant factor
depends on the angles between the various cut directions. For fixedα, this is constant.

14 CHAPTER 1. APPROXIMATE GEOMETRIC QUERY STRUCTURES

CR E A T EBA RTR E E(u, Su, Ru, α, β)
Arguments: Current node u to build (initially the root),

Su is the current point set (initially S)
Ru is the α-balanced region containing Su

(initially a bounding hypercube of S)
(Optional) node u can contain any of the following:

region Ru, sample point p∈ Su, size |Su|
if |Su| ≤ leafSize then

(leaf) node u stores the set Su

return
find ci , an i-cut for Ru, for smallest value of i
(internal) node u stores ci

create two child nodes of u, v and w
partition Su into Sv and Sw by the cut si

partition Ru into Rv and Rw by the cut si

call C R E A T EBA RTR E E(v, Sv, Rv, α, β)
call C R E A T EBA RTR E E(w, Sw, Rw, α, β)

Figure 1.9:General BAR tree construction algorithm.

Theorems 1.15 and 1.16 immediately show us that approximate geometric nearest-
neighbor and farthest-neighbor queries can be solved inO(ε1−d logn) time and approx-
imate geometric range searches for convex and non-convex regions takeO(ε1−d logn+
k) andO(ε−d logn+k) respectively. As with the BBD tree, in fact, these structures can
also be shown to have running times ofO(logn+ ε1−d log 1

ε) for nearest-neighbor and
farthest-neighbor queries [11] andO(logn+ ε1−d +k) andO(logn+ ε−d +k) for con-
vex and non-convex range queries [3].

Another examination of Figure 1.6 shows why simple axis-orthogonal cuts cannot
guaranteek-cuttability. By concentrating a large number of points at an actual corner
of the rectangular region, no sequence of axis-orthogonal cuts will divide the points
and maintain balanced aspect ratio regions. We can further extend this notion of a bad
corner to a generalκ-corner associated with a canonical regionR.

Definition 1.17 For a canonical cut setC and a canonical region R, aκ-cornerB∈ R
is a ball with centerρ and radiusκ such that, for every cut direction~vi ∈ C with
bounding cuts bi and ci , either bi or ci intersects B, i.e.min(δ(ρ,bi),δ(ρ,ci))≤ κ.

Whenκ = 0, we are not only defining a vertex of a region but a vertex which is
tangential to one of every cut direction’s bounding planes. As described in [11], these
corners represent the worst-case placement of points in the region. These corners can
always exist in regions. However, if one of the facets associated with this corner has
size proportional to theκ ball, then we can still get close enough to this facet and
properly divide the point set without introducing unbalanced regions. The following
property formalizes this notion more:

Property 1.18 A canonical cut setC satisfies theκ-Corner Propertyif for any κ ≥ 0
and any canonical region R containing aκ-corner B∈ R, there exists a canonical cut
c∈ R intersecting B such thatlenc(R)≤ Fκκ for some constantFκ.

1.5. BAR TREES 15

CO M P U T ETW OCU T(u)
Arguments: An α-balanced node u in a BAR tree
Returns: A one or two-cut for u
for all ci ∈ C

if ci is a one-cut, return ci

let P be the smallest maximal outer shield of R
let c = ci be the bounding cut associated with P
let c′ be the cut parallel to c intersecting R such that

δ(c,c′) = widthi(P)+lenc(R)/σ
return c′

// c′ partitions R into two α-balanced regions R1 and R2
// |R2| ≤ β|R|
// R1 incident to ci is one-cuttable

Figure 1.10:An algorithm to find either a one or two cut in a region.

In particular, notice that ifκ = 0, one of the bounding cutting planes must intersect
at a single point. The advantage to this can be seen in the two-dimensional case. Con-
struct any canonical region using any three cutting directions, for simplicity use the
two axis-orthogonal cuts and one cut with slope+1. It is impossible to find aκ-corner
without having at least one of the three bounding sides be small with respect to the
corner. This small side has a matching very small shield region. Unfortunately, having
a small shield region does not mean that the initial region is one-cuttable. The points
may all still be concentrated within this small shield region. However, it is possible
that this small shield region is one-cuttable. In fact, in [11], it is shown that there ex-
ist canonical cut sets that guaranteetwo-cuttability for sufficient values ofα, β, and
σ, where theσ parameter is used in the construction. The sufficiency requirements
depend only on certain constant properties associated with the angles of the canonical
cut set labeled here asFmin,Fmax,Fbox, andFκ. For specific values of these constants,
see [11]. Figure 1.10 describes an algorithm to find an appropriate cut.

Theorem 1.19 (Two-Cuttable Theorem) Suppose we are given a canonical cut set,
C , which satisfies theκ-Corner Property 1.18. Anyα-balanced canonical region R is
two-cuttable if the following three conditions are met:

β≥ (d+1)/(d+2), (1.1)

αFmin/4(Fbox +1)> σ> (2Fmax+ Fκ), and (1.2)

α> 4(Fbox +1)(2Fmax+ Fκ)/Fmin + Fmax/Fmin. (1.3)

Theorems 1.19 and 1.15 can be combined to yield the following theorem:

Theorem 1.20 Suppose we are given a canonical cut setC that satisfies theκ-Corner
Property and anα > f (C). A BAR tree with depth O(d logn) and balancing factor
α can be constructed in O(g(C)dnlogn) time, where f and g are constant functions
depending on properties of the canonical set. In particular, the running time of the
algorithm is O(nlogn) for fixed dimensions and fixed canonical sets.

16 CHAPTER 1. APPROXIMATE GEOMETRIC QUERY STRUCTURES

Let us now present two cut sets that do satisfy theκ-Corner Property. The two cut
sets we present below are composed of axis-orthogonal cuts and one other set of cuts.
Let us give specific names to a few vector directions.

Definition 1.21 A vector v= (x0,x1,x2, . . . ,xd) is

• an axis-orthogonal cutif xi = 0 for all values except one where xj = 1, e.g.
(0,0,1,0),

• a corner cutif xi =±1 for all values of i, e.g.(1,1,−1,−1),

• a wedge cutif xi = 0 for all values except two where xj ,xi =±1, e.g.(0,1,−1,0)

TheCorner Cut Canonical SetCc is the set of all axis-orthogonal cuts and corner cuts.
TheWedge Cut Canonical SetCw is the set of all axis-orthogonal cuts and wedge cuts.

Notice that|Cc| is Θ(2d) and |Cw| is Θ(d2). Although the corner cut canonical
set does not necessarily have to be as large as this, the complexity of the corner cut
itself means sidedness tests take longer than axis-orthogonal and wedge cuts, namely
d computations instead of 1 or 2. The above two canonical sets satisfy theκ-Corner
Property 1.18 and from Theorem 1.20, we get the following two corollaries [11]:

Corollary 1.22 For the Corner Cut Canonical setCc, a BAR tree with depth O(d logn)
and balancing factorα = Ω(d2) can be constructed in O(nlogn) time.

Corollary 1.23 For the Wedge Cut Canonical setCw, a BAR tree with depth O(d logn)
and balancing factorα = Ω(

√
d) can be constructed in O(nlogn) time.

To get the exact values needed, see [11]. However, it is important to note that the
α bound above is a vast overestimate of the minimum value needed. In practice, one
should try an initially small value ofα, say 6, and when that fails to provide two-
cuttability double the value for the lower subtree levels. In this manner, one can arrive
at the true minimum value inO(logα) such iterations, if necessary, without having to
calculate it. Since the minimumα needed in both cut sets isO(d2), this adds only an
O(log(d)) factor to the depth.

1.6 Maximum-Spreadk-d trees

One very popular class of BSP tree is thek-d tree, see Chapter??.2 Although there
are very few theoretical bounds known on these structures, there is a lot of empirical
evidence that shows them to be extremely efficient for numerous geometric applica-
tions. In particular, one variant the maximum-spreadk-d tree has long been considered
an idealk-d tree. Given a set of pointsS and a particular axis dimensionxd, define
the spreadof S in xd to be the difference between the minimum and maximum co-
ordinates of the points in that dimension. The maximum-spreadk-d tree is formed
by choosing at each internal node a cutting plane orthogonal to the axis of maximum

2Is there a specific chapter reference for this in the Handbook?

1.6. MAXIMUM-SPREAD K-D TREES 17

spread placed at the median point in this direction, see for example [16]. Aryaet al.[1]
applied the maximum-spreadk-d tree to their approximate nearest-neighbor searching
algorithm and experimentally showed that they were comparable to the theoretically ef-
ficient BBD tree. Later Dickersonet al.[9, 11] proved the following theorem regarding
maximum-spreadk-d trees, referred to there as longest-sidek-d trees:

Theorem 1.24 Suppose we are given a maximum-spread k-d tree T constructed on a
set S of n points inIRd. Then the packing functionρ(n) of T for a region annulus A is
O(logd−1n). That is, the class of maximum-spread k-d trees is an O(logd−1n)-quasi-
BAR tree.

Although the bound is not as good as for BBD trees and BAR trees, the simplicity
of the structure yields low constant factors and explains why in practice these trees
perform so well. Experimental comparisons to BBD trees and BAR trees verified
this result and showed that only for very highly clustered data did the dependency
on logd−1n become prominent [1, 11]. In practice, unless data is highly clustered and
the dimension is moderately large, the maximal-spreadk-d tree is an ideal structure to
use. However, for such data sets both the BBD tree and the BAR tree revert to the same
behavior as the maximal-spread tree, and they perform well even with highly clustered
data. Because of its simpler structure, the BBD tree is most likely more practical than
the BAR tree.

18 CHAPTER 1. APPROXIMATE GEOMETRIC QUERY STRUCTURES

Bibliography

[1] Arya, Mount, Netanyahu, Silverman, and Wu. An optimal algorithm for approximate near-
est neighbor searching in fixed dimensions.Journal of the ACM, 45(6):891–923, 1998.

[2] S. Arya and D. M. Mount. Approximate nearest neighbor queries in fixed dimensions. In
Proc. 4th ACM-SIAM Sympos. Discrete Algorithms, pages 271–280, 1993.

[3] Sunil Arya and David M. Mount. Approximate range searching.Comput. Geom., 17(3-
4):135–152, 2000.

[4] J. L. Bentley. Multidimensional binary search trees used for associative searching.Com-
mun. ACM, 18(9):509–517, 1975.

[5] P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional point sets with
applications tok-nearest-neighbors andn-body potential fields.J. ACM, 42:67–90, 1995.

[6] Bernard Chazelle. Lower bounds on the complexity of polytope range searching.J. Amer.
Math. Soc., 2:637–666, 1989.

[7] Bernard Chazelle and Emo Welzl. Quasi-optimal range searching in spaces of finite VC-
dimension.Discrete Comput. Geom., 4:467–489, 1989.

[8] K. L. Clarkson. Fast algorithms for the all nearest neighbors problem. InProc. 24th Annu.
IEEE Sympos. Found. Comput. Sci., pages 226–232, 1983.

[9] M. Dickerson, C. A. Duncan, and M. T. Goodrich. K-D trees are better when cut on the
longest side. InESA: Annual European Symposium on Algorithms, volume 1879 ofLecture
Notes Comput. Sci., pages 179–190, 2000.

[10] J. R. Driscoll, H. N. Gabow, R. Shrairaman, and R. E. Tarjan. Relaxed heaps: An alternative
to Fibonacci heaps with applications to parallel computation.Commun. ACM, 31:1343–
1354, 1988.

[11] C. A. Duncan. Balanced Aspect Ratio Trees. Ph.D. thesis, Dept. of Computer Science,
Johns Hopkins Univ., 1999.

[12] C. A. Duncan, M. T. Goodrich, and S. G. Kobourov. Balanced aspect ratio trees and their
use for drawing very large graphs.JGAA: Journal of Graph Algorithms and Applications,
4:19–46, 2000.

[13] C. A. Duncan, M. T. Goodrich, and S. G. Kobourov. Balanced aspect ratio trees: Com-
bining the advantages of k-d trees and octrees.ALGORITHMS: Journal of Algorithms,
38:303–333, 2001.

[14] R. A. Finkel and J. L. Bentley. Quad trees: a data structure for retrieval on composite keys.
Acta Inform., 4:1–9, 1974.

[15] M. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network opti-
mization problems.J. ACM, 34:596–615, 1987.

19

20 BIBLIOGRAPHY

[16] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best matches in
logarithmic expected time.ACM Trans. Math. Softw., 3:209–226, 1977.

[17] F. P. Preparata and M. I. Shamos.Computational Geometry: An Introduction. Springer-
Verlag, New York, NY, 1985.

[18] H. Samet.The Design and Analysis of Spatial Data Structures. Addison-Wesley, Reading,
MA, 1990.

