
JOURNAL OF PARALLEL AND DISTRIJWTE?D COMPUTING 3,492-507 (1986) 

Efficient Parallel Solutions to Some Geometric Problems 

MIKHAIL J. ATALLAH* AND MICHAEL T. GOODRICH 

Department of Computer Sciences, Purdue Universiry, West Lafqette, Indiana 47907 

Received May 13, 1985 

This paper presents new algorithms for solving some geometric problems on a 
shared memory parallel computer, where concurrent reads are allowed but no two 
processors can simultaneously attempt to write in the same memory location. The 
algorithms are quite different from known sequential algorithms, and are based on the 
use of a new parallel divide-and-conquer technique. One of our results is an 0 (log n) 
time, O(n) processor algorithm for the convex hull problem. Another result is an 
O(log n log log n) time, O(n) processor algorithm for the problem of selecting a 
closest pair of points among n inpUt pOint.3. 6 1986 Academic Press, Inc. 

1. INTRODUCTION 

Since they involve asking basic questions about sets of points, lines, 
polygons, etc., geometric problems arise often in many applications (see [ 141 
for examples). We are interested in finding parallel algorithms solving some 
of these problems which are efficient in terms of both their running time and 
the number of processors used. Efficient sequential algorithms for solving 
geometric problems often use the divide-and-conquer paradigm: to solve a 
problem of size n solve two subproblems of size n/2, and then “marry” the 
results of these two recursive calls. Unfortunately, trying to “parallelize” 
sequential algorithms based on this paradigm often yields suboptimal parallel 
solutions. Such is the case for the convex hull and the closest-pair problems, 
for example. Indeed, the efficient parallel algorithms we give for solving 
these problems turn out to be quite different from the known sequential 
algorithms. 

Throughout this paper, the computational model used is the synchronous 
parallel model in which processors share a common memory in which concur- 
rent reads are allowed, but no two processors can simultaneously write to the 
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same memory location. We henceforth refer to this model as the CREW 
PRAM (Concurrent Read Exclusive Write Parallel RAM), as it is commonly 
called. Using this model of parallel computation, we are interested in achiev- 
ing the highest speedup possible using only O(n) processors (this restriction 
on the numbers of processors is crucial, since the problems we consider could 
trivially be solved in logarithmic time if the number of processors used were 
of no concern, e.g., O(n*)). 

The technique which is common to all of our algorithms is a new parallel 
version of divide-and-conquer. The main idea is to divide the problem into 
many subproblems (e.g., fi), instead of just two; solve all the subproblems 
recursively in parallel; and, when the parallel recursive call returns, marry all 
the subproblem solutions quickly in parallel. As one may suspect, performing 
the marry step quickly in parallel is the most difficult aspect of using this 
technique, and, as we demonstrate, oftentimes requires new insights into the 
structure of the problem being solved. In Section 2 we use this technique to 
design an 0 (log n) time, 0 (n) processor parallel algorithm for constructing 
planar convex hulls and related problems. (We have recently learned that the 
convex hull result was independently discovered by Aggarwal et al. [ 11. ) This 
improves on the previous parallel algorithm for constructing planar convex 
hulls on a CREW PRAM, which ran in 0 (log* n) time using 0 (n) processors, 
given by Chow in [9]. Our algorithm is optimal with respect to both the time 
and the number of processors used, since this problem has an fI(n log n) time 
sequential lower bound [23]; hence, an obvious n(log n) time lower bound 
for the CREW PRAM computational model when using O(n) processors. 
Another problem for which we use the parallel divide-and-conquer technique 
is that of finding the closest pair among a set of n input points, which we 
present in Section 3. Our algorithm for this problem runs in 
0 (log n log log n) time using 0 (n) processors. 

In some of our algorithms we make use of the fact that the parallel prefix 
of a sequence of n integers can be computed in O(log n) time using 
0 (n/log n) processors [ 12, 131. Recall that in the parallel prefix problem we 
are given an array of integers (al, a2, . . . , a,,) and wish to compute all the 
partial sums Sk = xfTl ai. We also make use of the known result that, on this 
model of parallel computation, n objects can be sorted in 0 (log n) time using 
0 (n) processors [2, 151. Unfortunately, the constant involved in the time 
complexity of these algorithms is very large. This does not mean that our 
algorithms are impractical, however, for one can easily substitute a more 
practical sorting algorithm, such as that presented in [6, 221, at any point 
where sorting is required in our algorithms. Using the parallel merge-sort 
algorithm of [6, 221 introduces an additional factor of log log n in our time 
complexity bounds, but significantly reduces the constant term. Thus, our 
algorithms are of both theoretical and practical interest. 

To simplify the exposition, we assume that no three points in the input set 
are collinear and that the points have distinct x (resp. y) coordinates (our 
results can easily be modified for the general case). 
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2. CONVEX HULL 

Given n points in the plane, the planar convex hull problem is that of 
finding which of these points belong to the perimeter of the smallest convex 
region (a polygon) containing all n points. This problem has applications in 
many fields, including computer graphics, computer vision, and statistics 
[14]. As mentioned earlier, the convex hull problem has an fl(n log n) time 
sequential lower bound [23], and this bound is achievable [ 11, 18, 191. 

Several authors have addressed the question of finding parallel solutions to 
this problem. Chazelle [8] shows how to solve the problem on a linear array 
of processors in a systolic fashion in 0 (n) time. Miller and Stout, in Ref. [ 161, 
present an O(V%) time solution on an n-node mesh-connected computer. 
Although both of these algorithms are optimal for the computational models 
for which they were designed, implementing them on a CREW PRAM would 
lead to suboptimal algorithms. The only known previous parallel algorithm 
solving this problem on a CREW PRAM is due to Chow [9], and runs in 
O(log’ n) time using 0 (n) processors. In this section we present a new 
parallel algorithm which solves the planar convex hull problem in 0 (log n) 
time on a CREW PRAM with O(n) processors. As mentioned earlier, our 
algorithm is optimal (to within a constant factor). 

We first present some definitions and observations. Let R be a set of points 
in the plane. We denote a clockwise listing of the points which belong to the 
convex hull of R by CH(R). Let u and u be the points of R with the smallest 
and largest x-coordinates, respectively. Clearly, u and u are both in CH(R). 
They divide CH(R) into two sets: an upper hull, consisting of points from u 
to IJ, inclusive, in the clockwise listing of CH(R), and a lower hull, consisting 
of points from o to u, inclusive. We denote a clockwise listing of the points 
in the upper hull of R by UH(R), and a similar listing of the points in the lower 
hull by LH(R). Given a set S of n points in the plane the following algorithm 
will compute CH(S). 

Algorithm CH 

fnput. A set S of n points in the plane. 

Output. The list CH(S). That is, the points of the convex hull of S listed 
in clockwise order. 

Method. The main idea of our algorithm is to divide the problem into G 
subproblems of size X& each, solve the subproblems recursively in parallel, 
and combine the solutions to the subproblems quickly (that is, in O(log n) 
time) and with a linear number of processors. 

Step 1. Sort the n points by x-coordinate, and partition S into sets RI, 
Rz, . . . , RG, each of size fi, divided by vertical cut-lines, such that Ri is 
left of Rj if i < j (see Fig. 1). 

Step 2. Recursively solve the convex hull problem for each Ri , 
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FIG. 1. A partitioning of S into G sets, an example with n = 25. 

iE{1,2,..., fi}, in parallel. After this parallel recursive call returns 
we will have CH(Ri) for each Ri. 

Step 3. Find the convex hull of S by computing the convex hull of the 
union of the 6 convex polygons CH(R,), . . . , CH(RG). This is done using 
algorithm COMBINE, which will be described later in this section. 

End of Algorithm CH 
THEOREM. Algorithm CH$nds the convex hull of a set of n points in the 

plane in O(log n) time on u CREW PRAM with O(n) processors. 

Proof. We give this proof assuming that algorithm COMBINE (used in 
Step 3) is correct and takes 0 (log n) time and 0 (n) processors. (This will be 
justified once we describe algorithm COMBINE later in this section.) That 
Step 1 can be done in 0 (log n) time and 0 (n) processors follows from the 
results of [2, 151. Thus the running time, T(n), of the algorithm can be 
expressed in the recurrence relation T(n) = T(fi) + b log n, where b is 
some constant, which has solution T(n) = O(log n). The number of pro- 
cessors needed, P(n), satisfies the recurrence P(n) = max{fi P (1/;;}, cn}, 
where c is a constant, which has solution P(n) = O(n). This completes the 
proof, subject to the already stated assumption about Step 3 and algorithm 
COMBINE (yet to be described). n 

The rest of this section deals with the problem of implementing Step 3 of 
algorithm CH in time 0 (log n) and with O(n) processors. This is done by 
using algorithm COMBINE, described below. For convenience, we choose 
to describe the algorithm for the problem of computing the upper hull, since 
that of computing the lower hull is symmetrical. In the algorithm description, 
when we talk about the upper common tangent between CH(Ri) and CH(Rj), 
we mean the common tangent such that both CH(Ri) and CH(Rj) are below 
it. Also, when we say that a pointp is “to the left” of another point q, we mean 
that the x-coordinate of p is less than that of q. 
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Algorithm COMBINE 

Input. The collection of convex polygons CH(Ri), CH(Rz), . . . , 
CH(Ry;;) . Recall that these input polygons are separated by vertical lines, and 
that none of them has more than fi vertices. Also recall that CH(Ri) is to 
the left of CH(R,) if i < j. 

Oulput. The upper convex hull UH(S) of the vertices of the union of the 
CH(Ri)‘S. 

Method. The main idea is to find, in parallel for each CH(Ri), which of its 
vertices are on UH(S). This is done by assigning fi processors to each 
CH(Ri) and having each of these processors compute the upper common 
tangent between CH(Ri) and one of the other input polygons. The details 
follow. 

Step 1. In parallel for each i E (1, 2, . . . , V%} use fi processors 
to find those points of CH(Ri) which belong to UH(S) by doing the following: 

Step 1.1. Find the G - 1 upper common tangents between 
CH(RJ and the remaining fi - 1 other input polygons. Let Ti,j denote the 
upper common tangent between CH(Ri) and CH(Rj), where Ti,j is represented 
by its point of contact with CH(Ri) and its point of contact with CH(Rj). A 
tangent Ti,j is easily computed in O(log n) time by one processor, using a 
binary-search technique due to Overmars and Van Leeuwen [ 171. Therefore 
all Of Ti.1, a . s 9 Ti,G can be computed in 0 (log n) time by the G pro- 
cessors assigned to CH(Ri). 

Step 1.2. Let q be the tangent with smallest slope in {I;:, 1, . . . , 
Ti,i-1) (i.e., v is the smallest-slope tangent which “comes from the left” of 
CH(Ri)), and let w be the tangent with largest slope in {Ti,i+, , . . . , Ti, v;;} 
(i.e., w is the largest-slope tangent which “comes from the right” of CH(Ri)). 
Let t)i be the point of contact of v with CH(Ri), and let wi be the point of 
contact of K with CH(Ri). Both v and w can be found in O(log n) time by 
the fi processors assigned to CH(Ri). 

Step 1.3. Since neither K nor K can be vertical, they intersect and 
form an angle (with interior pointing upward). If this angle is less than 180” 
(as in Fig. 2), then none of the points of CH(Ri) belong to UH(S). Otherwise, 
(as in Fig. 3) all the points from vi to Wi, inclusive, belong to UH(S). 

Step 2. Step 1 has computed, for every i E (1, . . . , G}, all the 
points of CH(Ri) which belong to UH(S) (possibly none). This step com- 
presses each of these lists into one list to get UH(S). This can be done in 
O(log n) time and O(n) processors (e.g., by using a parallel prefix 
computation). 

End of Algorithm COMBINE 

That COMBINE runs in time 0 (log n) and 0 (n) processors should be clear 
from the comments made in the algorithm description. The correctness of 
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FIG. 2. An illustration of the case when none of CH(&)‘s points are in UH(S) because y and 
W fom an angle which is less than 180”. 

COMBINE depends on the correctness of Step 1.3. The correctness of Step 
1.3 for the case when the angle between V and w is less than 180”, depicted 
in Fig. 2, follows from the fact that in that case the straight-line segment 
joining the other endpoints of K and I# (shown dashed in Fig. 2) is entirely 
above CH(Z?i); hence, no vertex of CH(Z?i) cm belong to UH(S). The cor- 
rectness of Step 1.3 for the case when the angle between V and R$ is greater 
than 180”, depicted in Fig. 3, follows from the fact that the points from all 
the other CH(Rj)‘s are below V and w. This establishes the correctness of 
algorithm COMBINE. 

Thus, we can construct the convex hull of n points in 0 (log n) time using 
O(n) processors on a CREW PRAM. The convex hull problem is a funda- 
mental problem in computational geometry and is used as a building block in 
many other geometric algorithms. For example, our algorithm can be used to 
find the common intersection of n half-planes in 0 (log n) time using 0 (n) 
processors, by using a duality transformation of [7, 201. It can also be used 
as a preprocessing step in conjunction with the algorithm of [lo] for finding 
the diameter of a convex polygon to find a farthest pair of points in 0 (log n) 
time using 0 (n) processors. The problem of finding a closest pair of points 
does not follow from the convex hull problem, however. We deal with the 
closest-pair problem in the next section. 

FIG. 3. The points pz, ~3, mdp,, a~ in UH(S), because v and w form an angle which is at 
least 180”. 
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3. CLOSEST PAIR 

Given n points in the plane, the closest-pair problem is that of choosing two 
points that are closest (i.e., the distance between them is smallest). This 
problem has applications in answering basic proximity questions of sets of 
objects, such as monitoring airplanes in air-traffic control. We are not aware 
of any previous work done in finding parallel solutions to this problem. A 
trivial O(log n) time parallel algorithm exists, but it requires a quadratic 
number of processors. Here we are investigating what time bound can be 
achieved with only 0 (n) processors. Parallelizing what seems to be the most 
promising sequential algorithm [4, 51 on O(n) processors only leads to an 
O(log2 n) time algorithm. Applying a divide-and-conquer technique similar 
to the one we used in the convex hull problem, we show how to solve the 
closest-pair problem in 0 (log n log log n) time using 0 (n) processors on a 
CREW PRAM. 

As in our solution to the convex hull problem, we will be dividing the input 
set of points into 6 subsets divided by vertical cut-lines. Let RI, . . . , Rtli; 
be these subsets in left-to-right order, i.e., Ri is left of Rj if i < j. We define 
the region-width of a point set Ri to be the distance between the two vertical 
cut-lines separating Rj from Rim, and Ri+,, respectively. Note: the region- 
width of RI and RG is defined to be a. We present the closest-pair algorithm 
CP below. 

Algorithm CP 

Iput. A set S of n points in the plane. 

Output. A closest pair of points in S. 

Method. Before giving the details, we present a high-level description of 
the various steps of the algorithm. First, we partition S into fi sets, of size 
fi each, using vertical cut-lines, and recursively solve the closest-pair 
problem for each. Taking the closest of the 6 pairs returned by the parallel 
recursive call gives us a closest pair of points in S not separated by a cut-line. 
Let S be the distance between these two points. For our combining step to run 
quickly (i.e., in O(log n) time) there should not be more than a constant 
number of cut-lines which are within 6 of one another. Since this may not be 
the case at present, we do not perform our combining step at this point. 
Instead, we repartition S by removing cut-lines between adjacent point sets 
with region-widths which are “too small,” thereby coalescing the two sets into 
one. This gives us a better distribution of the remaining vertical cut-lines. 
Even after coalescing, we still do not combine the subproblems, because in 
removing a cut-line we coalesce previously solved subproblems into con- 
glomerates which must now be re-solved. Consequently, for each conglom- 
erate point set, we use the V’& divide-and-conquer technique again, dividing 
the conglomerate horizontally, and solving each of the resulting horizontally 
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divided sets recursively. Dividing the conglomerate point sets horizontally 
guarantees that cut-lines will be far enough from each other to allow for a 
combining step which runs in 0 (log n) time. So, after recursively solving the 
horizontal problems, we are now ready to combine the solutions to the 
subproblems. We do this by first combining the solutions to the horizontally 
divided sets, and then combining the solutions to the vertically divided sets. 
Below we give a high-level description of each step in the algorithm. We 
define the smallest distance, 6(R), of a point set R to be the distance between 
a closest pair of points in R. If we always associate a specific closest pair of 
points with a smallest distance, then we can reformulate the closest-pair 
problem as the following: given a set S of n points in the plane, compute 6 (S). 
This is the formulation we will use. 

High-Level Description of CP 

Step 1. Partition S into point sets RI, Rz, . . . , Rv;;, each of size fi, 
separated by vertical cut-lines such that Ri is left of Rj if i < j (see Fig. 1). 
Let I denote the index set { 1, 2, . . . , 6). 

Step 2. Recursively compute S(Ri) for each Ri, i E I, in parallel. 
Step 3. Compute 6 = min{6(Ri) 1 i E I}. 

Comment. The pair associated with 8 is a closest pair of points in S not 
separated by any of the vertical cut-lines which separate the Ri’s from one 
another. 

Step 4. Repartition S into {Hr, Hz, . . . , H,}, 1 I A&, so that there 
are never more than two vertical cut-lines which are within 6 of each other. 
The new partition is obtained by starting with R,, . . . , Rd, and repeatedly 
removing cut-lines between pairs of adjacent regions whose region-widths are 
both less than 6, coalescing two sets into one each time. Let I’ denote the new 
index set (1, 2, . . . , I}. 

Comment. From this point on in the algorithm when we refer to vertical 
cut-lines we mean the ones which survived this repartitioning step. 

Step 5. In parallel for each Hi, check if S(H,) < S, and, if so, assign 
& = S(Hi). The method we use to test this is such that we only compute 
6(Hi) if it is less than 6. If we detect that 6(Hi) L 6 (without explicitly 
computing S(iYi)), then we assign 4 = 6. Note that if Hi is one of the original 
sets (Hi = Rj for some j), then we can assign 8i = 6 immediately. Otherwise, 
if Hi resulted from coalescing two or more of the original sets 
(Hi = Rj U * * * U Rj+d for some j and d), then this computation is done by 
using the &divide-and-con uer technique again. We divide each such Hi 
by horizontal cut-lines into d- Hi 1 subsets ri,j, solve each ri,j recursively, and 
combine all the subproblem solutions in O(log n) time. 

Step 6. Compute 6’ = min{si ) i E I’}. 
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Comment. Note that S ’ I 6, and that the pair associated with S ’ is a 
closest pair of points in S not separated by any of the vertical cut-lines which 
separate the Hi’s from one another. 

Step 7. Find all pairs of points in S which are separated by a vertical 
cut-line and are closer than 6 ’ to one another. If there are such pairs of points 
then 6(S) is the distance between a closest such pair; otherwise, 6(S) = 6’. 

End of High-Level Description of CP 

We now show how to perform each of the above steps quickly in parallel. 
It is trivial to do the partitioning of Step 1 and the computation of Step 3 in 
0 (log n) time using 0 (n) processors. So we begin our detailed description of 
the algorithm CP with Step 4. Recall that at this point in the algorithm we 
have found a closest pair of points in S not separated by any of the vertical 
cut-lines that separate the Ri’s from the each other, and that 8 is the distance 
between this pair of points. 

Details of Step 4. We perform this repartitioning step by the simple 
divide-and-conquer procedure REPARTITION which follows. For simplicity 
of expression let k = 6. 

Procedure REPARTITION 

Step 4.1. Let % = {R, , R2, . . . , Rk}. Divide the collection 8 into 
two contiguous collections 8, = {RI, . . . , Rk,2} and ‘$ = {Rklz+, , . . . , 
Rk} (St, begin to the left of %J. Assign to Rk/2 the same region-width in zli, 
as it had in ‘8. Similarly, assign to Rk12+, the same region-width in 82 as it 
had in %. 

Step 4.2. Recursively apply procedure REPARTITION to 8, and 
!l& in parallel. Assume that after the parallel recursive call returns there will 
be no two adjacent point sets in 8,) or in &, which both have region-width 
less than 6. (This is the invariant we will maintain.) 

Step 4.3. If the region-width of the rightmost point set in ‘8, and the 
region-width of the leftmost point set in ‘& are both less than S, then coalesce 
them into one point set by removing the cut-line between them. Otherwise, 
do nothing. In coalescing two point sets we must compress the list of points 
sets, removing one point set. This can be done in 0 (1) time using O(n) 
processors, giving the new partition {H,, Hz, . . . , H,}, I 5 6. 

End of REPARTITION 

Analysis of Step 4. The correctness of the above implementation of Step 
4 follows by a simple inductive argument. The time complexity T4(n) of Step 
4 is determined by the recurrence relation T,(n) = T&z/2) + be, where b4 is 
some constant, which has solution T&z) = 0 (log n). The processor bound 
P,(n) is determined by the recurrence relation P,(n) = max{2&(n/2), c,gz}, 
for some constant c4, which has solution P,(n) = 0 (n). 
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Details of Step 5. Recall that in Step 5 we wish to check if S(Hi) < 6, 
and if so, assign & = S(Hi) (and, if not, then assign $ = 6). The main idea 
of Step 5 is to perform essentially the same computation as Steps l-3 above 
for each Hi, except that cut-lines in Step 5 are horizontal instead of vertical. 
The main idea behind the method for combining subproblem solutions is to 
construct for each subproblem set ri,j two special “candidate” sets, which 
consist of points in ri,j which could be close to points in some other ri, k, and 
then for each point p search in a constant number of these sets to find a point 
closest to p which is separated from p by a horizontal cut-line. The details 
follow. 

Step 5.1. Sort the points in Hi by y-coordinate and partition Hi into 
subsetsri,,, ri,z, . . . , ri, G/~, separated by horizontal cut-lines, each of size 
of 2fi (where ni = 1 Hi I), and such that ri,j is below ri,f if j < k (see Fig. 
4). Let Ji denote (1, 2, . . . , V&/2}. 

Step 5.2. Recursively compute S(ri,j) for each ri,j, j E Ji, in paral- 
lel. 

Step 5.3. Compute min{a(ri,j) ( j E Ji}, and let l i be the smaller of 
this value and S. 

Comment. Ei is no greater than the distance between a closest pair of 
points in Hi not separated by a horizontal cut-line. We are now ready to do 
the combining step of the divide-and-conquer. 

Step 5.4. In parallel for each j E Ji construct the set Ni,j and Si,j, 
where Ni,j(Si,j) is the set of points in ri,j which are within ei of ri,j’s northern 
(southern) cut-line. (This can be done by a parallel prefix computation.) Sort 
the points of each Ni,j and Si,j by x-coordinate. 

Step 5.5. In parallel for every point p E Hi construct the set Di (p), 

- ri,3 

- ri,2 

- ri,1 

FIG. 4. A horizontal partitioning of a point set Hi with ni = 36. 
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where D;(p) is defined as follows: If r;,j is the point set containing p, then 
D;(p) is the set of all points in N;,j-3 U Ni,j-2 U Ni,j-1 U *Si,j+l U Si,j+z U 
S;,j+s with x-coordinate within E; of p’s x-coordinate (if one of the sets in the 
above union is not defined, then use 0 in its place). We will show later (in 
Lemmas 3.1 and 3.2) that there can be no more than three horizontal cut-lines 
within E; of one another and that 1 D; (p) 1 = 0 (1). Thus, Di (p) CLUI be con- 
structed for any p by performing 0( 1) binary searches, and this step can be 
performed in 0 (log n;) time using 0 (n;) processors. 

Step 5.6. In parallel for each p E H; find a point in D;(p) closest to 
p (provided that D;(p) # 0). Call this point q(p) for each p, and let d(p) be 
the distance from p to q(p) (d(p) = cc if D;(p) = 0). 

Step 5.7. Compute min{d( p) 1 p E H;} and take 8; to be the min- 
imum of this distance and E;. 

Comment. Note if S(H;) < 6, then 6; =‘6(H;), and 8; = 6 otherwise. 

Analysis of Step 5. The analysis of Step 5 is quite involved. We begin the 
proof of correctness by proving the following lemma. 

LEMMA 3.1. There are no more than three horizontal cut-lines which are 
within E; of one another in any point set H; considered in Step 5, i E I ‘. 

Proof. Since l ; I 6 for all i E I ’ , it is sufficient that we prove that there 
are no more than three horizontal cut-lines which are within S of one another 
in any point set H; . Suppose there are four horizontal cut-lines within 6 of one 
another in some H;. Let Q = r;,j U r;,j+l U r;,j+z , j E J;, be the set of points 
which are bounded by these lines. Let d L 2 be the number of original point 
sets which were coalesced to create H;. Then n; = 1 H; I = dfi, and 
Ir;,jI = 26 = 2d ’ ’ 2n1’4, for all j E J;. Since VG 1 d, I r;,j I 2 2d, for 
all j E J;. Recalling the method for Step 4, note that each of the d original 
point sets must have had region-width less than S to have been coalesced. The 
value 6 was found by solving the closest-pair problem for each original point 
set, so there can be at most four points in Q for any of the d original point 
sets which were coalesced to form H; (see Fig. 5). Thus, 1 Q I 5 4d. But since 
Q contains 3 r;,j’s, I Q I 2 6d. This is obviously a contradiction. H 

Lemma 3.1 and the definition of D;(p) imply that for every point p in H;, 
if a point q E H; has x- and y-coordinates both within l ; of p’s x- and 
y-coordinates (respectively), then q E D;(p). Thus, when we find a closest 
point to p in D;(p) we are in fact finding a closest point to p in H; separated 
from p by a horizontal cut-line (provided D;(p) # 0). Recall that, for each 
p, if d(p) < ~0, then d(p) is the distance to such a point. Also recall that l ; 
is the smaller of 6 and min{b(r;,j) ) j E J;}. Therefore, taking the minimum 
of E; and the minimum d(p) value in Step 5.7 gives us S(H;) if 6(H;) < 6, 
and gives us S otherwise. This establishes the correctness of Step 5. 
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FIG. 5. The upper bound on number of points in Q which were all in one of the original point 
sets is 4. 

We now turn to the complexity bounds of Step 5. We first prove the 
following lemma. 

LEMMA 3.2. IDi 1 = O(l)fir every p E Hi. 

Proof. Recall that ei is no greater than the distance between a closest pair 
of points in Hi not separated by a horizontal cut-line. Thus, there can be no 
more than six points in any 26, X ei rectangular subset of any ri,j (see Fig. 6), 
for any Hi. Hence, there can be at most six points in Di(p) taken from any 
Ni,j-k or Si.j+kt k = 1, 2, 3. Therefore, IDi 1 I 36 for any p. n 

Lemma 3.2 implies that Steps 5.5 and 5.6 run in 0 (log ni) and 0 (1) time, 
respectively, using 0 (ni) processors, for any Hi. From observations already 
madeinthispaperweknowthatSteps5.1,5.3,5.4,and5.7runinO(logni) 
time using 0 (?Ii) processors, for any Hi. Thus, the running time T&z) of Step 
5 is characterized by the recurrence relation TS(n) = max(T(2G) + 
bS log ni I i E I’}, where b5 is some constant and T(n) is the time complexity 

FIG. 6. The upper bound on number of points in any Di (p) selected from any one Ni,, or S,., 
is 6. 
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of the entire CP algorithm. Since ni I n for all i E I ’ , we can rewrite this 
as T&) 5 T(2fi) + b5 log n (this is the formulation we will use in analyz- 
ing the time complexity of the algorithm CP). The processor bound P&r is 
determined by the recurrence relation e(n) = ZiEIf max{ 1 V& P (2 2 ni), 
csni}, where c5 is some constant and P(n) is the number of processors needed 
by the algorithm CP. 

Details of Step 6. It is clear that we can compute S ’ = min{ Si 1 i E I ‘} 
in O(log n) time using O(n) processors. 

Details of Step 7. Recall that in Step 7 we wish to find all pairs of points 
in S which are separated by a vertical cut-line and are closer than 6 ’ to one 
another. The method is essentially the same as the combining steps of Step 
5 (Steps 5.4-5.7). The details follow. 

Step 7.1. In parallel for each i E I ’ construct the set Ei and M$, 
where Ei (N$ is the set of points in Hi which are within 6 of the eastern 
(western) cut-line for Hi. (This can be done by a parallel prefix computation.) 
Sort the points of each Ei and w by y-coordinate. 

Step 7.2. In parallel for every point p E S construct the set D(p), 
where D (p) is defined as follows (similar to Di (p)): If Hi is point set contain- 
ing p, then D(p) is the set of all points in Ei-2 U Ei-1 U w+l U w+z with 
y-coordinate within 6 ’ of p’s y-coordinate (if any set in the above union is 
not defined, then use 0 in its place). Clearly, D (p) can be constructed for any 
p by performing 0 (1) binary searches. 

Comment. Recall that from the repartitioning done in Step 4, there cannot 
be more than two vertical cut lines with S of one another. 

Step 7.3. In parallel for each p E S find a point in D (p) closest to 
p, and call it q(p). Let d(p) be the distance from p to q(p) (d(p) = 00 if 
D(P) = 0). 

Step 7.4. Compute min{d(p) ) p E S} and take S(S) to be the min- 
imum of this distance and 6 ’ . 

Analysis of Step 7. It follows from an argument similar to the one used 
in the proof of Lemma 3.2 that [D(p)1 = O(1) for allp E S. Thus, Step 7 
can be performed in 0 (log n) time using 0 (n) processors. We turn to the 
proof of correctness. For each p, if a point q is separated fromp by a vertical 
cut-line and has X- and y-coordinates both within 6 ’ of p’s x- and y - 
coordinates (resp.), then p E D(p). This is because after performing the 
repartition procedure of Step 4, there are at most two vertical cut-lines which 
are within 6 of one another (hence, within S ’ of one another). So, it is correct 
to set 6(S) to the smaller of min{d(p) I p E S} and 6’. 

End of Algorithm CP 

We summarize the above discussion in the following theorem. 
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THEOREM 3.3. The algorithm CP jinds a closest pair of n points in the 
plane in O(log n log log n) time using O(n) processors on a CREW PRAM. 

Proof. The correctness of CP follows from a simple inductive argument 
based on the discussion presented above. Combining the time complexity 
analysis for each of the above steps we get that the time complexity T(n) of 
the algorithm CP is characterized by the recurrence relation T(n) I 
T(G) + T(2fi) + b log n, where b is some constant, which has solution 
T(n) = 0 (log n log log n). The processor bound P(n) of the algorithm CP is 
characterized by the recurrence relation 

P(n) = max cn, fi P(G), 2 max csni, ;Ai P(2fi) 
{ 

, 
iEI' 1 II 

where c and c5 are constants. Using the fact that ZiEr ni = n, we get that 
P(n) = O(n). n 

It is worth mentioning that our algorithm will work with any of the Lk 
distance metrics. Recall that in any of the Lk metrics every point within a 
specific distance e from a point p has X- and y-coordinates both within E of 
p’s X- and y-coordinates. Therefore, since we define Di (p) (D (p)) so that it 
contains all points separated fromp by a horizontal (vertical) cut-line and with 
x- and y-coordinates both within l i (8 ‘) of p’s X- and y-coordinates (resp.), 
then 6(S) will be computed correctly no matter which Lk metric we use to 
define distance. 

4. CONCLUSION 

We gave efficient parallel algorithms for solving some geometric prob- 
lems. Namely, we have shown how to solve the planar convex hull problem, 
and related problems, in 0 (log n) time and the closest-pair problem in 
O(log n log log n) time on a CREW PRAM with O(n) processors. This, of 
course, implies that given a fixed number of processors, say k, one can solve 
the planar convex hull problem, and related problems in 0 ((n/k)log n) time 
and the closest-pair problem in O((n/k)log n log log n) time, by using the k 
processors to simulate the 0 (n) processors used in our algorithms. The new 
parallel divide-and-conquer technique we presented for solving these prob- 
lems is very general, and can be helpful in tackling other geometric problems 
as well. For example, the authors used this technique, in conjunction with a 
parallel technique analogous to plane sweeping, to solve the problem of 
triangulating a simple polygon in O(log n log log n) time using 0 (n) pro- 
cessors [3]. 
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