
SIAM J. COMPUT.
Vol. 20, No. 4 pp. 737-755, August 1991

() 1991 Society for Industrial and Applied Mathematics
010

INTERSECTING LINE SEGMENTS IN PARALLEL WITH AN
OUTPUT-SENSITIVE NUMBER OF PROCESSORS*

MICHAEL T. GOODRICHt
Abstract. An efficient parallel algorithm is given for constructing the arrangement of n line

segments in the plane, i.e., the planar graph determined by the segment endpoints and intersections.
This algorithm is efficient relative to three efficiency measures--it is an NC algorithm, it has a small
time-processor product, and it is output-size sensitive. In particular, it runs in O(logn) time using
O(n log n / k) processors, where k is the size of the output (which is (n2) in the worst case). The
algorithm does not receive the value of k as input, it determines it on-line. A method for solving an
important special case of the segment arrangement problem is also shown, namely, when each input
segment is parallel to one of the coordinate axes (i.e., iso-oriented). The algorithm for this problem
runs in O(log n) time using an optimal O(n + k/log n) processors. The model of computation is the
CREW PRAM model, where processor allocation must be explicit and global.

Key words, computational geometry, line-segment intersection, parallel algorithms, parallel
data structures, PRAM model

AMS(MOS) subject classifications. 68E05, 68C05, 68C25

1. Introduction. One of the major thrusts of computational geometry research
has been to show that we can solve many geometric construction problems with a
running time that is proportional to the input size plus the output size (times loga-
rithmic factors in some cases); see, for example, [6], [11], [12], [20], [25], [27], [31], [39].
This is significant, because most of these problems have trivial (n2) lower bounds,
which are based on constructing examples that have a large output size. These worst-
case examples seldom arise in practice, however. Thus, an algorithm whose running
time is essentially linear in the size of the output will perform much better than the
worst-case time on most inputs.

1.1. The problem. One of the most studied of these problems is the problem
of constructing the planar graph determined by the pairwise intersections of a set
of line segments in the plane, i.e., the segment arrangement problem (see [6], [11],
[12], [16], [30], [34]). This problem has several applications in computer graphics, for
example, [21], [33], [37]. One of the oldest algorithms solving the segment arrangement
problem is an elegant method by Bentley and Ottmann [6] published in 1979 that
uses the now-famous "plane-sweeping" paradigm [16], [30], [34]. The running time of
their algorithm is sensitive to the size of the output, as it runs in O((n / k)logn)
time for the general case, and in O(n log n + k) time if the input segments are iso-
oriented (i.e., if each segment is parallel to one of the coordinate axes), where k is
the size of the output. Since k is (n2) in the worst case, the existence of an optimal
algorithm, running in O(n log n / k) time, became an open problem. This gave rise to
a considerable amount of research done to resolve this question (e.g., [12], [13], [19]),
and Chazelle and Edelsbrunner showed in 1988 that we can in fact solve this problem
in O(n log n + k) time.

Received by the editors May 17, 1989; accepted for publication (in revised form) September 12,
1990. This research was announced in preliminary form in the Proceedings of the 1989 ACM Sym-
posium on Parallel Algorithms and Architectures, Association for Computing Machinery, New York,
pp. 127-137. This research was supported by National Science Foundation grants CCR-8810568 and
CCR-9003299, and National Science Foundation and Defense Advanced Research Projects Agency
under grant CCR-8908092.

Department of Computer Science, The Johns Hopkins University, Baltimore, Maryland 21218.

737

D
ow

nl
oa

de
d

01
/1

3/
15

 to
 1

28
.1

95
.6

4.
20

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

738 MICHAEL T. GOODRICH

In this paper we investigate how efficiently we can solve this problem in parallel.
Our primary goal is to design a parallel algorithm that runs as fast as possible. Given
that, our secondary goal is to design an algorithm that has a time-processor product
that is as small as possible. Our motivation for this is that we desire an algorithm that
can be simulated on a real machine, with a fixed constant number of processors, so
as to maximize the speedup over the best-known sequential algorithms. The product
of the time bound and processor bound characterizes the work that such a simulation
would perform, and provides a simple measure of the algorithm’s efficiency relative to
the best known sequential algorithms. Thus, for the segment arrangement problem,
we desire an algorithm that runs in O(logn) time and has an output-sensitive work
bound.

1.2. Previous work. Prior to a preliminary announcement of this research [22],
we knew of no previous work for solving this problem in parallel, other than the trivial
brute-force method based on sorting that runs in O(log n) time using O(n2) processors
(e.g., using Cole’s sorting method [15]). The only known results were for solving
special cases of the segment arrangement problem in parallel. For example, Atallah,
Cole, and Goodrich [3] addressed the decision version of this problem, i.e., determining
if any two segments intersect, deriving a method running in O(log n) time using O(n)
processors. In [14] Chow studied a restricted version of the problem: namely, she
showed how to determine all the pairwise intersections of n iso-oriented segments.
Her algorithm runs in O((1/)logn/ kmax) time using O(nTM) processors [14], where
e > 0 is a small constant and kmax is the maximum, taken over all input segments s,
of the number of intersections on s. Note that this does not give an NC algorithm,
since kmax is gt(n) in the worst case, nor does it balance the computational burden
for the case when only a few segments cause the majority of intersections. Neither of
these approaches seem to extend to the general segment arrangement problem.

Following the preliminary announcement of this research, however, there have
been a number of results that apply to this problem. In particular, Anderson, Beame,
and Brisson [2] and Hagerup, Jung, and Welzl [26] have studied the related problem
of constructing the arrangement of n lines in the plane (which, of course, always has
(n2) size), a problem that can be solved sequentially in O(n2) time [13], [17], [19].
The method of Anderson, Beame, and Brisson builds upon the methods presented in
[22] to derive a parallel algorithm running in O(log n log* n) time using O(n2/log n)
processors in the CREW PRAM model. The method of Hagerup, Jung, and Welzl is a
randomized method running in O(log n) expected time using O(n2/log n) processors
in the CRCW PRAM model. Subsequentially, Goodrich has improved upon these
methods to derive a deterministic method running in O(log n) time using an optimal
O(n2/logn) processors in the CREW PRAM model [23], solving an open problem
posed in the preliminary version of this paper [22]. Of course, if we apply these
methods to the segment arrangement problem, then these methods are efficient only
if k, the number of intersections, is large.

In addition to these algorithms for the line arrangement problem, Riib (see [36])
has independently shown that one can solve the segment arrangement problem in
O(lognlog log n) time using O(n + k) processors in the CREW PRAM model. Her
method improves upon the line arrangement algorithms, then, for instances when k
is not too large (e.g., k << n2/log n log log n).

1.3. Our results. The main result of this paper is an output-sensitive paral-
lel algorithm for solving the segment arrangement problem. Our algorithm runs in
O(log n) time using O(n log n / k) processors, where k is the size of the output. Note

D
ow

nl
oa

de
d

01
/1

3/
15

 to
 1

28
.1

95
.6

4.
20

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

INTERSECTING LINE SEGMENTS IN PARALLEL 739

that the work performed by our algorithm matches the time-processor product of the
brute-force approach when the output size is large, i.e., when k is gt(n2), and is smaller
than the method of Riib for k >> n log n/ log log n. We also give an algorithm for
the case when the segments are iso-oriented that runs in O(log n) time using an opti-
mal O(n / k/log n) number of processors. Our model of computation is the CREW
PRAM model, where processor allocation must be explicit and global.

The main obstacle to designing an output-sensitive parallel algorithm for the
general segment arrangement problem is that paradigms that led to efficient sequen-
tial algorithms, such as plane-sweeping [16], [34], topological sweeping [12], [17], and
incremental construction [16], [34], seem inherently sequential. Moreover, parallel
techniques that worked well for parallelizing fast plane-sweeping algorithms, such as
the plane-sweep tree [1], [3], cascading divide-and-conquer [3], and parallel sequence-
evaluation [4], cannot be directly applied, for they require one to know a priori all
the places where a sweeping line would need to stop. Such a requirement "begs the
question" in the case of constructing a segment arrangement, for a sweep-line would
need to stop at each intersection point.

Our algorithm, instead, is based on a number of new parallel algorithmic tech-
niques, as well as a new geometric characterization of the types of intersections that
can occur. The new parallel-techniques include a "truncated" version of the zone
lemma of [11]-[13], [18], and [19] and a method for reusing processors created for
enumerating intersections of one type to then discover intersections of another type.
The new geometric characterization is a "hierarchical" extension of a characteriza-
tion due to Chazelle [11]. Our algorithm achieves its output-sensitivity by computing
the size of the output while it is computing the answer, and dynamically allocates
new processors accordingly. Our algorithm for the special case when the input seg-
ments are iso-oriented also uses this dynamic-allocation paradigm, in addition to the
use of a "compressed" version of the array-of-trees parallel data structure of Atallah,
Goodrich, and Kosaraju [4].

In the next section we discuss dynamic processor allocation in more detail, and
show how to solve an important dominance reporting problem using this paradigm
in 3. This problem arises as a natural subproblem in our segment arrangement
algorithm, which we describe at a high level in 4. We give the details of our method
in 5 and 6. In 7 we present our algorithm for the iso-oriented case, and we conclude
in 8.

2. A word about the computational model. The computational model we
use in this paper is the Parallel Random Access Machine, or PRAM. Processors in
this model act in a synchronous fashion and use a shared memory space. This model
is divided into three types based on how memory can be accessed: the Exclusive-
Read, Exclusive-Write (or EREW) model, the Concurrent-Read, Exclusive-Write (or
CREW) model, and the Concurrent-Read, Concurrent-Write (or CRCW) model. All
of our algorithms are for the CREW PRAM model.

Given an input of size n, the traditional way of utilizing this model is that we
simply allocate, once and for all, a number of processors that depends on n (e.g., n2,
n log n, etc.). Of course, a real parallel machine has a constant number of processors,
c, not a number that is a function of n. Thus, the c real processors must simulate the
"virtual" processors in the algorithm in order to implement it. Since we wish to solve
a problem in an output-sensitive manner, in order to achieve the maximum speedup
possible we allow the set of virtual processors to grow dynamically.

There are essentially two different ways to allow for a dynamically growing pool of

D
ow

nl
oa

de
d

01
/1

3/
15

 to
 1

28
.1

95
.6

4.
20

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

740 MICHAEL T. GOODRICH

virtual processors. One approach, as outlined by Reif and Sen [35], is that of allowing a
new virtual processor to be created by having some existing virtual processor execute a
spawning operation. Such an operation is issued by an existing processor specifying the
task that a new processor is to perform. Then, in the next time step, a new processor
is created and begins executing that task. This is also similar to a model used by
Bhatt and Cai [8]. This model does not specify how to implement the processor
assignment should a number of different virtual processors simultaneously perform
spawning operations, however.

The model we use in this paper does not allow for the spawning operation. In-
stead, we insist that for r new virtual processors to be allocated in time t we must
have already constructed an r-element array that stores pointers to the r tasks these
processors are to begin performing in step t / 1. We refer to this as a global allocation
scheme. This is essentially the same as the traditional PRAM model, in that every
PRAM algorithm does such an allocation as its first step, usually to allocate a number
of virtual processors that is a function of the input size.

It is beyond the scope of this paper to address all the relative strengths of the
various dynamic processor allocation schemes. Nevertheless, we would like to mention
that, in spite of its apparent weakness, the global allocation CREW PRAM model
can simulate any algorithm designed for the spawning CREW PRAM model in a
work-optimal fashion.

LEMMA 2.1. If an algorithm A runs in t steps using p processors in the CREW
PRAM model with local spawning of processors allowed, then A can be implemented in
O(t logp) steps using O(p/ logp) processors in the CREW PRAM model with global
processor allocation.

Proof. Let p denote the number of processors used in the spawning PRAM model
in step i, and let T denote the list of tasks to be performed in step i, with T[j] being
the task to be performed by processor j. The main idea of the proof is to simulate
step of the spawning PRAM algorithm in O(logp) time using [p/logp] processors
in the global-allocation PRAM model. We begin by performing all the nonspawning
operations of step i. This can easily be done in O(logp) time using [p/logp]
processors, by a simple application of Brent’s theorem [10]. We then perform a parallel
prefix computation to determine p+ -p, the number of new processors that
are to be spawned in step i, and to which tasks they are to be assigned. (Recall that
a parallel prefix computation is one in which we redube a problem to the problem of
computing all prefix sums sk -.k= a of a list of numbers (al, a2,..., a,,).) This
gives us T+I and takes O(logp) time using [p/logp] processors [28], [29]. We
complete the processing for step by requesting [p+/logp+] [p/logp] new
processors, bringing the total to [p+/logp+]. This prepares us to simulate the
next step in A. Thus, the entire algorithm can be implemented in O(tlogp) time
using O(p/logp) processors in the global-allocation PRAM model, where p Pt.

In the next section we illustrate the power of dynamic processor allocation by
describing a simple, efficient parallel method for solving an important dominance
reporting problem, which arises naturally in our segment arrangement algorithm.

Recall that a parallel prefix computation is a reduction to the problem of computing all prefix

Esums sk i= ai for n numbers (a, a2,..., an), where + is any associative operation. Also recall
that this problem can be solved in O(logn) time using O(n/log n) processors [28], [29].

D
ow

nl
oa

de
d

01
/1

3/
15

 to
 1

28
.1

95
.6

4.
20

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

INTERSECTING LINE SEGMENTS IN PARALLEL 741

3. Dominance reporting. Suppose we are given two point sets A and B, con-
sisting of n and m points, respectively. Moreover, suppose the points in A and B are
sorted by increasing x-coordinates. We wish to construct, for each point p in B, a list
that contains each point q in A such that x(q) < x(p) and y(q) < y(p), i.e., each point
in A that p dominates. We let Dom(A, p) denote this set, and refer to this problem
as the two-set dominance reporting problem.

We do not know of any previous work for this problem. Atallah, Cole, and
Goodrich [3] address the counting version of this problem (where one is simply in-
terested in determining the value of IDom(A,p)l, the number of points of A that p
dominates), deriving an algorithm that runs in O(log N) time using O(N) processors,
where N max{n, m}. In this section we show how to construct Dom(A, p) for each
p in B in O(log N) time using O(N/log N + l) processors, where/is the total number
of answers (1- -peS IDm(A,P)I) Our method uses a different approach than that
taken by Atallah, Cole, and Goodrich.

3.1. A simple data structuring approach. We first describe a solution based
on the use of a simple data structure and global processor allocation. This method
runs in O(log N) using O(N / l) processors. We then show how to reduce the number
of processors to O(N/log N + l) by some processing steps.

The approach is to build a data structure for the points of A and then query this
structure for each point in B in parallel. In particular, the data structure, D, consists
of a complete binary tree T with the points of A stored in its leaves in left-to-right
order. Let v be an internal node of T; and let z, u, and w be, respectively, the parent,
left child, and right child of v. For each such v we store a list A(v), which contains
all the points stored in descendants of v sorted by their y-coordinates. In addition,
we augment each element p of A(v) with pointers to p’s predecessor in A(z), A(u),
and A(w) (recall that p’s predecessor in a list A(.) is the largest element in A(.)
smaller than p), using y-coordinates as comparison keys. Such a structure is easily
constructed by Cole’s parallel mergesort method [15] in O(logN) time using O(N)
processors.

We then perform two queries for each point p in B. The first query is to determine
the size of Dom(A, p), and the second query is to construct Dom(A, p). The first query
is answered by searching for the leaf position of x in T, starting at the root, while
simultaneously locating the position of y in each A(v) list such that v is on the
left fringe of the search path (i.e., v is the left child of a node on the search path
but is, itself, not on the search path). The elements less than y in each such A(v)
constitute the set of answers for p. Thus, we can perform this counting query for
any p in O(log N) time, using a single processor, simply by adding up the ranks of
the predecessor of p in each of these lists. Given the sizes of all the Dom(A, p) lists
we can then perform a parallel prefix computation to determine the total number of
answers and allocate the space for a global array Dom that will store all the Dom(A, p)
lists as subarrays. We can then perform a global allocation of processors that then
collectively enumerate the answers in O(log N) time, filling in all the "slots" in the
Dom array. Thus, the total procedure can be implemented in O(log N) time using
O(N + l) processors.

3.2. Improving the processor bounds. The method described above suffers
from two inefficiencies: (1) it builds the data structure D using every point in A,
including points that will not be included in any Dom(A,p) list, and (2) it performs
a dominance reporting query for each point p in B, even if Dom(A,p) may turn out

D
ow

nl
oa

de
d

01
/1

3/
15

 to
 1

28
.1

95
.6

4.
20

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

742 MICHAEL T. GOODRICH

to be empty. We can easily remove both of these inefficiencies by performing the
following preprocessing steps, however:

(1) In this step we remove from B each point p such that Dom(A,p) is empty.
We can determine, for each p in B, whether or not Dom(A,p) is empty by
performing a parallel prefix computation on A to determine, for each q in A,
the value MinY(q) minq, eA{y(q’):x(q’) <_ x(q)}, and then performing a
merge of A and B by increasing x-coordinates. Both of these operations, of
course, take advantage of A and B being presorted. For any point p in B,
it is easy to see that Dom(A,p) : if and only if MinY(q) < y(p), where q
is the immediate predecessor of p in A. Given the merging of A and B, we
can easily test this condition for each p in B in O(1) time, and then perform
a parallel prefix data compression procedure to remove any p’s from B such
that Dom(A,p) . This step can be easily implemented in O(log N) time
using O(N/log N) processors [9], [28], [29], [38].

(2) In this step we remove from A each point q that is not contained in any
Dom(A,p) list. We do this using a method very similar to that used in
Step 1. The time and processor bounds are as in Step 1.

Clearly, the total number of remaining points in A and B is dominated by l,
the number of answers. Thus, by following this preprocessing step by the dominance
reporting procedure described in the previous subsection, we derive the following
lemma.

LEMMA 3.1. Given two point sets A and B, with n and m points, respectively,
sorted by increasing x-coordinates, we can construct Dom(A,p) for each p in B in
O(log N) time using O(N/ log N + l) processors in the CREW PRAM model, where
N n + m and pes IDom(A,

We make considerable use of this lemma in our method for constructing the
arrangement of a collection of line segments. In fact, we usually need to solve a
collection of 2-set dominance reporting problems in parallel. This presents no real
problems, however, as we show in the following lemma.

LEMMA 3.2. Given h instances of the 2-set dominance reporting problem, spec-
ified by h pairs of points sets (A1,B1), (A2,B2), ..., (Ah, Bh), we can construct
Dom(A, p) for each point p E B, 1,..., h, in O(log N) time using O(N/ log N +
l) processors in the CREW PRAM model, where g ,h= IAI + IBI and

hYi= Ype IDm(Ai, P) I.
Proof. The proof follows from a straightforward implementation of the method

used to prove Lemma 3.1. The only modification necessary is that each place in
the algorithm where a parallel prefix computation is performed (as a precursor to
an allocation of new virtual processors), we must now coordinate h simultaneous
parallel prefix computations. This is due to the requirement that dynamic processor
allocation be global. As it does not raise any real difficulties, we leave the details of
this implementation to the reader.

Having discussed our computational model, and how it can be used for dominance
reporting, we now give an overview of our method for constructing the arrangement
of a collection of line segments.

4. An overview of our algorithm. Suppose we are given a set S of n line
segments in the plane. We define the upper (respectively, lower) vertical shadow in S
of a point p to be the point on the first segment in S that is intersected by the vertical
ray emanating upward (respectively, downward) from p, if such a point exists. The
segment arrangement of S is defined to be the planar graph determined by the pairwise

D
ow

nl
oa

de
d

01
/1

3/
15

 to
 1

28
.1

95
.6

4.
20

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

INTERSECTING LINE SEGMENTS IN PARALLEL 743

FIG. 1. An example segment arrangement.

intersections in S as well as all the vertical shadows of the endpoints of segments in
S (see Fig. 1). The edges in this graph are determined by adjacent intersections
(along some segment s) and by segment endpoints and their vertical shadows. For
simplicity, we assume that at most two segments meet at any intersection point. We
can easily modify our method to allow for multiple segments intersecting in the same
point (using an appropriate definition of the "multiplicity" of an intersection point).

4.1. Characterizing intersections. Before we give our algorithm overview, we
review an observation by Chazelle [11] for characterizing segment intersections in
terms of a segment tree data structure [7]. Let T be the complete binary tree whose
at most 2n + 1 leaves, in left-to-right order, correspond to the regions, called slabs,
determined by placing a vertical line through each endpoint of each segment in S.
For each v in T we use Hv to denote the union of all the slabs associated with the
descendents of v (including v itself, if v is a leaf). A segment s spans a slab Hv if s
intersects both the left and right boundary of II. A segment si covers a node v E T
if it spans II but not IIparent(v). Clearly, no segment covers more than two nodes on
any level of T; hence, each segment covers at most O(log n) nodes of T. A segment
ends in Hv if si does not span H, but has an endpoint in Hr. For each node v E T
we define the following sets (see Fig. 2):

Cover(v) (s e Sis covers v},
End(v)-(seSI sendsin

We can characterize the intersections in S as follows.
OBSERVATION 4.1 ([11]). Let S be a set of line segments in the plane, and let

s and s2 be two segments in S that intersect at a point p. In addition, let T be a
segment tree for S. Then there is a (unique) node v T such that p Hv and one of
the following is true:

e Cove (),
(2) sl e End(v) and s2 e Cover(v),
(3) s2 e End(v) and s e Cover(v).
We call intersections of type 1 CC-intersections and intersections of types 2 and

3 EC-intersections.

4.2. The method. Our method, which we describe below, is based on finding
all the CC-intersections first, and then using those intersections to help determine all

D
ow

nl
oa

de
d

01
/1

3/
15

 to
 1

28
.1

95
.6

4.
20

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

744 MICHAEL T. GOODRICH

U V W

FIG. 2. The segment s is in Cover(u) and Cover(v), as well as End(t), End(w), End(x), End(y),
and End(z).

the EC-intersections.
Step 1. In this step we construct a segment tree T for the segments in S, including

the lists End(v) and Cover(v) for each v E T. In addition, for each v in T, we sort
the segments in Cover(v), where comparisons are based on the y-coordinates of the
intersections of the segments with the left boundary of Hr. This step can be easily
implemented in O(log n) time using O(n log n) processors in the CREW PRAM model,
by using the method of Aggarwal et al. [1] to construct T and the method of Cole [15]
to sort each Cover(v) list (since the total size of all the Cover(v)’s is O(n log n)).

Step 2. In this step we determine all the CC-intersections in S. Our method
is based on the simple observation that if two segments in Cover(v) intersect, then
their relative order would be reversed if we were to base comparisons on segment
intersections along Hv’s right boundary rather than basing comparisons on segments
intersections along H’s left boundary. We implement this step via a reduction to
the dominance reporting problem, constructing, for each v in parallel, and for each
segment s in Cover(v), a list of the other segments in Cover(v) that intersect s. We use
these lists to construct the arrangement of the segments in Cover(v), which, following
the convention of [11] and [12], we call the hammock. This step requires O(log n) time
using O(n log n + a) processors, where a is the total number of CC-intersections in S.

Step 3. In this our most involved step we compute all the EC-intersections in S.
We implement it in two phases. In the first phase we find, for each s E End(v), all the
EC-intersections of s with segments in Cover(v), so long as there are fewer than c log n
such intersections (c is a constant parameter), or, alternatively, we determine if there
are at least c log n such intersections. This requires O(log n) time using a processor
per segment in End(v), for all v in T, and is based on a "truncated" version of the
zone lemma of [11]-[13], [18], and [19]. In the second phase, then, we find, for each
s End(v), all the EC-intersections of s with segments in Cover(v), provided s has at
least c log n such intersections. We restrict this phase to such segments, because our
second phase requires at least O(log n) processors for each segment involved, and we
wish to "charge" the cost of these processors to the intersections found. Our method
runs in O(logn) time and takes advantage of a characterization similar to that of
Observation 4.1. We conclude the construction by determining all the adjacencies
between the intersection points and endpoints in the segment arrangement. This
entire step requires O(log n) time using O(n log n + a + g/) processors, where fl is the

D
ow

nl
oa

de
d

01
/1

3/
15

 to
 1

28
.1

95
.6

4.
20

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

INTERSECTING LINE SEGMENTS IN PARALLEL 745

number of EC-intersections in S.
So, assuming we can implement each of the above steps in the stated bounds,

then we can enumerate all the pairwise intersections in S in O(logn) time using
O(n log n / k) processors, where k c / is the size of the output. Let us now
give the details for performing each of the above steps. The details for Step 1 should
already be apparent, so we begin our detailed description with Step 2.

5. Computing CC-intersections. In Step 2 we compute all the CC-inter-
sections in S. Let us concentrate on the problem of finding all the CC-intersections
for a specific node v in T; we perform this computation for each v in parallel. Recall
that in Step 1 we constructed all the Cover(v) lists for the nodes in T. For each
segment s in Cover(v), let yl(s) (respectively, y2(8)) denote the y-coordinate of the
intersection of s with the left (respectively, right) boundary of Hr. The following
observation characterizes all CC-intersections in terms of these labels.

OBSERVATION 5.1. Two segments r and s in Cover(v) have a CC-intersection
intersection in IIv if and only if one of the following is true:

(1) y(r) < y(s) but y2(r) > y2(s),
(2) yl(r) > y(s) but y2(r) < y2(8).
For each segment s in Cover(v), if we define a point ps (y(s),y2(s)), then we

can interpret Observation 5.1 in terms of dominance relationships. Namely, a segment
r has a CC-intersection with s if and only if Pr is (i) above and to the left of ps, or (ii)
below and to the right of ps. Thus, determining all CC-intersections in some slab YIv
can be reduced to two instances of the 2-set dominance reporting problem, where the
set Cover(v) plays the roles of both sets A and B of Lemma 3.2. Of course, we must
also re-orient the x- and y-axes so that the dominance relation of interest is downward
and to the left. Note that the condition of Lemma 3.1 requiring that the points in
A and B be presorted by their first coordinates is immediately satisfied, since the
segments in each Cover(v) list are sorted by the y-coordinates of their intersections
with the left boundary of Hr. Of course, since we must implement this step for all
nodes v in parallel, we must apply Lemma 3.2. Therefore, since the total size of all the
Cover(v) lists is O(n log n), this entire computation can be implemented in O(log n)
time using O(n /) processors, where c is the total number of CC-intersections.

5.1. Constructing the hammock. To complete Step 2 we have only to con-
struct the adjacency information for the hammock. That is, for each intersection
point p of segments r and s we must determine the other intersection points on r and
s, respectively, to which p is adjacent. We do this by sorting, for each s in parallel,
the intersections along s (which were just computed) by x-coordinates. Then for each
intersection point p of a segment s with a segment r we locate the position of p in
the list for r by a binary search. From this we then construct a representation of the
planar graph induced by the adjacencies of the CC-intersections for Cover(v) (e.g.,
[5], [24], [32], [34]). We finish the construction by augmenting the graph, as Chazelle
does [11], by adding two pointers for each edge e that point to the leftmost and right-
most vertex, respectively, of each face in the hammock to which e belongs. Since this
computation requires the sorting of O(nlogn /) elements, it takes O(logn) time
using O(n log n / c) processors [15], which dominates the complexity of Step 2.

Thus, we have shown how to efficiently find all the CC-intersections in S and
construct the hammock for each Cover(v) list. In the next section we address the
problem of finding the EC-intersections in S.

D
ow

nl
oa

de
d

01
/1

3/
15

 to
 1

28
.1

95
.6

4.
20

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

746 MICHAEL T. GOODRICH

FIG. 3. An example walk in the hammock. The traversed edges are numbered in the order they
would appear in the walk in the hammock for s.

6. Computing EC-intersections. To complete the algorithm we must imple-
ment Step 3, the finding of all the EC-intersections for each v in T. As mentioned
earlier, this is the most involved step in the construction. It consists of two phases"
one that finds the intersections along segments that have few EC-intersections, and
the other that finds the intersections along segments that have many EC-intersections.

6.1. Segments with few intersections. Let us concentrate on the compu-
tations for a particular v in T. We begin by constructing a planar point location
data structure for the hammock for v, e.g., using the method of Atallah, Cole, and
Goodrich [3], which takes O(logn) time using O(ICover(v)l + v) processors, where
(v is the number of CC-intersection determined by the segments in Cover(v). This
requires O(nlogn /) processors for all v E T, and allows point locations to be
performed in the hammock for a particular Cover(v) in O(log n) time using a single
processor.

Suppose we are given a query segment s in End(v). We wish to find all the EC-
intersections between s and segments in Cover(v), so long as there are fewer than
c log n such intersections (where c >_ 1 is a constant parameter). We use the point
location structure for Cover(v) to locate the two faces fa and fb that contain s’s two
endpoints a and b, respectively (with a being to the left of b). We then mimic the
method of Chazelle [11] for walking through the hammock from fa to fb, except that
we cut the walk short as soon as it traverses 4c log n edges. We show below that if the
walk is terminated early because of this restriction, then s must have at least c log n
intersections with segments in Cover(v).

So let us review the method of Chazelle [11]. If fa fb, then we are done, so let
us assume fa lb. We begin by jumping to the rightmost vertex vl in fl fa. We
then traverse the edges of f until we find the edge el of fl that intersects s. If v is
above the line supporting s, then this traversal is clockwise, and is counterclockwise,
otherwise. Upon reaching e, we use the adjacency information for el to "hop" over

D
ow

nl
oa

de
d

01
/1

3/
15

 to
 1

28
.1

95
.6

4.
20

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

INTERSECTING LINE SEGMENTS IN PARALLEL 747

el into the next face, f2, which is adjacent to s. We then use the extra pointer for el
to jump to the rightmost vertex v2 in f., going from face to face along s, provided
that for each edge e traversed, the line supporting e intersects s. (See Fig. 3.) If
we are about to traverse an edge whose supporting line does not intersect s, then we
suspend the traversal from fa at this point, and begin a symmetric traversal from fb
(using the rule that if vi is above the line supporting s, then the traversal must be
counterclockwise, and must be clockwise, otherwise). We continue this traversal until
all the intersections along s have been discovered or, as in our case, we traverse at
least 4c log n edges. Chazelle [11] proves an important "zone" lemma for his scheme,
establishing that if one uses his search strategy (without our extra stopping criterion,
of course), then one will eventually discover all the intersections along s and the
total time spent will be proportional to the number of intersections. The next lemma
establishes a "truncated" version of this zone property.

LEMMA 6.1. Suppose we have traversed at least 45 edges in performing the walk
for a segment s. Then there are at least 5 intersections along s in the hammock.

Proof. Since this is a slightly stronger version of a lemma proved by Chazelle [11],
we use the proof technique of Chazelle, Guibas, and Lee [13] to prove it. Namely,
we use an accounting scheme, where for each edge traversed, we charge one of the
intersections along s for the cost of this traversal. Let f be a face traversed, and let
si be the subsegment of s contained in f. The traversed edges of f can be divided
into three groups: left-hanging edges, which intersect s left of s, right-hanging edges,
which intersect s right of s, and anchored edges, which are adjacent to s. These
groups suffice, because the line supporting each traversed edge intersects s and each

f is convex. Hence, for any face f, all the nonanchored edges we traverse in f will
be either left-hanging or right-hanging, but not both. The accounting scheme is that
each left-hanging edge e charges the intersection of s with the line supporting e’s
successor in a clockwise traversal around f, and each right-hanging edge e charges the
intersection of s with the line supporting e’s successor in a counterclockwise traversal
around f. Each anchored edge e simply charges its intersection with s. It is easy
to see that each intersection point can be charged by at most one left-hanging edge,
one right-hanging edge, and at most twice by its anchored edge. So each intersection
point can be charged at most four times. Therefore, if we have traversed at least 45
edges, then we must have charged at least 5 intersection points. D

Thus, by this truncated zone lemma, if in traversing the hammock for a segment
s we stopped by reaching the other endpoint of s, then we have discovered all the
EC-intersections for s; and if we terminated the traversal early, then there must be
at least c log n intersections of s with segments in Cover(v). Note, however, that the
c log n intersection points need not be consecutive intersections along s.

Let Ev be the list of all segments in End(v) that have at least c logn EC-
intersections, and let Sv denote the set of segment "pieces" in the hammock for v,
i.e., the segments resulting from cutting each s in Cover(v) at its CC-intersections.
Note that EvET lEvi is at most O(n log n) and EvET ISvl is at most O(n log n + a).

6.2. Segments with many intersections. We have yet to find all the EC-
intersections for the segments in E. Our method resembles a "recursive" application
of the first two steps in our algorithm. Let us, then, concentrate on the computation
for a specific node v in T, with the understanding that we perform this computation
for all v in T in parallel.

We begin by building a segment tree Tv for the segments in Sv. To avoid confusion,
let us denote the sets and slabs for each node w in Tv using lowercase letters. Thus,

D
ow

nl
oa

de
d

01
/1

3/
15

 to
 1

28
.1

95
.6

4.
20

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

748 MICHAEL T. GOODRICH

FIG. 4. An example w. The segments in end(w) are shown dotted and the segments in cover(v)
are shown solid.

for each w in Tv we define lists cover(w) and end(w) in terms of the slab rw associated
with w. (See Fig. 4.) For each w in Tv we have cover(w) stored in sorted order by the
segment intersections with the left vertical boundary of r. Let us also define a list
left(w), which consists of all segments in end(w) that intersect the left boundary of, and let us also store the left(w) lists sorted by the segment intersections with the
left vertical boundary. Since the subsegments in Sv do not intersect, except at their
endpoints, we can use the method of Atallah, Cole, and Goodrich [3] to build T. We
use this method because it gives us the left(w) lists in sorted order without our having
to explicitly perform a sorting operation. Note: the tree in the Atallah, Cole, and
Goodrich construction is built on every [log nth x-coordinate; so that the end(w) list
stored in a leaf has O(log n) size rather than O(1) size. This will not affect the running
time of our implementation by more than a constant factor, however. Their method
runs in O(logm) time using O(m) processors, where m is the number of segments.
In our case m ICover(v)l + a. Thus, we can use the processors created in Step 2
(to enumerate CC-intersections) to now help construct T for each v in T in parallel.
This requires O(log n) time using a total of O(n log n + a) processors.

For each w in T, we let inter(w) denote the set of segments in Cover(v) that have
an intersection point in . Recall that the segments in S are all pieces of segments
in Cover(v) that span Hr. We exploit this property to characterize EC-intersections
in the following lemma, in a manner analogous to that of Observation 4.1.

LEMMA 6.2. Given a node v in T, let s be a segment in E and t be a segment
in Cover(v), and suppose s and t intersect at a point p. In addition, let Tv and S be
as above, and let be the portion of t in Sv that contains p. Then there is a (unique)
node w E Tv such that p rw and one of the following is true:

(1) cover(w) (a "type 1" intersection),
(2) t inter(w) and s covers w (a "type 2" intersection),
(3) t inter(w) and s ends in r, where w is a leaf (a "type 3" intersection).
Proof. Let z be the leaf in T that contains p. There are two cases:

(1) s ends inrz. Ifdoes not span z, thent inter(z); hence, pis atype 3
intersection. If spans z, then there must be an ancestor w of z that covers;
hence, p is a type 1 intersection.

(2) s spans z. Let w be the ancestor of z that s covers. If also covers w, then
p is again a type 1 intersection. Otherwise, if has an endpoint in r, then
t E inter(w); hence, p is a type 2 intersection. D

D
ow

nl
oa

de
d

01
/1

3/
15

 to
 1

28
.1

95
.6

4.
20

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

INTERSECTING LINE SEGMENTS IN PARALLEL 749

We implement Step 3, then, by searching for each type of intersection.

Type 1 intersections. For each segment s in Ev, we allocate O(log n) processors to
s and perform the following query at each node w in Tv such that s has an endpoint
in r or s covers w:

We locate the two endpoints of the segment snarly (i.e., s "clipped"
to v) in cover(w), by two binary searches. Note that this is possible,
because the segments in cover(w) do not intersect, hence, are linearly
ordered by the "above" relationship. All the segments in cover(w)
between these two positions in the list must intersect s.

After performing this query, each processor assigned to s has determined some number
of type 1 intersections for s, and, in fact, has an implicit representation of a list of
these intersections. By performing a parallel prefix computation, then, we can allocate
enough processors to enumerate all these type 1 intersections. This can easily be done
in O(logn) time using O(vET lEvi logn //1) processors (for all v in T), where/1
is the total number of type 1 intersections.

Type 2 intersections. Our method is based on the observation that a type 2
intersection between s E Ev and t E Cover(v) is determined by a node w in Tv such
that both s and t span v. Therefore, we can determine all such type 2 intersections by
a reduction to the 2-set dominance reporting problem. In particular, we determine,
for each node w in Tv, the set ec(w) containing each segment s Ev such that s
covers w. We also sort each ec(w) list by the y-coordinates of the points formed by
the intersections of the segments in ec(w) and the left boundary of rv. This takes
O(logn) time using O(IEllogn processors. Note that the list left(w) stores a piece
of each segment in inter(w), and these pieces are sorted by the y-coordinates of the
points formed by the intersections of the segments in inter(w) and the left boundary
of rw. We associate a pair (y(s), y2(s)) with each segment s in ec(w) (respectively,
left(w)), where y(s) (respectively, y2(s)) is the y-coordinate of the intersection of the
left (respectively, right) vertical boundary of with s. Thus, if interpreted as points,
the elements of ec(w) and left(w) are sorted by their first coordinates, satisfying the
ordering precondition of Lemma 3.1. Just as in our method of 5, a solution to
two instances of the 2-set dominance reporting problem gives us all the intersections
between the "points" in ec(w) and left(w) for each w in Tv. By Lemma 3.2 this
takes O(logn) time using O(nlogn + vET lEvi + a +/2) processors (for all v in

T), where 2 is the number of type 2 intersections, since the total size of all ec(w)
lists is at most 0(_,T lEvi log n) and the total size of all the left(w) lists is at most
O(nlog2n + a log n). Thus, the total number of processors needed for this step is
O(n log n + ’vT lEvi log n + a + 2).

Type 3 intersections. Each type 3 intersection is determined by a leaf node w in

Tv. Since linter(w)l in this case is O(logn), we can find all type 3 intersections by
assigning a processor to each segment s in Ev and visiting each node w in T such that
s ends in rw. This processor simply tests each segment t with a piece in end(w) to
see if t intersects s. This clearly takes O(logn) time using O(IEvl) processors.

Having determined all three types of intersections completes the computation of
the EC-intersections, giving us all the pairwise intersections of the segments in S.
The total time needed is clearly O(log n). The total number of processors needed is

O(n log n + -vT lEvi log n + a + Z), where fl is the number of EC-intersections.
By construction, however, each segment s in Ev determines at least c logn EC-
intersections; hence, veT levi log n is O(/). Therefore, the total number of pro-
cessors needed is O(n log n + a +).

D
ow

nl
oa

de
d

01
/1

3/
15

 to
 1

28
.1

95
.6

4.
20

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

750 MICHAEL T. GOODRICH

We complete our algorithm by constructing the segment arrangement, without
vertical shadows, from the intersection points and endpoints, using essentially the
same method we used to construct the hammocks (i.e., by sorting the intersections
along each segment). We then augment this structure with the vertical shadows by
applying the trapezoidal decomposition algorithm of Atallah, Cole, and Goodrich [3]
and the sorting algorithm of Cole [15]. This takes O(logn) time using O(n / k)
processors, where k a + . We summarize as follows.

THEOREM 6.3. Given a set S of n line segments in the plane, we can construct
the segment arrangement for S in O(log n) time using O(n log n + k) processors in the
CREW PRAM model, where k is the size of the output.

Thus, one can construct a segment arrangement efficiently in parallel in an output-
sensitive manner. In the next section we show how to perform this construction
optimally for the important special case when the segments are iso-oriented.

7. Iso-oriented segments. In this section we show how to construct the seg-
ment arrangement when all the segments are parallel to the x- or y-axes. Our method
runs in O(logn) time using O(n / k/log n) processors in the CREW PRAM model,
which is optimal. Since our algorithm is based on a "compressed" version of the array-
of-trees parallel data structure of Atallah, Goodrich, and Kosaraju [4], we begin by
reviewing this structure.

7.1. The array-of-trees. Suppose we are given a sequence a (al, a2,..., an),
of insert(a) and delete(a) operations. Let at denote the argument of the operation
at, and let A be the list of all distinct at values stored in sorted order. Also let At
denote the set of items from A that would be present at "time" t if the operations
(al,..., at) were evaluated sequentially, assuming that the initial set is . A tree query
is any query operation that can be performed on a complete binary tree T with O(n)
nodes in O(log n) time assuming that elements are stored in the leaves of T and each
internal node v of T can store the values of O(1) functions applied to values stored in
v’s children. Examples of such tree queries include the computation of the maximum
y-coordinate of v’s descendents or the computation of the number of v’s descendents.
The array-of-trees data structure allows us to perform any tree query on any given
At in O(log n) time, assuming all the elements of At were stored in the leaves of a
complete binary tree T. In fact, this structure can be viewed as an array of trees
(T,T2,"’,Tn), where Tt is a complete binary tree whose leaves correspond to the
elements of A, one element per leaf, such that the leaves associated with elements of
At are active while all others are in-active (i.e, they store the nil value).

The "skeleton" of the array-of-trees is a complete binary tree T whose leaves are
associated with the elements in A, one per leaf. For each a in A we construct a(a),
the subsequence of a consisting of all operations that have a as their argument. Note:
with each operation in a(a) we store its position in a; in fact, each time we refer to
a at, t denotes its index in a. Using parallel sorting [15], it is easy to construct A, T,
and all the a(a)’s in O(log n) time using O(n) processors.

For each v in T we construct a list B(v) of records (R, R2,"" ,Rt) such that
each R has the following fields:

(1) time, the index (time) when R becomes active.
(2) left, a pointer to the left child of R.
(3) right, a pointer to the right child of R.
(4) val, the value stored at R.
(5) Labels, a list of O(1) labels, each of which is the result of an associative

function applied to the values stored at the children of R.

D
ow

nl
oa

de
d

01
/1

3/
15

 to
 1

28
.1

95
.6

4.
20

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

INTERSECTING LINE SEGMENTS IN PARALLEL 751

Intuitively, each Ri represents a node in a complete binary tree rooted at v whose
leaves (which are the same as those of the subtree rooted at v) and are either active
or nil. The record Ri is active at time R.time and remains active until there is a
change in one of the descendent nodes of R, namely, at time R+l.time.

More formally, suppose v is a leaf node, which, say, is associated with the element
a E A. Also suppose a(a) (al, a2,..., av). Then B(v) (Ro, R1,..., Rlv), where
the record R is associated with the operation a, for 1, 2,..., lv. Specifically,
givena in a(a), we define the record R so that R.time t, and R.left R.right
nil. If a insert(a), then R.val a, and if a delete(a), then R.val nil. Each
label in the Labels list is initialized based on R.val and the semantics of the function
that defines that label. For example, if the label is "number of active descendents,"
then this label is "1" if R.val a, and this label is 0 if R.val nil. The record R0
represents the initial condition, i.e., R0 (0, nil, nil, nil, L0). Intuitively, each record
in B(v) is the node in a one-node binary tree that stores a "snapshot" of the history
of a with respect to an evaluation of a.

Now suppose v is an internal node with left child u and right child w. In this
case there is a record in B(v) for each record in B(u)U B(w). More formally, let
B(u) (Uo, Ui,.. .,Ul), and B(w) (Wo, Wi,..., Wlw). Also let (to, ti,t2,. ,t)
be the sorted list of time fields from the records in B(u) U B(w), where lv lu +l 1
(we only store one copy of to 0). We define B(v) (R0, Ri,..., R), where the
record R is defined so that R.time t, R.left points to the record Uj with largest
index j such that Uj.time _< t, and R.right points to the record W with largest
index j such that Uj.time <_ t. In addition, R.val nil, and each label in R.Labels
is defined by applying the appropriate function to the corresponding labels stored at
the records that R.left and R.right point to. For example, if the label is "number
of active descendents," then we simply need to add the corresponding labels from
the records R.left and R.right. Intuitively, each record in B(v) is the root of a
binary tree that stores a "snapshot" of the history of the elements associated with
the descendents of v with respect to an evaluation of a.

Atallah, Goodrich, and Kosaraju [4] show that we can exploit the recursive struc-
ture of the B(v) definitions to construct B(v) for each v in T in O(log n) time with
O(n) processors in the CREW PRAM, using the cascading divide-and-conquer tech-
nique of Atallah, Cole, and Goodrich [3].

7.2. The compressed array-of-trees. In our algorithm we use a compressed
version of the array-of-trees data structure. The compressed array-of-trees consists of
T as above, with a list B’(v) of records stored at each node v in T. The main idea of
the compressed array-of-trees is to force each "tree" in B(root(T)) to (1) only store
pointers leading to active elements, and (2) not have any internal nodes that have
only one child. (See Fig. 5.)

Our method for enforcing this property is as follows. If v is a leaf of T, then the
fields of each record in B’ (v) are defined as above, i.e., B’ (v) B(v) in this case. If,
on the other hand, v is an internal node in T (with left child u and right child w),
then we define the structure of the records in B’(v) to be slightly different from the
structure of records in B(v). For each record R in B(v) there is a record R in B’ (v),
with R.time R.time and R.Labels R.Labels. The other fields in R differ from
their corresponding fields in R, however. In particular, let U denote R.left and W
denote Ri.right, and let U’ and W’ denote the records corresponding to U and W
in B’(u) and B’(w), respectively. Also let Desc(R) denote the set of all nonnull val
fields in records reachable from R (by following left and right pointers). We define

D
ow

nl
oa

de
d

01
/1

3/
15

 to
 1

28
.1

95
.6

4.
20

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

752 MICHAEL T. GOODRICH

nil nil 5 nil nil

5

2 3

(a) (b)

FIG. 5. An example At represented (a) as a complete binary tree, and (b) as a compressed
binary tree.

the remaining fields of R as follows:
(1) if Desc(Ri) , then R.left R.right nil and R.val nil.
(2) If Desc(Ri) {a}, then R.left R.right nil and R.val a.

(3) If Desc(Ri) but Desc(U) , then R.left W’.left, R.right
W.right, and R.val W.val.
(4) If Desc(Ri) but Desc(W) , then R.left U’.left, R.right
U.right, and R.val U.val.

Note that to construct an R we only need Desc(Ri) if it contains a single element;
otherwise, we need to know only the size of Desc(Ri). This is itself an associative
function. Thus, we can still use the method of Atallah, Goodrich, and Kosaraju [4] to
construct B’(v) for each v in T in O(log n) time with O(n) processors in the CREW
PRAM.

7.3. Determining iso-oriented intersections. Having described the com-
pressed array-of-trees, let us return to the problem at hand, namely, the iso-oriented
segment arrangement problem. Suppose we are given a set S of n iso-oriented line
segments in the plane. We construct the compressed array-of-trees data structure
to represent a horizontal plane-sweep (e.g., that of Bentley and Ottmann [6]) and
use it to perform a range query for every position that corresponds to a vertical
segment. In particular, we use this data structure by sorting the endpoints of the
horizontal segments in S in increasing order by x-coordinates; let Events denote this
list. For each point qt (xt, yt) in Events that is the left endpoint of a segment, we
let at insert(yt), and for each qt (xt, yt) in Events that is the right endpoint of
a segment, we let at delete(yt). The labels we store in the Labels field for each
record R in the compressed array-of-trees are ymax, the maximum y-coordinate in the
descendents of R, and desc, the number of active descendents of R. To perform the
query for a vertical segment s ((x, Yl), (x, Y2)I we first locate the point at (xt, yt)
in Events such that t is the largest index satisfying xt <_ x (by a simple binary search).
This immediately gives us at, the operation associated with qt. Intuitively, at is the
insertion or deletion event that would be encountered just before the query event for
s in a sequential implementation of the plane-sweep. Given at, we locate the record
R in B(root(T)) with R.time t. We then perform a search in the tree rooted at R
to determine the number ks of horizontal segments that have a y-value between yl

and y2 (using the ymax and desc labels). This is easily done in O(log n) time using
a single processor. We then assign [ks/log n] processors to the task of enumerating
these elements and placing them in a single array Hs. The ith processor in this col-
lection is assigned to the task of enumerating the elements in the tree rooted at R

D
ow

nl
oa

de
d

01
/1

3/
15

 to
 1

28
.1

95
.6

4.
20

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

INTERSECTING LINE SEGMENTS IN PARALLEL 753

10

11

_1 4,

7

FIG. 6. Using list merging to complete the construction of the iso-oriented segment arrangement.
In this case, LVs (6,8), RVs, (10), Hs (1,2,3,4,5,7), Hs, (9,11,12,14,15), HLs,,s
(1,2,3,4,5), and HRs,s, (11,12,14,15).

that are in the interval [yl, y2] and of rank iFlogn, i[log n] + 1,..., (i + 1) [logn] -1.
Since the tree rooted at R is compressed and the elements in its "leaves" are sorted
by y-coordinate, the ith processor can use the ymax and desc labels to locate all its
elements in O(logn) time. Moreover, this also gives us all the vertical adjacencies
in the segment arrangement for these intersection points. Thus, we have yet only to
combine all the H8 lists to construct the segment arrangement.

We begin this combining procedure by using the cascading divide-and-conquer
technique of Atallah, Cole, and Goodrich [3] to determine the horizontal shadows of
each vertical segment s in S, i.e., the point on the first vertical segment intersected
by a horizontal ray emanating out of the endpoints of s. This takes O(log n) time
using O(n) processors [3], and gives us O(n) pairs of segments (s, s’) such that s is
horizontally "visible" from s’. Then, using parallel sorting [15], in O(log n) time we
can construct, for each vertical segment s, two additional lists: LVs, which is the
sorted list all the horizontal shadows hitting s from the left, and RVs, which is the
sorted list of all the horizontal shadows hitting s from the right. These lists give us
all the maximal pieces of s that are visible from another vertical segment in S from
either the left or the right.

The remainder of the computation, which we illustrate in Fig. 6, consists of a
number of list merging steps, where all lists are assumed to be sorted by y-coordinates.
For each s in parallel we merge LV with H, the list of horizontal intersections along

D
ow

nl
oa

de
d

01
/1

3/
15

 to
 1

28
.1

95
.6

4.
20

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

754 MICHAEL T. GOODRICH

s. We similarly merge RVs with Hs. This can be implemented in O(log n) time using
O(n / k/log n) processors using the merging methods of [9], and [38]. Let HLs,s, be
the list of horizontal intersections in H that fall on the piece of s that is horizontally
visible from s, where s is to the left of s. Similarly, define HR,,s,. Note that we can
easily determine each HLs,s, and HRs,s, given the merges we have just performed
(even if some of these lists are empty, since we have at least O(n) processors). In
parallel, for each pair of horizontally visible segments (s,s) such that s is to left
of s, we merge HL,,8 with HR,,s,. Performing all these parallel merges gives us
the horizontal adjacencies for each intersection point in H; hence, completes the
construction. Since all these merges can also be performed in O(logn) time using
O(n + k/log n) processors [9], [38], we have the following theorem.

THEOREM 7.1. Given a set S of n iso-oriented segments in the plane, we can
construct the segment arrangement for S in O(logn) time using O(n + k/logn) pro-
cessors in the CREW PRAM model, where k is the size of the output.

8. Conclusion. We have derived a parallel method for constructing the segment
arrangement of a set of line segments in the plane in O(logn) time so that total
work performed is only a log n factor from the sequential lower bound (which is
achievable [12]). Moreover, we have shown how to solve the important iso-oriented
special case of this problem with an optimal work bound. Thus, the obvious open
problem that remains is to construct the segment arrangement in O(log n) time using
only O(n log n + k) work.

Acknowledgments. We thank Mikhail J. Atallah, Richard Cole, Gregory Bache-
lis, and S. Rao Kosaraju for helpful discussions regarding the topics of this paper. We
also thank an anonymous referee for several helpful comments, which significantly
improved the presentation of 6.

REFERENCES

[1] A. AGGARWAL, B. CHAZELLE, L. GUIBAS, C. (’DtNLAING, AND C. YAP, Parallel computational
geometry, Algorithmica, 3 (1988), pp. 293-328.

[2] a. ANDERSON, P. BEAME, AND E. BRISSON, Parallel algorithms for arrangements, in Proc.
2nd Annual ACM Symposium on Parallel Algorithms and Architectures, Island of Crete,
Greece, 1990, pp. 298-306.

[3] M.J. ATALLAH, R. COLE, AND M.T. GOODRICH, Cascading divide-and-conquer: A technique
for designing parallel algorithms, SIAM J. Comput., 18 (1989), pp. 499-532.

[4] M.J. ATALLAH, M.T. GOODRICH, AND s.a. KOSARAJU, Parallel algorithms for evaluating se-
quences of set-manipulation operations, in Proc. 3rd Aegean Workshop on Computing,
AWOC 88, Lecture Notes in Computer Science 319, Springer-Verlag, Berlin, New York,
1988, pp. 1-10.

[5] B.G. BAUMGART, A polyhedron representation for computer vision, Proc. 1975 AFIPS National
Computer Conference, 44, AFIPS Press, 1975, pp. 589-596.

[6] J.L. BENTLEY AND T. OTTMANN, Algorithms]or reporting and counting geometric intersec-
tions, IEEE Trans. Comput., 28 (1979), pp. 643-647.

[7] J.L. BENTLEY AND D. WOOD, An optimal worst case algorithm for reporting intersections of
rectangles, IEEE Trans. Comput., 29 (1980), pp. 571-576.

[8] S. BHATT AND J.Y. CAI, Take a Walk, Grow a Tree, Proc. 29th Annual IEEE Symposium on
Foundations of Computer Science, White Plains, NY, IEEE Computer Society, Washing-
ton, DC, 1988, pp. 469-478.

[9] G. BILARDI AND A. NICOLAU, Adaptive bitonic sorting: An optimal parallel algorithm for shared
memory machines, SIAM J. Comput., 18 (1989), pp. 216-228.

[10] R.P. BRENT, The parallel evalutation of general arithmetic expressions, J. Assoc. Comput.
Mach., 21 (1974), pp. 201-206.

[11] B. CHAZELLE, Reporting and counting segment intersections, J. Comput. Systems Sci., 32
(1986), pp. 156-182.

D
ow

nl
oa

de
d

01
/1

3/
15

 to
 1

28
.1

95
.6

4.
20

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

INTERSECTING LINE SEGMENTS IN PARALLEL 755

[12] B. CHAZELLE AND H. EDELSBRUNNER, An optimal algorithm for intersecting line segments
in the plane, Proc. 29th Annual IEEE Symposium on Foundations of Computer Science,
White Plains, New York, IEEE Computer Society, Washington, DC, 1988, pp. 590-600.

[13] B. CHAZELLE, L.J. GUIBAS, AND D.T. LEE, The power of geometric duality, BIT, 25 (1985),
pp. 76-90.

[14] A. CHOW, Parallel algorithms for geometric problems, Ph.D. thesis, Computer Science Depart-
ment, University of Illinois, Urbana, IL, 1980.

[15] a. COLE, Parallel merge sort, SIAM J. Comput., 17 (1988), pp. 770-785.
[16] H. EDELSBRUNNER, Algorithms in Combinatorial Geometry, Springer-Verlag, New York, 1987.
[17] H. EDELSBRUNNER AND L.J. GUIBAS, Topologically sweeping an arrangement, in Proc. 18th An-

nual ACM Symposium on Theory of Computing, Berkeley, CA, Association for Computing
Machinery, New York, 1986, pp. 389-403.

[18] H. EDELSBRUNNER, L.J. GUIBAS, J. BACH, R. POLLACK, R. SEIDEL, AND M. SHARIR, Arrange-
ments of curves in the plane--topology, combinatorics, and algorithms, UIUCDCS-R-88-
1477, Department of Computer Science, University of Illinois, Urbana, IL, 1988.

[19] H. EDELSBRUNNER, J. O’ROURKE, AND R. SEIDEL, Constructing arrangements of lines and
hyperplanes with applications, in Proc. 24th Annual IEEE Symposium on Foundations
of Computer Science, Tucson, AZ, IEEE Computer Society, Washington, DC, 1983, pp.
83-91.

[20] S.K. GHOSH AND D.M. MOUNT, An output sensitive algorithm .for computing visibility graphs,
in Proc. 28th Annual IEEE Symposium on Foundations of Computer Science, Los Angeles,
CA, IEEE Computer Society, Washington, DC, 1987, pp. 11-19.

[21] M.T. GOODRICH, A polygonal approach to hidden-line elimination, in Proc. 25th Annual Aller-
ton Conference on Communication, Control, and Computing, Allterton, IL, 1987, pp. 849-
858.

[22] M.T. GOODRICH, Intersecting line segments in parallel with an output-sensitive number of pro-
cessors, in Proc. 1989 Annual ACM Symposium on Parallel Algorithms and Architectures,
Santa Fe, NM, Association for Computing Machinery, New York, pp. 127-137.

[23] , Constructing arrangements optimally in parallel, Tech. Report 90/06, Department of
Computer Science, The Johns Hopkins University, Baltimore, MD, 1990.

[24] L.J. GUIBAS AND J. STOLFI, Primitives for the manipulation of general subdivisions and the
computation of Voronoi diagrams, ACM Trans. Graphics, 4 (1985), pp. 75-123.

[25] R.H. GTING, An optimal contour algorithm for iso-oriented rectangles, J. Algorithms, 5
(984), . a0a-a:.

[26] T. HAGERUP, n. JUNG, AND E. WELZL, Efficient parallel computation of arrangements of
hyperplanes in d dimensions, in Proc. 2nd Annual ACM Symposium on Parallel Algorithms
and Architectures, Island of Crete, Greece, Association for Computing Machinery, New
York, 1990, pp. 290-297.

[27] J. HERSHBERGER, Finding the visibility graph of a simple polygon in time proportional to its
size, in 3rd ACM Symposium on Computational Geometry, Waterloo, Ontario, Canada,
Association for Computing Machinery, New York, 1987, pp. 11-20.

[28] C.P. KRUSKAL, L. RUDOLPH, AND M. SNIR, The power of parallel prefix, in Proc. 1985 Internat.
Conference on Parallel Processing, St. Charles, IL, pp. 180-185.

[29] R.E. LADNER, AND M.J. FISCHER, Parallel Prefix Computation, J. Assoc. Comput. Mach., 27
(1980), pp. 831-838.

[30] D.T. LEE AND F.P. PREPARATA, Computational geometry--a survey, IEEE Trans. Comput.,
33 (1984), pp. 872-1101.

[31] W. LIPSKI, JR. AND F.P. PREPARATA, Finding the contour of a union of iso-oriented rectangles,
J. Algorithms, 1 (1980), pp. 235-246.

[32] D.E. MULLER AND F.P. PI:tEPARATA, Finding the intersection of two convex polyhedra, Theoret.
Comput. Sci., 7 (1978), pp. 217-236.

[33] O. NURMI, A fast line-sweep algorithm for hidden line elimination, BIT, 25 (1985), pp. 466-472.
[34] F.P. PREPARATA AND M.I. SHAMOS, Computational Geometry: An Introduction, Springer-

Verlag, New York, 1985.
[35] J. REIF AND S. SEN, An ejCficient output-sensitive hidden-surface removal algorithm and its

parallelization, in Proc. 4th ACM Symposium on Computational Geometry, Urbana-
Champaign, IL, Association for Computing Machinery, New York, 1988, pp. 193-200.

[36] C. Ri)B, Parallele Algorithmen zum Berechnen der Schnittpunkte yon Liniensegmenten, Ph.D.
dissertation, Universitt des Saarlandes, Saarbrucken, Germany, 1990.

[37] A. SCHMITT, Time and space bounds .for hidden line and hidden surface algorithms, in Proc.
EUROGRAPHICS ’81, North-Holland, Amsterdam, 1981, pp. 43-56.

[38] Y. SHILOACH AND U. VISHKIN, Finding the maximum, merging, and sorting in a parallel com-
putation model, J. Algorithms, 2 (1981), pp. 88-102.

[39] D. WOOD, The contour problem for rectilinear polygons, Inform. Process. Lett. 19 (1984), pp.
229-236.

D
ow

nl
oa

de
d

01
/1

3/
15

 to
 1

28
.1

95
.6

4.
20

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

