
Algorithmica (1992) 7:3-23 Algorithmica
�9 1992 Springer-Verlag New York Inc.

Optimal Parallel Algorithms for Point-Set and
Polygon Problems I

Richard Cole 2 and Michael T. Goodrich 3

Abstract. In this paper we give parallel algorithms for a number of problems defined on point sets
and polygons. All our algorithms have optimal T(n) * P(n) products, where T(n) is the time complexity
and P(n) is the number of processors used, and are for the EREW PRAM or CREW PRAM models.
Our algorithms provide parallel analogues to well-known phenomena from sequential computational
geometry, such as the fact that problems for polygons can oftentimes be solved more efficiently than
point-set problems, and that nearest-neighbor problems can be solved without explicitly constructing
a Voronoi diagram.

Key Words. Computational geometry, Parallel algorithms, Polygon, All nearest-neighbor problem,
Kernel problem, Convex hull.

1. Introduction. We present a number of new algorithms for parallel computa-
tional geometry [1]-[4], [7], [11], [12]. the goal of this research is to find
algorithms that run as fast as possible and are efficient in the following sense: if
P(n) is the processor complexity, T(n) is the parallel time complexity, and Seq(n)
is the time complexity of the best-known sequential algorithm for the problem
under consideration, then T(n) * P(n) = O(Seq(n)). If the product T(n) �9 P(n) in fact
achieves the sequential lower bound for the problem, then we say the algorithm
is optimal. All our algorithms are optimal in this sense and are for the EREW or
CREW PRAM models. The weaker of these two is the EREW PRAM model, the
synchronous shared memory model in which simultaneous reads or writes are not
allowed. The CREW PRAM allows for simultaneous reads. Specifically, our results
are the following:

1. Constructing the convex hull of a set of n points in the plane in O(log n) time
using O(n) processors in the CREW PRAM model.

2. Computing all nearest-neighbors for a set of n points in the plane in O(log n)
time using O(n) processors in the EREW PRAM model.

3. Computing all nearest-neighbors for the vertices of an n-vertex convex polygon
in O(log n) time using O(n/log n) processors in the EREW PRAM model.

i The research of R. Cole was supported in part by NSF Grants CCR-8702271, CCR-8902221, and
CCR-8906949, by ONR Grant N00014-85-K-0046, and by a John Simon Guggenheim Memorial
Foundation fellowship. M. T. Goodrich's research was supported by the National Science Foundation
under Grant CCR-8810568 and by the National Science Foundation and DARPA under Grant
CCR-8908092.
2 Courant Institute, New York University, New York, NY 10012, USA.
3 Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218, USA.

Received April 10, 1988; revised May 2, 1989. Communicated by Alok Aggarwal.

4 R. Cole and M. T. Goodricti

4. Constructing the kernel of an n-vertex simple polygon in O(log n) time using
O(n/log n) processors in the CREW PRAM model.

Before we give the methods for solving each of the above problems, let us review
what was previously known about each of them and outline our contributions.
Problem 1, the planar convex-hull problem, is perhaps themost-studied problem
in computational geometry. There has been considerable previous work done on
methods for solving this problem sequentially (see [9], [19], and [211). It is well
known, for example, that the sequential time complexity of this problem is
| log n). One of the most elegant of the optimal methods for constructing convex
hulls is a divide-and-conquer algorithm based on Toussaint's idea of rotating a
pair of "calipers" around two hulls to find their common supporting tangents
[26]. Our algorithm is based on a generalization of the cascading divide-and-
conquer technique [2] that provides a nontrivial parallel analogue to Toussaint's
rotating-calipers paradigm. There are a number of other parallel algorithms for
convex-hull construction that have the same bounds as our algorithm [1], [3],
[41, [27]. They all assume, however, that the square-root function can be computed
in O(1) time. Our algorithm does not make this assumption.

Problem 2, the all nearest-neighbor problem, is also well known [91, [19], [21].
it can also be solved (optimally) in O(n log n) time, by a simple reduction to
Voronoi diagram construction [23]. This reduction is not necessary, however, for
we can still achieve O(n log n) time without reducing it to Voronoi diagram
construction [5]. Our parallel algorithm for this problem shows that, just as in
the sequential case, we can optimally solve the all-nearest neighbor problem
without explicitly constructing a Voronoi diagram (for which the best-known
parallel algorithm runs in nonoptimal O(log 2 n) time using O(n) processors [1],
[2]). As with our convex-hull algorithm, our method is based on a novel use of
the cascading divide-and-conquer technique [2].

Finally, Problems 3 and 4 are significant, for they represent problems that have
f~(n log n)-time lower bounds in the general case, yet can be solved in O(n) time if
the input points come from the vertices of a polygon [101, [17], [181, [-28]. Our
algorithms for these problems provide parallel analogues to this phenomenon.
Our algorithm for Problem 3 (all-nearest neighbors in a convex polygon) is based
on a composite of parallel merging, parallel prefix, and broadcasting techniques.
Our algorithm for Problem 4 (kernel of a simple polygon) is based on the discovery
of a new way of characterizing the kernel of a simple polygon P in terms of the
amount that the boundary of P "turns." Incidentally, this idea also leads to a new
O(n)-time sequential algorithm.

In the remainder of this paper we present our algorithms, one per section, in
the above order, and conclude with some final remarks and open problems in
Section 6.

2. A Cascading Algorithm for Convex-Hull Construction. In this section we
describe our algorithm for constructing the convex hull of a set of points in the
plane. Our algorithm runs in O(log n) time using O(n) processors in the CREW
PRAM model. There has been considerable previous work on this problem in the
paral]el setting, resulting in a number of algorithms running in O(log n) time using

Optimal Parallel Algorithms for Point-Set and Polygon Problems 5

O(n) processors [1], [3], [4], [12], [27]. The algorithm we present in this section
has the same complexity as these algorithms, but differs from them in that it is
based on the elegant "rotating calipers" (or "merging slopes") technique of
Toussaint [26], and in fact provides the first nontrivial parallel analogue to that
technique. (By substituting known parallel merging methods for the sequential one
used in the convex-hull algorithm by Toussaint, we can trivially get an algorithm
running in O(log 2 n) time using O(n/log n) processors [-6], [-24].) Moreover, our
algorithm makes no use of the square-root function, unlike the previous optimal
parallel algorithms. Since our method for this problem (as well as that for the
problem of the next section) depends on a generalization of the cascading
divide-and-conquer technique, we begin our discussion by reviewing this tech-
nique.

2.1. A Review of Cascadin9 Divide-and-Conquer. Since the cascading divide-and-
conquer method was originally used to sort [8], let us review this technique in
the context of the sorting problem: we are given a set S of n elements taken from
some total order, and wish to list the elements of S in nondecreasing order.

Let T be a complete binary tree with the elements of S stored at its leaves, one
element per leaf. Intuitively, T represents the divide-and-conquer structure of the
merge sort algorithm. The method proceeds in stages. At the end of each stage t,
each node v in T stores a sorted list At(v), whose elements form a subset of Desc(v),
the elements that are stored at descendents of v. In stage t + 1, for each node v
whose At(v) list does not contain all the elements in Desc(v), we construct a new
list At + l(v), which contains roughly double the number of elements in At(v). If At(v)
contains all the elements in Desc(v), then v is said to be full. Specifically, At+ l(v)
is defined as follows:

At+ ~(v) = SAMP(At(u)) u SAMP(At(w)) ,

where u and w are the children of v, and SAMP(A) denotes the sample of A. 1I u
was not full at the end of stage t - 1, then SAMP(At(u)) consists of every fourth
element from At(u); if u just became full at the end of stage t - 1, then SAMP(At(u))
consists of every other element from At(u); and if u was full at the end of stage
t - 2, then SAMP(At(v)) = At(V). Similarly, for SAMP(A~(w)). Thus, once the nodes
on a certain level of T become full, the nodes on the next level up become full
three stages later. Therefore, the entire algorithm requires 3J-log n7 stages.

Cole [8] shows that a rank label for each element e of A t_ l(v) can be maintained
that gives the rank of e's predecessor in A~(v), as well as similar labels from At(v)
to SAMP(A t_ l(u)) and SAMP(A t_ l(w)). Moreover, he shows that these labels can
be used to perform the merge at node v for stage t + 1 in 0(1) time using
O([At+ l(v)[) processors in the CREW PRAM model, assuming that At_ l(V) is a
"good approximation" of At(v). More precisely, A t_ l(v) must be a c-cover of At(v);
that is, for each consecutive pair of elements e and f in A,_ l(v) u { - o% oo} there
can be at most c elements of At(v) that fall in the interval [,e, f) . Since there are
O(log n) stages, and we need only perform this computation for nonfull nodes, this
implies that we can sort in O(log n) time using O(n) processors in the CREW
PRAM model. Cole also shows that this approach can be modified so ~s to run

6 R. Cole and M. T. Goodrich

on the EREW PRAM model (we refer the interested reader to [-8] for the details
of this modification).

Since T is complete, the processor allocation is quite simple. In [2] Atallah et
al. generalize Cole's method by showing that the processor allocation for cascade
merging can be performed even when the tree T is not complete. Moreover, they
show that there are a number of other computations that can be performed at v
during a stage--such as applying a monotone function to the elements of At(v)
before "sending" then to v's parent, or computing other labeling functions for the
elements in At + a (v) ~ l l without sacrificing the O(i) time performance for the stage.
They also give a number of examples of problems that can be solved using these
generalizations. One generalization that their techniques seems not to be able to
handle, however, is that of inserting and deleting elements from Az(v) before sending
SAMP(At(v)) to v's parent. In the next subsection we show that this difficulty for
the insertions and deletions that arise from applying the cascade merging technique
to convex-hull construction can be overcome by "rotating calipers" [26].

2.2. Our Convex-Hull Algorithm. Given a set of n points in the plane, the
convex-hull problem is to construct a representation of the smallest convex set (a
polygon) that contains all these points. This problem can be divided in two by
considering the boundary of the convex hull to consist of two pieces, an upper hull
and a lower hull, the upper hull being that piece visible from above (i.e., from the
point (0, + oe)) and the lower hull being that piece visible from below.

Consider the problem of constructing the upper hull of a set of n points (the
problem of constructing the lower hull is similar). For simplicity we assume that
the points have distinct x-coordinates, that no three are collinear, and that the
number of points is a power of two (it is straightforward to modify our algorithm
for the general case). Our algorithm is based on the following divide-and-conquer
approach [-26]: Suppose we have two disjoint upper hulls separated by a vertical
line, and the edges of each hull are given sorted by slope. In order to find their
common tangent we simply merge the two lists of edges by slope. Suppose edges
e and g come from the left hull and edge f from the right, in the order e > f > g
(by slopes). If the line containing f is below the common vertex of e and g, then
f cannot be on the hull. In fact, this rule eliminates exactly those edges that do
not belong on the hull, and leaves two contiguous lists of edges on each side of
the dividing line. The common upper tangent is determined by creating an edge
that joins the rightmost vertex of the "surviving" hull on the left to the leftmost
vertex of the surviving hull on the right.

To do this by cascade merging we begin by sorting the input points by
x-coordinates; let S = (ql, q2, . . . , q,) denote this list. We construct a complete
binary tree T such that each leaf node v i contains the list

Ho(vi) = (((x(q2i-,), - ~) , q2i-1), (q2i-1, qzi), (q2i, (x(q2i), --c~))),

for i = 1, 2, . . . , n/2, where (p, q) denotes the line segment from p to q. In other
words, Ho(vi) is the upper hull determined by the edge (q2i- 1, q2i). Our algorithm
proceeds in stages, where in each stage t + 1, we construct Ht+l(v), a sorted list

Optimal Parallel Algorithms for Point-Set and Polygon Problems 7

of edges, for each node v, where H~+l(v) is defined as follows:

H t + l(v) = SAMP(Ht(u)) w SAMP(Ht(w)),

where u is v's left child and w is v's right child, and SAMP is defined as in Section
2.1. Thus, the entire method requires 3[log n] stages.

Ultimately, when a node v becomes full, we would like Ht+ ~(v) to contain the
edges of the upper hull of the edges stored in Desc(v) sorted by slopes. Our current
definition of Ht + l(V) does not provide this, however, for it does nothing more than
merge all the edges stored in the children of v. We modify the definition slightly,
then, so that at the moment when a node v becomes full, we perform some extra
computations to make Hi+ l(v) be the upper hull of all the edges stored in Desc(v).
In particular, suppose v has become full at the end of stage t + 1 (i.e., we have
just constructed Ht+l(v)= Ht(u)t3 Ht(w)). Inductively, also suppose Ht(u) (resp.
Ht(w)) is the upper hull for u (resp. w) stored by sorted slopes. By merging these
two lists we can determine which elements of Ht(u) and Ht(w), respectively, belong
to the hull of H~(u) u Ht(w), using the rule given above. Note that the elements of
Ht(u) that are on the hull of Ht(u) w Ht(w) form a prefix of H~(u), and the elements
of Ht(w) that are on the hull of H~(u) u Ht(w) form a suffix of Ht(w). In addition,
the common upper tangent of H~(u) and Ht(w) (call it L) must join the last surviving
member of Hi(u) (call it f) to the first surviving member of Ht(w) (call it 9).
Thus, to construct a representation of the upper hull ofHt(u)uHt(w)we
must concatenate the surviving prefix of Ht(u) with L and the surviving suffix of
Ht(w). This is the list we use for Ht+z(v) (when the SAMP function for v's parent
takes every other element).

In order to show that we can incorporate this computation into the cascading
divide-and-conquer method, we must show that for each element e in H,+ l(v) we
can compute the predecessor of e in Ht+2(v) in O(1) time using a processor for
each e, and that our definition of Ht+z(v) does not violate the c-cover property
(i.e., that H~(z) is a c-cover of Ht+ ~(z), for all z e T). For the predecessor computa-
tion, note that since Ht(u) and H~(w) both contain an edge with slope + oo and
an edge with slope - 0% the surviving prefix of H~(u) and the surviving suffix of
Ht(w) are nonnull. Thus, f and O exist. Let Hi(u) denote the list H~(u) with the
successor of e (which also must exist) replaced by L and every edge after this edge
removed. Similarly, let H't(w) denote the list Ht(w) with every edge before 9 removed.
We can easily construct H',(u) and H't(w) in constant time using O(IH,(u)[+ [Ht(w) l)
processors. Moreover, given an element e in Ht+ l(v), since we know e's predecessor
in H,(u) and Ht(w), this immediately gives us e's predecessor in H't(u) and H~(w).
By adding the ranks of these two elements we get the rank ofe in H,+ z(v) (assuming
e is a survivor). Thus, we have yet only to show that we maintain the c-cover
property.

Since v is full after stage t + 1, we know that Ht+l(v) would be a 1-cover of
Ht+2(v) (in fact, H~+l(v) would equal Ht+2(v)) were it not the case that we are
deleting elements from Ht(u) and Ht(w), and then adding an edge L to Ht(u), in
order to create H't(u) and H't(w), and, subsequently, Ht+z(V). To see that we still
have a c-cover property, however, first note that H~(u) is a 2-cover for H'~(u), since

8 R. Cole and M. T. Goodrich

in creating H't(u) from He(u) we deleted a contiguous block of elements from H~(u)
and then added one additional edge. Also note that Ht(w) is trivially a 1-cover for
H't(w), since H't(w) c Ht(w). Thus, by transitivity, Ht+ l(v) is a 2-cover for H t + 2(v).
Since the c used in [2] is greater than 2, this is sufficient to maintain the c-cover
property of the cascade merging method. Therefore, we have the following
theorem:

THEOREM 2.1. Given a set S of n points in the plane we can construct the convex
hull orS in O(log n) time usin9 0(n) processors in the C R E W P R A M model without
using the square-root function.

3. All Nearest-Neighbors for a Point Set. Given a set S of n points in the plane,
the problem is to find for each point q in S the point q' r q in S that is closest to
q. Our algorithm runs in O(log n) time using O(n) processors. We first describe
how to implement our algorithm in O(n 10g n) space in the EREW PRAM model,
and then how it can be implemented in O(n) space in the CREW PRAM
model.

Our algorithm is based on two nontrivial applications of the cascading divide-
and-conquer technique [2], each constituting a phase in our algorithm. In Phase
1 we determine, for each q s S, an approximation to N(q), the nearest-neighbor
ball around q, and in Phase 2 we use these approximations to compute all the
true N(q)'s in parallel. Specifically, in Phase 1 we determine a ball around each q,
which we call the neighborhood ball about q, whose radius is the distance between
q and the closest point q has "encountered" during the cascading merge procedure.
During the second phase we construct for each point q a list C(q) that contains
points of S that may have q as their nearest neighbor. We call C(q) the candidate
list for q. It is easy to show that for any point q there can be at most six other
points q' such that q is the nearest neighbor of q' (using an argument similar to
that used by Bentley and Shamos in [5]). Thus, C(q) need never contain more
than six points. Our algorithm constructs a C(q) list for each q in S and then
performs a postprocessing step to eliminate any pairs that are not nearest-neighbor
pairs. The details follow.

In Phase 1 we construct, for each q in S, the neighborhood ball centered at q,
denoted B(q). For simplicity let us assume that the points have distinct x- and
y-coordinates, respectively; we can easily modify our algorithm for the general
case. We begin by sorting the points in S into increasing order by x-coordinates;
let S = (ql, q2, . . . , q,) denote this list. This can be done in O(log n) time using O(n)
processors in the EREW PRAM model [81. We then build a complete binary tree
T that has the points ql, q2 q, stored in its leaves (listed from left to right),
one per leaf. For each node v in Tlet Y(v) denote the points of Desc(v) (the points
stored in descendents of v) sorted by y-coordinates, and let depth(v) denote the
depth of v (with the root being at depth 0). With each point q in Y(v) we store a
label b(q). At the end of Phase 1 the label b(q) will store the name of the point
that is closest to q of all the points that q has "encountered" during the phase.

We can perform a cascading method to construct Y(v) for each v in T by defining

Optimal Parallel Algorithms for Point-Set and Polygon Problems 9

Yt+l(V) for stage t + 1 as

Yt+ l(v) = SAMP(Yt(u))w SAMP(Yt(w)),

where u is v's left child, w is v's right child, and the sample function S A M P is
defined as in Section 2.1. Thus, all the Y(v) lists can be constructed in O(log n)
time and O(n) space using O(n) processors in the EREW PRAM model [8].

For each q in each Y(v) we use the ranking information computed in the
construction of Y(v) from Y(u) and Y(w) to build the set {pred(q, Y(u)), succ(q, Y(u)),
pred(q, Y(w)), succ(q, Y(w))}, where pred(p, A) (resp. succ(p, A)) denotes the pre-
decessor (resp. successor) of p in A using the order on A. This defines O(log n)
points for each q. These are the points that q "encountered" during the cascading
merge. For each q in parallel we can then compute the closest of these O(log n)
points to q in O(log n) serial time. This is b(q).

Alternatively, we can compute the b(q) labels while performing the cascading
construction of Y(v). For each leaf node v, which, say, stores the point qi, we
initialize b(q~) to be the point in {q,_~, q~+a} that is closer to qi. When a node v
becomes full, i.e., when Y(v) contains all the elements in Desc(v), then we can
update b(q) for each q in Y(v) by taking b(q) for each q ~ Y(v) to be the closer of
the old value of b(q) and the point in {pred(q, Y(u)), succ(q, Y(u)), pred(q, Y(w)),
succ(q, Y(w))} closest to q. After updating the value of b(q), we can then de-allocate
the space for Y(v), since we no longer need it, thus giving us O(n) space for the entire
computation (in the CREW PRAM model). When the cascading completes we
will have computed b(q) for each point q in S. So, after Phase 1 completes, we
have the following:

LEMMA 3.1 Given a list of points S = (ql, q2 , q,) the label b(qi) can be computed
for each point qi ~ S in O(log n) time and O(n) space using O(n) processors in the
C R E W P R A M model, or in O(log n) time and O(n log n) space using O(n) processors
in the E R E W P R A M model.

We define B(q), the neighborhood ball centered at q, to be the region in ~2
consisting of all points q' such that d(q, q') <_ d(q, b(q)). In Phase 2 we refine each
B(q) into N(q), the nearest-neighbor ball centered at q. Since the points in S all
have distinct x-coordinates, we can partition the leaves of T by placing a vertical
dividing line between ql and qi+l for i = 1, 2 n - 1. With each node v in T
we associate a slab 11 v, which is the region bounded by the two vertical dividing
lines that separate the points in Desc(v) from the rest of the points in S. For each
node v in T let left(v) (resp., right(v)) denote the left (resp. right) vertical boundary
of the slab II~. We define the following lists for each node v E T:

L(v) = {q ~ Y(v): B(q) n left(v) ~ ~ } ,

R(v) = {q E Y(v): B(q) n right(v) ~ ~J}.

That is, L(v) (resp. R(v)) consists of the points whose neighborhood ball intersects

10 R. Cole and M. T. Goodrich

the left (resp. right) boundary of the slab IIv. Our method for refining the B(q)'s
into N(q)'s (i.e., Phase 2) involves a second application of the cascading divide-
and-conquer method. In this second cascade-merging procedure we not only
compute Y(v) for each node v but also L(v) and R(v), all sorted by increasing
y-coordinates. Note, however, that L(v) and R(v) may be proper subsets of Y(v),
so the cascade will have to involve deletions. We first describe how to do this
using O(n log n) space, and then show how this can be reduced to O(n) space.

For each v we construct Y(v) as in Phase 1, but do not de-allocate the space
for Y(v). From each Y(v) construct L(v) and R(v), and for each element q in Y(z),
where z is the sibling of v, compute the predecessor of q in L(v) and R(v). All of
these computations can be done in O(log n) time using O([Y(v)I/log n) processors
by simple parallel prefix and parallel broadcast computations [15], [16]. (Recall
that the parallel prefix technique is to reduce a problem to the problem of
computing all the prefix sums ck = ~ = 1 ai of a sequence (al, az , . . . , am), where
the + operation is associative.) Let SW(q) denote the region of ~2 consisting of
all points q' such that x(q') < x(q) and y(q') < y(q), i.e., all points southwest of q.
Define SE(q), NW(q), and NE(q) similarly. For each point q in Y(v) we define four
pointers (labels):

sw(q) = point w/max, y-coot, in SW(q) n Y(v),

se(q) = point w/max, y-coot, in SE(q) n Y(v),

nw(q) = point w/min, y-coor, in NW(q) n Y(v),

he(q) = point w/min, y-coor, in NE(q) n Y(v).

These labels can be constructed while we are building the Y(v) lists. For example,
we can compute sw(q) for q ~ Y(v) from the labels for the elements in Y(u) and
Y(w) (u being v's left child and w being v's right child) by the following simple
rule: if q comes from Y(u), then do nothing, for sw(q) is the same in Y(v) as it is
in Y(u); if, on the other hand, q comes from Y(w), then take sw(q) in Y(v) to be
the point with maximum y-coordinate between the sw(q) point for q from Y(w)
and pred(q, Y(u)). The other labels can be maintained similarly. We use these labels
and the L and R lists to compute the candidate list C(q) for each point q.
Specifically, the construction of C(q) is performed in a bottom-up fashion in T using
the observations from the following lemma:

LEMMA 3.2. Let v be a node in T with left child u and right child w and let q be
a point in Y(v). I f q E Y(u), then the only points in Y(w) such that q could possibly
be their nearest-neighbor are pred(q, L(w)), sw(pred(q, L(w))), succ(q, L(w)), and
nw(succ(q, L(w))). (See Figure 1.) I f q E Y(w), then the only points in Y(w) such
that q could possibly be their nearest-neighbor are pred(q, R(u)), se(pred(q, R(u))),
succ(q, R(u)), and ne(succ(q, R(u))).

PROOF. Without loss of generality we prove that the only p's in Y(w) with
y(p) > y(q) such that q could be p's nearest neighbor are p = succ(q, L(w)) and
p = nw(succ(q, L(w))). Let 1 be the vertical line separating Y(u) and Y(w) and let

Optimal Parallel Algorithms for Point-Set and Polygon Problems 11

O~P'''"''""7~O succ(q.L(w))

. . . . "1~.0 pred(q,L(w))
o j

_ ~ SS

sw~red(q, L(w)))

Fig. 1. The only points in Y(w) that can have q ~ Y(u) as their nearest neighbor.

the origin, denoted o, be placed at the intersection of l and the horizontal line
containing succ(q, L(w)). Furthermore, let Po = (Xo, Yo) = (Xo, 0) = succ(q, L(w))
and p, = (xl, YI)= nw(succ(q, L(w))). Since Po is in L(w) by definition, B(Po)
contains the origin. In addition, the radius of B(po) is at most d(po, p,), since Pl
must have been one of the points encountered by Po during Phase 1. Thus, x, _< y,.
Suppose, for the sake of contradiction, that there is a point P2 = (x2, Y2) in Y(w),
with Y2 > Yo, such that the circle C centered at P2 with radius min{d(p2, PI),
d(p2, Po)} contains the origin o. Note that these conditions are necessary for the
nearest-neighbor ball for P2 (with respect to Y(w)) to contain q. Since C contains
the origin and does not contain Po = (Xo, 0) x2 < Xo (recall that P2 is above
Po by assumption). Then Y2 > Yl, since p, is the point with smallest y-coordinate
in Y(w) of all points northwest of Po. Thus, x~ < Y2. Therefore,

d(p2, p ,) = x / (x l - x2) + (y l - y2)

= x/(xlZ + y2 _ 2yly2) + (x 2 + yZ _ 2XlX2) < ~ + y~

= d(pz, o).

But this contradicts the definition of C, for it states that if C is a circle centered
at P2 = (X2, Y2), with x2 > 0 and Y2 > 0, such that C does not contain a point Pl
in the triangle ((0, 0), (0, Y2), (Y2, Y2)), then C cannot contain the origin. (See
Figure 2.) []

Thus, for each point q in Y(v), if q comes from Y(w), we can compute the new
list C(q) at v given the old list C(q) at w and at most four points in Y(u). (The
definition is similar if q comes from Y(u).) Since the old C(q) list can contain at
most six points, there can be at most a total of ten points in this collection, from
which we must determine which ones can possibly have q as their nearest neighbor.
These points can be determined by solving the all-nearest neighbor problem for
this collection of a t most ten points with a single processor in 0(1) steps. Thus,
we have the following:

12 R. Cole and M. T. Goodrich

p~ - "v=z

P l s �9

,, j

S

W w O
Po

Fig. 2. C cannot contain o while excluding Pl.

LEMMA 3.3. Given a set S = {ql, q2 qn} of points in the plane, we can compute
C(qi) for each qi in O(log n) time and O(n log n) space using O(n) processors in the
E R E W P R A M model.

We complete our all nearest-neighbors algorithm with a simple postprocessing
step. Let N be the set of all pairs (q, q') such that q ~ C(q'). Since I N I _< 6n we can
sort the pairs in N by first coordinate in O(log n) time and O(n) space using O(n)
processors in the EREW PRAM model. We complete the algorithm by performing
a simple bottom-up minimum-finding computation for each q to compute from
all pairs (q, q') in N the point q' that is closest to q. Thus, we have the following:

LEMMA 3.4. Given a set S of n points in the plane we can compute the nearest-
neighbor in S of each point in S in O(log n) time and O(n log n) space using O(n)
processors in the E R E W P R A M model.

If we wish to perform this computation in O(n) space we have to be more clever
in how we compute the L(v) and R(v) lists. The main idea of our method is to
construct the L(v) and R(v) lists in a cascading fashion (along with Y(v)). The
following observation is central to our method:

OBSERVATION 3.5. Let a point q in S be given, and let (v d, v d_l VO) be the
leaf-to-root path from the leaf that contains q, i.e., q ~ Y(vi) for d >_ i >_ O. Then there
is a threshold index l such that q is in L(vi) for d >_ i >_ l but q is not in L(vi) for

Optimal Parallel Algorithms for Point-Set and Polygon Problems 13

I > i >_ O. Similarly, there is a threshold index r such that q is in R(vi) for d >_ i > r
but q is not in R(vl) for r > i >_ O.

PROOF. The proof follows from the fact that the vertical slabs l-Ivd, IIvd_~, . . . , II,0
are nested one inside the next. []

Let us concentrate on how to compute the L(v)'s in a cascading fashion; the
method for the R(v)'s is similar. We begin by computing for each q the threshold
value l where q ~ L(vl) but q q~L(v~_l). For each point q we can compute its
threshold value by performing a search up the tree from the leaf q is stored in,
traversing from a node to its parent until B(q) no longer intersects the left boundary
of the slab for that node. Let D(v) be the list of all points in Y(v) whose threshold
l is equal to the depth of v. Note that we can compute a priori the elements
belonging to each D(w). This gives us the following recursive definition of L(v):

L(v) = L(u) w (L(w) -- D(w)),

where u and w are respectively the left and right children of v. Intuitively, the
points in D(v) "die" at the node v and do not cascade any higher in T. We perform
the deletions from L(w) similarly to how we performed the deletions in the
"convex-hull" section (Section 2). Specifically, we construct a new tree T'~ from T
by taking each right child w and replacing w with a new node w' that has w as
its right child. From the left child of w' we hang a complete balanced binary tree
having the elements of D(w) as its children. (See Figure 3.) We color each new
node w' "blue" and all other nodes in T'~ are colored "red." Intuitively, w' will
correspond to the (L(w) - D(w)) term. Given the tree T'~ we define L'(v) for each
v in T'l as

L'(v) : L '(u) u L'(w),

where u and w are respectively the left and right children of v. When a node v
becomes full, i.e., it contains all the elements in Desc(v), the way we proceed depends
on the color of v. If v is blue, then v corresponds to a deletion, so we delete from

T : T ' :

2<-
U 14~

D (w)

Fig. 3. Constructing T ' x from T.

14 R. Cole and M. T. Goodrich

L'(v) every element that also appears in L'(u) before we pass the elements in L'(v)
to v's parent. Since v is full, this amounts to a simple compression computation:
namely, given a processor for each element q of L'(v), if q is in L'(u), then we do
nothing; otherwise, we compute q's new rank in L'(v) by taking q's old rank in
L'(v) and subtracting two times its rank in L'(u). Note that we must subtract two
times q's rank in L'(u) when q is not in L'(u), since each element of L'(u) appears
twice in L'(v). Also note that these deletions do not affect our ability to perform
each stage in O(1) time, since the set L'(v) for any stage t will still be a 1-cover of
L',(v) for stage t + 1 (since we are not inserting new elements, only deleting some
elements). If v is red, then v corresponds to one of the original nodes in T. In this
case, since v is now full, we have just constructed L(v) for that node. Thus, we can
implement each stage in O(1) time; hence, construct all the L(v)'s in O(log n) time
using O(n) processors. Let us explain, then, how we coordinate the construction
of Y(v) and R(v) with this cascading procedure.

We perform the cascading merge constructions of Y(v), L(v), and R(v) simultan-
eously. The construction of R(v) is entirely symmetric to that of L(v), taking place
in a tree T~. The computation of Y(v) is tightly coupled with that of L(v) and R(v)
in the sense that during each stage t the processors assigned to a node v in T for
constructing Y(v) are also the processors assigned to the corresponding nodes in
T'I and Th. Since each level of T corresponds to two levels in T'~ and T~, we must
take care that the cascading merge in T runs at half the speed as those in T'I and
T~. In addition, for each q in L(v) (resp. R(v)), we maintain the rank of q in Y(v),
and for each q in Y(v) we maintain the rank of q in L(v) and R(v). Using the
merging methods of Cole [-8], these ranks can be maintained during the cascading
merge while still performing each stage in O(1) time.

When a node v in T becomes full (along with its corresponding red nodes in
T'I and T~), we update the sw, se, nw, and ne labels for each q in Y(v), compute
the new candidates for C(q) using these labels (as described in Lemma 3.2), and
determine which (at most six) elements may remain in C(q), as described above.
At this point we no longer need the space allocated to v in T, nor the space for
v's corresponding nodes in T'I and T~. When the cascading computation completes
we will have C(q) for each q in S just as in the solution that required O(n log n)
space. Thus, we can apply the postprocessing step just as before to complete the
computation. We summarize this section in the following theorem:

THEOREM 3.6. Given a set S of n points in the plane we can compute the
nearest-neighbor in S of each point in S in O(log n) time and O(n) space using O(n)
processors in the C R E W P R A M model, or, alternately, in O(n log n) space using
O(n) processors in the E R E W P R A M model.

In the next section we show how to solve this same problem for the vertices of
a convex polygon.

4. All-Nearest-Neighbor Problem for a Convex Polygon. In this section we show
how to find the nearest-neighbor vertex of each vertex on a convex polygon in
O(log n) time using O(n/log n) processors in the EREW PRAM model.

Optimal Parallel Algorithms for Point-Set and Polygon Problems 15

Let P = (vl, v2, . . . , v,) be the clockwise listing of the vertices of a convex
polygon. A polygonal chain C has the semicircle property if when v~ and vj are a
farthest pair of vertices in C, then all the vertices of C are contained in a circle
with diameter d(v , v j). Let v, and vc be a farthest pair of vertices of P, and let Vb
(resp. Vd) be a vertex that is farthest to the left (resp. right) of the line (v a, vc). Lee
and Preparata 1-17] show that the vertices v,, v b, v~, and v d partition P into four
polygonal chains C1 = (v~, . . . , Vb), C 2 = (Vb, . . . , Vc), C3 : (v 13d) , and C4 =
(Vd , Va), such that each chain has the semicircle property. They also show that
the nearest-neighbor vertex in C i of any vertex vj in C~ is either v i_ 1 or vj+ 1.

We can determine v~ and v c by using parallel merging [6], [24] to implement
the algorithm of Shamos [22] in O(log n) time using O(n/log n) processors [11].
Specifically, we can think of the edges of P as vectors and translate them to the
origin. Then the region between two vectors corresponds to a vertex of P, and
two regions that are cut by the same line correspond to antipodal vertices on P
(see Figure 4). All such pairs can then be enumerated by rotating all the vectors
below the x-axis by rc radians and merging this list with the vectors above the
x-axis. It is then an easy matter to find a farthest pair among this list of pairs.

Given v~ and v~, it is also easy to find the vertices vb and Vd in O(log n) time
using O(n/log n) processors by a simple maximum-finding algorithm. We can then
solve the all-nearest-neighbor problem for each of the polygonal chains in O(log n)
time using O(n/log n) processors, since the nearest-neighbor vertex in the chain C~
of each vertex vj in Ci is either v~_l or vj+l [17]. Incidentally, there are other
choices we could have made for Va, vb, v~, and Vd [10], [28], which are even simpler
to compute and would still satisfy the semicircle property. We choose these vertices
as above, for it does not affect the efficiency of our method and computing the
diameter of a convex polygon may be of independent interest.

The rest of the computation is as follows: we first "merge" the subproblem
solutions to C1 and C 2 (resp. C 3 and C4), and then merge the two subproblem
solutions separated by the line (Va, vc).

Let us concentrate on the generic merge step. We are given two sets of points
$1 and S z separated by a line L such that we have solved the all-nearest-neighbor

5

ci \
3 4

e

b i/

2 a e

(a) (b)

Fig. 4. Translating edges to the origin.like vectors.

16 R. Cole and M. T. Goodrich

problem for each set. In addition, we are given $1 and $2 listed in sorted order
by the elements' projections along L. Without loss of generality we assume that L
is a vertical line and the points in S 1 and S 2 are listed by nondecreasing
y-coordinates. For simplicity we also assume the y-coordinates are distinct; our
results are easily modified for the general case.

Let di(p) denote the distance from a point p to its nearest-neighbor in Si, and
let N~(p) denote the di(p)-ball centered at p. It is known [5] that each point on L
can intersect at most four Ni(p)'s for any i e {1, 2}. Since we assumed that the
all-nearest-neighbor problem has already been solved for Sa and $2, we can
construct, for i e {1, 2}, the sorted list S} that consists of all the points in S~ whose
d~(p)-ball intersects L by compressing out all the points whose di(p)-ball does not
intersect L. This can be done in O(log n) time using O(n/log n) processors in the
EREW PRAM model by a parallel prefix computation [15], [16].

Let us concentrate on the problem of combining $1 with S~; the method for
combining S'~ with $2 is similar. We need to find for each point q in S~ a point p
in S 1 such that p is the closest of all points contained in N2(q), if it exists. We
begin by merging the list S~ with the list S~. For each p in $1, this gives us the
predecessor of p in S~, which we denote by pred(p, S'2). Since any point on L
intersects at most four Nz(q)'s , any point p in Sa intersects at most four Nz(q)'s as
well. Moreover, the only q's in S~ whose dz(q)-ball could possibly contain p must
be within four positions of pred(p, S'z) in S~. If we had O(n) processors at our
disposal and we were working in the CREW (concurrent-read) PRAM model, it
would be a simple matter to complete this merging procedure. But using only
O(n/log n) processors in the EREW PRAM model it must be a little more involved,
because for any point q in S~ there may be many p's in Sa with which we wish to
compare q.

Recall that for each point p we wish to examine up to eight points in S~. Our
computation consists of eight rounds, where in each round we examine one of the
eight points in S~ for each p in $1. For each p e $1 we examine the points in S~
associated with p in order by increasing y-coordinates. We also maintain a label
closest(q) for each point q e Sh, which identifies the point p in S~ that is closest to
q from all points in S~ compared with q so far. Initially, closest(q) is oo for each
q in S~.

Let us concentrate on the computation for a single round. Let S o denote the
set of all points p in S~ such that q is the point in S~ we wish to examine for p in
this round. Since we examine the points in S~ associated with each p in S~ by
increasing y-coordinates, the points in Sq comprise a contiguous subarray of $1.
Thus, we can use a parallel prefix computation to determine the subarray Sq in
$1 for each q in $2 (some Sq's may be empty) in O(log n) time using O(n/log n)
processors. We can then perform a broadcast and find-minimum operation to find
a point in Sq that is closest to q. We then let closest(q) be the closer of this point
and the previous closest(q) value. This broadcast and minimum-finding step can
also be performed in O(log n) time using O(n/log n) processors, and completes the
computation for this round. When the eight rounds have completed, we will have
solved the all-nearest-neighbor problem for each q in $2, since we will have
compared q with all points p in $1 that are contained in N2(q) (recall that if

Opffmal Parallel Algorithms for Point-Set and Polygon Problems 17

q E S 2 - S ~ , then this is true vacuously). We then repeat this procedure to solve
the all-nearest-neighbor problem for each p in $1, by merging S'~ with $2. Thus,
we have established the following:

THEOREM 4.1. Given a convex polygon P the nearest-neighbor vertex of each vertex
on P can be determined in O(log n) time using O(n/log n) processors in the E R E W
P R A M model, which is optimal.

The final problem we address is also a polygon problem.

5. Kernel of a Simple Polygon. Let P = (Co, ex e,_ 1) be a listing of the edges
of a simple polygon P (with e o and e,_ 1 sharing a common endpoint). We consider
each edge of P to be an oriented line segment such that the interior of P is on its
left. We let H(el) denote the half-plane to the left of the line containing the edge
% Given any list Q of oriented edges e o e,,_ 1, we define the kernel of Q,
denoted K(Q), to be the intersection of all the half-planes determined by the edges
in Q, i.e., K(Q) = 0~-o 1 H(ei). Our problem is the following: given an oriented
simple polygon P, construct K(P). This can be solved sequentially in O(n) time
[183.

Wagener [27] has shown that the convex hull of a simple polygon can be
constructed in O(log n) time using O(n/log n) processors in the CREW PRAM
model. Since the common intersection of n half-planes can be computed by
dualization to the convex-hull problem [14], [20], it may be thought that the
convex-hull problem and the kernel problem have a primal-dual relationship. This
is not the case, however, because the dualization methods, even when extended
to polygons [14], do not map simple polygons into simple polygons. It is not
surprising, then, that our algorithm for the kernel problem is quite different from
the convex-hull algorithm of Wagener.

We begin our discussion with a few definitions. Let P[ei, ej] denote the subchain
of P from e i to ej, inclusive (edge subscripts are modulo n). Note that since each
edge has an orientation, P[e~, e j] is well defined and is different from P[ey, e j .
Given two adjacent edges e~ to ej, define the angle between e~ ~tnd ei+l, denoted
~i,~+1, to be the signed angle e~ makes with e~+ 1 when they are translated (as
vectors) so as to share a common start vertex. The angle is positive if we turn in
a counterclockwise angle in going from e~ to ei + 1 (again, all subscripts are modulo
n) and negative otherwise. We generalize this definition as follows: given a subchain
P[e,, ej] w e define the turn angle of P[e~, ej], denoted ~i,j, to be the sum of all the
edge angles from e~ to ej. This can be expressed symbolically as

j 1

O~i,J ~ 2 0 ~ k , k + l "
k=i

For completeness, we define ~i,i = 0 for all iE {0, 1 n - 1}.
If there are two edges e~ and ej on P such that ~,j _> 37z, then we say that P is

a spiral polygon. The next lemma establishes an important property of spiral
polygons.

18 R. Cole and M. T. Goodr i ch

(a) (b)

Fig. 5. A spiral polygon has an empty kernel.

LEMMA 5.1. I f P is a spiral polygon, then K(P) is empty.

PROOF. Suppose P is a spiral polygon, yet K(P) is nonempty. Since K(P) is
nonempty, then P is star-shaped. That is, for each point p ~ K(P) the boundary of
P is completely visible from p and the vertices of P, as listed around the boundary
of P, are sorted radially around p. By hypothesis, there is some part of the
boundary of P, say P[e~, ej], with a turn angle of at least 3n. This contradicts one
of the following: (a) that P[ei, ej] is sorted radially around p or (b) that all of
P[ei, e j] is visible from p. (See Figure 5.) []

We can trivially test if P is a spiral polygon in O(log n) time using O(n 2)
processors (by computing all the ai,j values). However, since we only have
O(n/log n) processors at our disposal, our method for determining if P is a spiral
polygon needs to be a little more involved. We begin by computing ao,~ and a~, o
for all i e {0, 1 n - 1}. This can easily be done in O(log n) time using O(n/log n)
processors by two simple parallel prefix computations [15], [16]. We also compute
the following quantities:

j~ = max ~O,j,
o<_j<_i-1

b i = m a x ~j ,O,
i<_j<_n

low = min %,j.
O<j<_n- I

Again, all subscripts are modulo n. Note that, since %,o - -0 , f~ and b~ are
nonnegative, and low is nonpositive. Intuitively, having fixed the edge eo, f/
measures the maximum turn angle formed by walking from e o to el. Similarly, b/
measures the maximum turn angle formed by walking from e~ to eo (which can
be alternatively thought of as walking backward from e o to e~). The quantity low
measures the most one would turn in the negative direction in walking around P

Optimal Parallel Algorithms for Point-Set and Polygon Problems 19

starting from eo. As with the %,~'s and ei, o'S, these quantities can be easily
computed in O(log n) time using O(n/log n) processors by parallel prefix computa-
tions. The next lemma establishes an important property of the above quantities.

LEMMA5.2. Suppose we are given n numbers do, a x , . . . , a , - ~ such that
n - 1 ~,~=o ak >-- O. Let cq, j = Z~=i ak (where indices are modulo n), and let f~, b,, and low

be defined as above (in terms of the cq,j's). Then maxi,j{~,j} = max{f._ 1 - l o w ,
maxi{bi + f/}}.

PROOF. (_>) We first show that maxi, j{ch,j} >_ max{f._ 1 - low, maxi{b i + f/}}.
Consider f . - 1 - low. Let c and d be indices such that low = eo,c and f . - 1 = eo,d.
If c < d , then f . -1 -1ow=c%,a -~O,c=C~c ,a - If d < c , then f . 1 - 1 o w =
%,d-- C~0,c = --ed.c < C~,a- Thus, f . - 1 -- low <_ maxi,j{~i,j}. Now consider
max~{b~ + f~}. Let c be the index such that max~{bi + f~} = b~ + f~, and let
e ~ [0, c - 1] and d e [c, n] be indices such that fr = eo,e and b~ = ed, O. Since e < d,
f~ + b~ = eo,e + C~d,O = c~a,~" Thus, max~,j{cq,j-} > max{f ._ l -- low, max~{b~ + fi}}.

(<) Suppose, Ibr the sake of contradiction, that max~,j{~,j} > max{f._ 1 - low,
maxi{b~ + f~}}. Let c and d be indices such that ec, a = max~,j{cq,j}.

Case 1: c < d. In this case e~,d = C%,a -- e0,~, but c%, a - ~o,~ <- f . - ~ - low.

Case 2: d < c. In this case c~, d = eO,d + C~e,0. Thus, ~c,a <- fd+~ + b~, but fd+l +
b~ < f~ + b~ for i ~ [d + 1, c].

Thus, c~, d < max{ f ,_~ - low, max~{bl + f~}}. This completes the lemma. []

COROLLARY 5.3. P is a spiral polygon if and only if max{f,_ 1 - l o w ,
maxi{b i + f/}} _> 3re.

Thus, we have a simple way to characterize spiral polygons that is easily tested
on a parallel machine. Let Q1 be the lexicographically first maximal increasing
subsequence of (eo e,_ 1), using the f~'s as weights, and let Q2 be the lexico-
graphically first maximal increasing subsequence of (Co, e, 1 e0, using the bi's
as weights. Recall that a lexicographically first maximal increasing subsequence
is defined by placing the first item in the list in the set, then scanning through the
list adding an item to the set each time its label is bigger than the biggest label
encountered thus far. (Note that we could have just as easily defined Q~ and Q2
using c%,i and ~i, o as weights, respectively.) The following lemma establishes an
even stronger relationship between K(P) and the turn-angle properties of P.

LEMMA 5.4. I f P is not a spiral polygon, then K(P) = K(Q 0 c~ K(Q2).

PROOF. Since Q1 and Qz are subsets of P, K(P) ~_ K(QO n K(Q2). So, we have
yet to show that K(Q1) n K(Q2) ~ K(P). Clearly, if K(Q 0 c~ K(Q2) = ~ , then we
are done; so suppose K(Q 0 n K(Q2) ~ ~ . The proof is by contradiction. Suppose
K(P) is properly contained in K(Q1) c~ K(Q2). Then there is an edge ej of P with
ej r Q1 w Q2 and such that H(ej) c~ K(Q 0 c~ K(Q2) is a proper subset of K(Q1)
K(Q2). Let ei be the edge closest to ej in P such that el is in Q1 and i < j .

20 R. Cole and M. T. Goodrich

CLAIM. ej does not intersect H(ei).

PROOF OF THE CLAIM. We show that if ej intersects H(ei), then P is a spiral polygon
(which would be a contradiction). So suppose ej intersects H(ei). Consider the
polygonal chain P[ei, ej]. Let el be the first edge (other than e~) in P[e~, ei] that
intersects H(ei). Note that e 1 must intersect H(eg) behind e i (as defined by ei's
orientation). If this was not so, then P[ei, eli would have a positive turn angle;
hence, el would be in Q~, which contradicts the definition of e~. Thus, since P[e~, ez]
is a finite chain beginning and ending in H(e~), the turn angle from eg to el must
be less than - n . But this implies that the turn angle from el to e~, in P[el, eg], is
greater than 3n, since P is a simple polygon. Therefore, P must be a spiral polygon,
which is a contradiction. (See Figure 6.) []

Let ek be the edge closest to ej in P such that e k is in Q2 and j < k. By an
argument similar to the proof of the above claim we have that e i is not contained
in H(ek). These two facts imply that the edge ej is not contained in H(ei) ~ H(ek).
But this implies that H(ei) c~ H(ej) c~ H(ek) = H(ei) c~ H(ek). In other words,
H(ej) c~ K(Q1) n K(Q2) is not a proper subset ofK(Q 0 c~ K(Q2) , which of course is a
contradiction. Therefore, K(P) = K(Q1) ~ K(Q2). []

The above lemmas immediately give us the outline of our algorithm for
constructing K(P): test if P is a spiral polygon, and, if it is not a spiral polygon,
construct K(Q 0 and K(Q2) and their intersection.

We have already described how to test if P is a spiral polygon or not. So suppose
P is not a spiral polygon. We begin by constructing Q~ and Q2. This can be done
by yet another parallel prefix computation in O(log n) time using O(n/log n)

Fig. 6. If ej intersects H(ei), then P is a spiral polygon.

Optimal Parallel Algorithms for Point-Set and Polygon Problems 21

processors (by computing, for each edge e~ in the list in question, the maximum
prefix label of the edges proceding ej). Note that the lists Q1 and Q2 are sorted
by slopes. In addition, the list Q1 (resp. Q2) can be easily partitioned into O(1) lists
such that the range of label values in each list is at most n (this takes at most
O(log n) time using O(n/log n) processors). By appropriately translating the origin
for the edges in each of these lists we can guarantee that the origin is contained
in their the common intersection of the half-planes they define (the details of this
translation are left to the reader). We can then use the dualization methods of
[14] and [-20] to dualize each half-plane intersection problem to the problem of
constructing the convex hull of a sorted point set, a problem that can be solved
in O(log n) time using O(n/log n) processors in the CREW PRAM model [12],
[27]. We can combine all the solutions to these convex-hull problems by convert-
ing their solutions back to the primal space, yielding a collection of convex
polygons, each formed by a set of intersecting half-planes. We can then use parallel
merging [63, [24] to implement the sequential algorithm of Shamos [221 for
constructing the intersection of two convex polygons to compute the common
intersection of these polygons, giving us K(Q 0 and K(Q2). Each of these intersec-
tion computations runs in O(log n) time using O(n/log n) processors [6], [22], [24].
By making one additional call to the parallel version of the Shamos algorithm,
we can construct K(QO c~ K(Q2) , which completes our algorithm. We summarize
with the following theorem.

THEOREM 5.5. Given an n-edge simple polygon P we can construct the kernel of P
in O(log n) time using O(n/log n) processors in the CREW PRAM model.

6. Final Remarks and Open Problems. In this paper we presented parallel
analogues to some famous phenomena from sequential computational geometry.
Namely, that convex hulls can be constructed by performing a cascading divide-
and-conquer version of "rotating calipers," that the all-nearest-neighbor problem
can be solved without constructing a Voronoi diagram, and that problems for
polygons can oftentimes be solved more efficiently than point-set problems.
Another interesting observation is that in developing an optimal parallel algorithm
for the kernel problem we discovered some geometric relationships that result in
a new optimal sequential algorithm (which is simpler than the previous best
algorithm [18]). We leave two open problems:

1. Can the Voronoi diagram of n planar points be deterministically constructed
in O(log n)time using O(n) processors? The current best algorithm runs in
O(1og 2 n) time using O(n) processors [1], [2].

2. Can a simple polygon (without holes) be deterministically triangulated in
O(log n) time using O(n log log n)total work? This is another problem that can
be solved more efficiently for polygons than for arbitrary point sets, as it can
be solved in O(n log log n) time [25]. The best-known parallel algorithms run
in O(log n) time using O(n) processors (but allow the polygon to contain holes)
[11], [13], [29].

22 R. Cole and M. T. Goodrich

Acknowledgmen t s . W e wish to t h a n k S. R a o K o s a r a j u a n d the referees for a

n u m b e r o f sugges t ions tha t h e l p e d i m p r o v e the p r e s e n t a t i o n o f this paper .

References

[1] A. Aggarwal, B. Chazelle, L. Guibas, C. O'Dfinlaing, and C. Yap, Parallel Computational
Geometry, Algorithmica, Vol. 3, No. 3, 1988, pp. 293 328.

[2] M.J. Atallah, R. Cole, and M. T. Goodrich, Cascading Divide-and-Conquer: A Technique for
Designing Parallel Algorithms, SlAM J. Comput., Vol. 18, No. 3, 1989, pp. 499-532 (appeared
in preliminary form in Proc. 28th 1EEE Syrup. on Foundations of Computer Science, 1987,
pp. 151-160).

[3] M.J. Atallah and M. T. Goodrich, Efficient Parallel Solutions to Some Geometric Problems,
J. Parallel Distrib. Comput. Vol. 3, 1986, pp. 492-507.

[4] M.J. Atallah and M. T. Goodrich, Parallel Algorithms for Some Functions of Two Convex
Polygons, Algorithmica, Vol. 3, No. 4, 1988, pp. 535-548.

[5] J .L. Bentley and M. I. Shamos, Divide-and-Conquer in Multidimensional Space, Proc. 8th
ACM Symp. on Theory of Computing, 1976, pp. 220-230.

[6] G. Bilardi and A. Nicolau, Adaptive Bitonic Sorting: An Optimal Parallel Algorithm for Shared
Memory Machines, TR 86-769, Dept. of Computer Science, Cornell University, August 1986.

[7] A. Chow, Parallel Algorithms for Geometric Problems, Ph.D. thesis, Computer Science Dept.,
University of Illinois at Urbana-Champaign, 1980.

[8] R. Cole, Parallel Merge Sort, SlAM J. Comput., Vol. 17, No. 4, August 1988. pp. 770-785.
[9] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag, New York, 1987.

[10] A. Fournier and Z. Kedem, Comments on the All-Nearest-Neighbor Problem for Convex
Polygons, Inform. Process. Lett., Vol. 9, No. 3, 1979, pp. 105-107.

[11] M.T. Goodrich, Efficient Parallel Techniques for Computational Geometry, Ph.D. thesis, Dept.
of Computer Science, Purdue University, August 1987.

1-12] M.T. Goodrich, Finding the Convex Hull of a Sorted Point Set in Parallel, Inform. Process.
Lett., Vol. 26, December 1987, pp. 173-179.

[13] M.T. Goodrich, Triangulating a Polygon in Parallel, J. Algorithms, Vol. 10, 1989, pp. 327 351.
[14] L. Guibas, L. Ramshaw, and J. Stolfi, A Kinetic Framework for Computational Geometry,

Proc. 24th IEEE Symp. on Foundations of Computer Science, 1983, pp. 100-111.
[15] C.P. Kruskal, L. Rudolph, and M. Snir, The Power of Parallel Prefix, Proc. 1985 IEEE Internat.

Conf. on Parallel Processing, pp. 181~185.
[16] R.E. Ladner and M. J. Fischer, Parallel Prefix Computation, J. Assoc. Comput. Mach., October

1980, pp. 831-838.
[17] D.T. Lee and F. P. Preparata, The All-Nearest-Neighbor Problem for Convex Polygons, Inform.

Process. Lett., Vol. 7, No. 4, June 1978, pp. 189-192.
[18] D.T. Lee and F. P. Preparata, An Optimal Algorithm for Finding the Kernel of a Polygon, J.

Assoc. Comput. Mach., Vol. 26, No. 3, July 1979, pp. 414-421.
[19] D.T. Lee and F. P. Preparata, Computational Geometry--A Survey, IEEE Trans. Comput.,

Vol. 33, No. 12, December 1984, pp. 87~1101.
[20] F.P. Preparata and D. E. Muller, Finding the Intersection of n Half-Spaces in Time O(n log n),

Theoret. Comput. ScL, Vol. 8, 1979, pp. 45-55.
[21] F.P. Preparata and M. I. Shamos, Computational Geometry: An Introduction, Springer-Verlag,

New York, 1985.
[22] M.I. Shamos, Geometric Complexity, Proc. 7th ACM Syrup. on Theory of Computing, 1975,

pp. 224-233.
[23] M.I . Shamos and D. Hoey, Closest-Point Problems, Proc. 15th IEEE Syrup. on Foundations

of Computer Science, 1975, pp. 151-162.
[24] Y. Shiloach and U. Vishkin, Finding the Maximum, Merging, and Sorting in a Parallel

Computation Model, J. Algorithms , Vol. 2, 1981, pp. 88-102.
[25] R.E. Tarjan and C. J. Van Wyk, An O(n log log n)-Time Algorithm for Triangulating a Simple

Polygon, SIAM J. Comput., Vol. 17, 1988, pp. 143-178.

Optimal Parallel Algorithms for Point-Set and Polygon Problems 23

[26] G.T. Toussaint, Solving Geometric Problems with Rotating Calipers, Proc. IEEE MELECON
"83, Athens, May 1983.

[27] H. Wagener, Optimally Parallel Algorithms for Convex Hull Determination, Manuscript, 1985.
[28] C.C. Yang and D. T. Lee, A Note on the All-Nearest-Neighbor Problem for Convex Polygons,

Inform. Process. Lett., Vol. 8, No. 4, 1979, pp. 193-194.
[29] C.-K. Yap, Parallel Triangulation of a Polygon in Two Calls to the Trapezoidal Map,

Algorithmica, Vol. 3, No. 2, 1988, pp. 279-288.

