
CVGIP: GRAPHICAL MODELS AND IMAGE PROCESSING

Vol. 54, No. 1, January, pp. 1-12, 1992

A Polygonal Approach to Hidden-Line and Hidden-Surface Elimination*
MICHAEL T. GooDRICHt

Depariment of Computer Science, Johns Hopkins Unioersity, Bultimorr, Murylund 21218

Received November 4, 1988; accepted June 4, 1991

We present algorithms for the well-known hidden-line and
hidden-surface elimination problems. Our algorithms are optimal
in the worst case, and are also able to take advantage of problem
instances that are “simpler” than in the worst case. Specifically,
our algorithms run in O(n log n + k + t) time, where n is the
number of edges, and k (resp. t) is the number of intersecting pairs
of line segments (resp. polygons) in the projection plane n. Our
algorithms are based on a polygon-based strategy, rather than an
edge-based strategy, and are quite simple. D 1992 Academic press, I~C.

1. INTRODUCTION

The hidden-line and hidden-surface elimination prob-
lems are well known in computer graphics [9, 15, 16, 19,
22, 23, 28-311. In the hidden-line elimination problem
one is given a set of simple, nonintersecting planar poly-
gons in 3-dimensional space, and a projection plane GT,
and wishes to determine which portions of the polygonal
boundaries are visible when viewed in a direction normal
to rr, assuming all the polygons are opaque. (See Fig. 1.)
In the related hidden-surface elimination problem one is
also interested in determining which portions of the inte-
riors of the polygons are visible. That is, if one colored
each polygon with a unique color, then the problem
would be to determine the color of each face of the draw-
ing produced by a solution to the hidden-line elimination
problem. Using the terminology of [31], we are interested
in the object space versions of these problems; i.e., we
want solutions that are independent of any specific ren-
dering device.

We briefly review some of the efficient algorithms for
these problems. In [9] DCvai gives an algorithm for
hidden-line elimination running in O(n2) time and O(n2)
space. In [I93 McKenna shows how to solve the hidden-
surface elimination in these same bounds. Both of these
algorithms are optimal in the worst case, because there

* Portions of this work appeared in preliminary form as M. T.
Goodrich, “A Polygonal Approach to Hidden-Line Elimination,” Proc.
of 25th Annual Allerton Conference on Communication, Control, and
Computing. Allerton IL, 1987, 849-858.

1 Research supported by the National Science Foundation under
Grants CCR-8810568 and CCR-9003299.

are problem instances that have n(n2) output size 19, 191.
However, these algorithms always take O(n2) time, even
if the size of the output is small (e.g., O(1)). In [22] Nurmi
gives an algorithm for hidden-line elimination that runs in
O((n + k) log n) time and O((n + k) log n) space, where k
is the number of intersecting pairs of line segments in n (k
is at most O(n2)). Schmitt [28] is able to achieve this same
bound using only O(n + k) space. When the number of
intersecting edges is not too large (i.e., k G n2/log n),
these algorithms clearly run faster than O(n2). They are
not worst-case optimal, however.

Recently, Chazelle and Edelsbrunner [61 have shown
how to construct the graph of intersections of n line seg-
ments in the plane in optimal O(n log n + k) time, where k
is as above. Since segment intersection is important in
hidden-line elimination, one might think that this immedi-
ately improves the previous hidden-line elimination algo-
rithms, but this is not the case. One exception is a hid-
den-line elimination algorithm by Schmitt [29], which
runs in O(n + k + r) time given the intersection graph,
where r is the number of (edge, polygon) intersections in
n-. His algorithm makes a global visibility test for each
edge, however, making his algorithm less desirable from
a practical point of view.

In this paper we give an algorithm for the hidden-line
elimination problem that is optimal in the worst case, and
also takes advantage of problem instances that are “sim-
pler” than in the worst case. Intuitively, our approach is
to exploit the polygonal properties of the input, whereas
previous algorithms concentrate more on edges. Our al-
gorithm for the hidden-line elimination problem runs in
O(n log n + k + t) time, where t is the number of (pofy-
gon, polygon) intersections (which is at most O(n2)).
Note that t is always less than r, the number of (edge,
polygon) pairs. In fact, r can be significantly larger than t
in general. For example, one can easily construct prob-
lem instances where t is O(n) while r is n(nw2) (e.g., fi
polygons having X& edges each and projecting so as to be
nested inside one another). Also note that t is in some
sense independent of k, the number of (segment, seg-
ment) intersections, since there are problem instances
where t is O(n2) and k is O(1) (e.g., n triangles projecting
so as to be nested) and other problem instances where t is

1049-9652192 $3.00
Copyright 0 1992 by Academic Press, Inc.

All rights of reproduction in any form reserved.

MICHAEL T. GOODRICH

(b)

FIG. 1. An example of hidden-line elimination. (a) Shows the set of
polygons before hidden-line elimination, and (b) shows it after.

O(1) and k is O(n2) (e.g., two polygons shaped like forks
with many tines and these tines form a cross-hatched
pattern in r).

Our hidden-line method has been implemented [171 and
benchmarked against the methods of Devai [9] and
Schmitt [28, 291. The results of these benchmark tests
suggest that our method is superior or competitive in
running time to the algorithms of Devai and Schmitt in
practice. In addition, our method appears easier to imple-
ment than Schmitt’s method [17].

We also show how to apply our polygonal approach to
the hidden-surface elimination problem. Our algorithm
for this problem also runs in O(n log n + k + t) time,
assuming that the “overlap” relation, defined by the
polygons and viewing direction, does not contain any
cycles. Our algorithm does not need the back-to-front
ordering of the polygons as input, however, since it
embeds this computation as one of the steps of the algo-
rithm. Besides being “better” than worst-case optimal,
our algorithm is also of interest in that it provides an
object-space version of the famous “painter’s algorithm”
(which is also known as the “list-priority” or “depth
sorting” algorithm) [16, 3 11, where one renders the poly-
gons in order by their distance from the viewing “eye,”
back to front, so that the low-level polygon-filling rou-
tines for the rendering device automatically eliminate
nonvisible polygonal regions.

Both of our algorithms are quite simple, and, given the
graph of line-segment intersections, can be implemented
so that the only underlying data structures needed are
linked lists and arrays. If one is willing to live with an
algorithm that runs in O(n log n + k + t) expected time

(rather than in the worst case), then one can use the
methods of Clarkson [7] or Mulmuley [21] for construct-
ing the graph of line-segment intersections. This would
allow one to completely implement our algorithms in a
simple fashion using just linked lists and arrays. One
could also use the plane-sweeping method of Bentley and
Ottmann [3], which runs in O((n + k) log n) time.

The remainder of this paper is divided into four sec-
tions. In the next section we describe the main data struc-
ture used in our algorithms, the polygon arrangement. In
Section 3 we give our algorithm for hidden-line elimina-
tion, and in Section 4 we show how to solve the hidden-
surface elimination problem. We conclude in Section 5.

2. THE POLYGON ARRANGEMENT

We begin our discussion by defining the polygon ar-
rangement of a set of polygons, a structure that repre-
sents how a collection of polygons intersect in the plane.
LetasetI={P1,PZ,. . . , P,} of simple polygons in the
xy-plane be given. For any polygon Pi we let aPi denote
the boundary of the polygon Pi, and assume, without loss
of generality, that the vertices of ~3Pi are listed so that the
interior of Pi would be on the lefthand side if we were to
traverse the vertices of dPi in the given order. We define
the representative vertex of Pi, denoted rep(PJ, to be the
vertex with smallest y-coordinate from all the vertices of
P; with smallest x-coordinate, i.e., rep(PJ is the vertex
that would be first if the vertices of Pi were sorted in
increasing order lexicographically by (x, y)-coordinates.
For any point p, we define the downward (resp, upward)
vertical shadow of p in I to be the first point belonging to
the boundary of a polygon in I that is intersected by the
vertical ray emanating downward (resp., upward) from p,
parallel to the y-axis. If no such point exists, then we take
the downward (resp., upward) vertical shadow to be --oo
(resp., +m). The polygon arrangement of I is defined on
the following embedded planar graph G = (V, E):

1. V consists of all points u that satisfy one of the
following:

(a) u is a vertex of a polygon in r,
(b) u is an intersection point of the boundaries of

two polygons in r, or
(4 u is the vertical shadow of the representative

vertex of a polygon in r;
2. E consists of all the (undirected) pairs (v, w), u,

w E V, that satisfy one of the following:
(a) u and w are connected by a polygonal edge s

and there is no point z E V between u and w on s, or
(b) w is the vertical shadow of u and u is the repre-

sentative vertex of some polygon in r.
To reflect the polygonal nature of the input one also must
add some data structures that relate the edges and verti-
ces of this graph to the polygons in I.

HIDDEN-LINE AND HIDDEN-SURFACE ELIMINATION 3

There are a number of ways one can represent the
polygon arrangement, e.g., by generalizing the “winged
edge” structure of Baumgart [2], the “quad edge” struc-
ture of Guibas and Stolfi [14], or the “doubly-connected
edge list” structure of Muller and Preparata 120, 251. In
any case, the polygon arrangement would be stored as a
collection of cross-referenced adjacency lists and arrays.
In order to be specific in how one can implement the
various aspects of our algorithms we give an implementa-
tion of the polygon arrangement here. The implementa-
tion we choose borrows ideas from each of the above
data structures, but probably is most similar to the
“winged edge” structure.

We store the vertices of V in an array VERT, the edges
of E in an array EDGE, and the polygons of I in an array
POLY. Each record of VERT corresponds to a vertex u,
and contains the following fields: the x-coordinate of u,
the y-coordinate of u, and a pointer to an adjacency list
ADJACENCIES, which lists the indices of the edges in
EDGE which are incident to u. Each record of POLY
corresponds to a polygon in I, and contains a list,
BOUNDARY, of the indices of vertices in VERT that are
on the boundary of Pi, listed as they would occur if one
were to traverse Pi from rep(PJ so as to keep the interior
of Pi on the lefthand side. Each record of EDGE corre-
sponds to an edge (u, w), and contains the following
fields: (1) the indices of u and w in VERT, (2) a pointer,
SIDE, which stores the index in POLY of the polygon (if
any) that contains (u, w) on its boundary, (3) pointers to
the positions of u and w in the BOUNDARY list for the
SIDE polygon (assuming SIDE is defined), and (4) two
lists, ENTER1 and ENTER2 (which we will define
shortly). Note that using the SIDE pointer and the
pointers into the BOUNDARY list for the SIDE polygon
one can determine whether the SIDE polygon for (u, w) is
on its right or on its left. Note that this also means that we
consider an edge to belong to the boundary of at most one
polygon. To allow for more general cases one would sim-
ply maintain several instances of the “same” edge, each
one indicating that it belongs to the boundary of a differ-
ent polygon. The list ENTER1 (resp., ENTER2) lists the
indices of each polygon Pi in POLY such that u (resp., w)
is on 8Pi and the edge (u, w) intersects the interior of Pi.
Intuitively, ENTER1 is the list of all the polygons that
one enters in traversing (u, w) from u to w, and ENTER2
lists the polygons one enters in traversing (u, w) from w
to u.

In addition to the above lists and arrays, we store all
the representative vertices that do not have vertical
shadows in I? in a list COMP (since each entry corre-
sponds to a connected component in G). See Fig. 2 for an
example polygon arrangement.

Let us now turn to the construction of the polygon
arrangement. As one might suspect, the bottle-neck com-

FIG. 2. An example of polygon arrangement. In this figure there are
four polygons, and their arrangement represents 4 (polygon, polygon)
intersections, 10 (segment, segment) intersections, and 3 vertical
shadows. The circles denote the vertices of V and the straight lines
denote the edges of E, where a solid edge denotes part of a polygonal
segment and a dashed line denotes a vertical shadow edge. The vertical
shadow edge drawn as an arrow denotes the situation where a represen-
tative vertex has --3o as its vertical shadow (hence is in the COMP list).

putation is the construction of the graph of segment inter-
sections and vertical shadows. Chazelle and Edelsbrun-
ner prove the following:

LEMMA 2.1 [6]. Given a set S of n line segments in
the plane, one can construct the graph of segment inter-
sections and vertical shadows determined by S in O(n log
n + k) time and O(n + k) space.

The algorithm of Chazelle and Edelsbrunner relies on a
number of beautiful algorithmic techniques (including dy-
namic binary search trees (e.g., red-black trees [12, 32]),
topological sweeping [lo, 131, and segment trees [41), but
in somewhat involved. The authors have an implementa-
tion that consists of approximately 1,500 lines of C code,
discounting driver and I/O routines, and claim that it is
competitive with existing methods [6]. If one wants to
use a simpler method to construct the polygon arrange-
ment, and does not mind having an algorithm that is not
worst-case optimal, then we recommend substituting the
algorithm of Chazelle and Edelsbrunner by the random-
ized algorithm of Clarkson [7] or Mulmuley [21], which
relies exclusively on the use of simple data structures
such as linked lists and arrays. The worst-case complex-
ity of the algorithms by Clarkson and Mulmuley is not as
good as that of the algorithm by Chazelle and Edelsbrun-
ner, but its expected running time matches the worst-
case bound of their algorithm, as it runs in O(n log n + k)
expected time (independent of the distribution of seg-
ments and intersection points). For completeness, and to
illustrate its simplicity, we include a description of the
algorithm by Clarkson.

LINE-SEGMENT INTERSECTION ALGORITHM [7]. Given
a set S of n line segments in the plane, the line segments
of S are added in random order, one by one, to a set U.
An undirected graph, H(U), of the intersection points,

4 MICHAEL T. GOODRICH

the segment endpoints, and the (upward and downward)
vertical shadows of segment endpoints and intersection
points is maintained as U grows. Note that H(U) decom-
poses the plane into a collection of cells (i.e., faces) that
are, more or less, trapezoidal. These trapezoidal cells are
maintained in a list Q. For each edge e of H(U) one
stores pointers to the two cells in Q that are adjacent to e,
and for each cell c in Q one stores a list of the (at most
four) edges of H(U) that bound c. A bipartite “conflict
graph” C(U) is also maintained as U grows. Its two ver-
tex sets are the set of segments in S - U and the set of
cells in Q, respectively. There is an edge in C(U) be-
tweenacellcinQandasegmentsinS- Uifcnsf0.
When a segment s is added to U the cells that are adja-
cent to s in C(U) must be deleted from Q, since s “cuts”
each of them into smaller cells. For each cell c that is cut
by s (as determined by the adjacency list for s in C(U))
one deletes c from Q and C(U) and inserts into H(U) and
Q the (at most four) new cells that s cuts c into. For each
such new cell c’ one examines the list of segments in
C(U) that were adjacent to c in C(U) to see which of
these segments intersect with c’, adding the appropriate
adjacencies to C(U) and H(U) as necessary. One iterates
this procedure until U = S.

Clarkson [7] shows that this simple procedure runs in
O(n log IZ + k) expected time and space (he also shows
how the space can be reduced to O(n + k)).

While the construction of the graph of segment inter-
sections and vertical shadows is being performed it is
important that for each line segment s one keep track of
the polygon, Pi, that contains s on its boundary, as well
as maintaining the edge on the boundary of Pi that imme-
diately follows s. This allows one to easily construct the
POLY array and all its accompanying BOUNDARY lists
once the graph of segment intersections is constructed.

Let us suppose we have constructed this graph, with
the extra information as just described. One can easily
construct the VERT array, and its accompanying lists, by
taking the vertices of this graph and deleting all vertical
shadow vertices that are not the downward vertical
shadows of representative vertices. Note that we can
then have the COMP list, as well, by taking all vertices
that have --00 as their downward vertical shadow. Simi-
larly, it is fairly straightforward to construct the EDGE
array by “stitching” back together any edges divided by
vertices we deleted in constructing the VERT array. Us-
ing the extra information maintained during the construc-
tion of the graph of segment intersections and vertical
shadows, as well as the input specifications of the poly-
gons, we can then construct the POLY array and its ac-
companying BOUNDARY lists. Constructing the fields
of each entry in the EDGE array is also straightforward,
given this information, except for the construction of the
ENTER1 and ENTER2 fields. To construct, say, the

ENTER1 list for an edge e = (u, w) one examines each
edgef = (u, u) that is incident to u (using the ADJACEN-
CIES list for u), and determines whether the SIDE poly-
gon forfcontains e in its interior (using the pointers into
the BOUNDARY list for the SIDE polygon off). One
inserts each such polygon into the list ENTERI. Con-
structing the ENTER2 list is similar.

Let us examine the time and space complexity of con-
structing the polygon arrangement. As already men-
tioned, constructing the graph of line segment intersec-
tion points and vertical shadows can be done in O(n log
II + k) time using O(n + k) space, where k denotes the
number of (segment, segment) intersections. Given this
graph, constructing all the lists and arrays of the polygon
arrangement, except for the ENTER1 and ENTER2 lists,
requires an additional O(n + k) time, since the methods
used in these constructions examine each edge and ver-
tex in this graph O(1) times. The construction of the
ENTER1 and ENTER2 lists for each edge e = (u, w)
takes time proportional to the number of edges incident
on u plus the number of edges incident on w. Since u
(resp., w) is a vertical shadow, a segment endpoint, or an
intersection point, the time of this construction is
bounded by 0(1) * k, , where k, is the number of segments
that intersect the segment containing (u, w) at u, plus 1 (to
account for the case when u is not an intersection point).
Note that x eel k, = O(k), since each intersection will be
counted only twice by this accounting scheme. Thus, the
time to construct all the ENTER1 and ENTER2 lists is
O(n + k). Therefore, the total time needed to construct
the polygon arrangement is O(n log n + k) using O(n + k)
space. We summarize this section with the following the-
orem:

THEOREM 2.2. Given a set r of simple polygons in the
xy-plane, the polygon arrangement for I? can be con-
structed in O(n log n + k) time and O(n + k) space, where
n denotes the number of polygonal edge segments in IY
and k is the number of pairs of intersecting line seg-
ments.

We next describe how we use the polygon arrangement
to do hidden-line elimination.

3. HIDDEN-LINE ELIMINATION

Suppose we are given a set I = {PI, P2, . . . , P,} of
simple, planar polygons in 3-dimensional space, as well
as a projection plane P. The hidden-line elimination prob-
lem is to determine which portions of the polygonal
boundaries are visible when viewed in a direction normal
to r. Without loss of generality, we assume that rr is the
xy-plane, that the view direction is toward (0, 0, -M), and
that the vertices of each polygon Pi are listed so that the
interior of Pi would be one the left if we were “walking”

HIDDEN-LINE AND HIDDEN-SURFACE ELIMINATION

around the boundary of Pi in the order given with our feet
pointing down toward (0, 0, -cc). In this section we
present an algorithm for this problem which is both sim-
ple and efficient.

Since we will be dealing with 3-dimensional objects as
well as their 2-dimensional projections, we make the fol-
lowing definitions. For any point p we let x(p), y(p), and
z(p) denote the x-, y-, and z-coordinates of p, respec-
tively. We denote the set of polygons in I projected to 7~
by I,, and use PI to denote the projection of the polygon
Pi to m. Given a point p in 7r, we use TG(P) to denote the
point on the plane containing Pi that projects to p, and
define the coverage of p with respect to P; to be the
number of polygons in I that obscure 7rTTi(p), i.e., the num-
ber of polygons intersected by the ray emanating out
from q(p) normal to 7r in the direction of the viewing
“eye” (0, 0, 00). We present a high-level description of
our algorithm below.

HIDDEN-LINE ELIMINATION ALGORITHM (HIGH-
LEVEL DESCRIPTION).

Step 1. Constructing the Polygon Arrangement. We
construct the polygon arrangement of I, in this step, as
described in the previous section. Since we are dealing
with 3-dimensional polygons projected to the plane, we
augment the polygon arrangement to keep track of some
of the 3-dimensional information. Namely, for each poly-
gon P,f in POLY we store some additional fields to repre-
sent the plane which contains Pi. For example, if the
plane containing Pi is determined by an equation, ax +
by + cz + d = 0, then one could store the coordinates a,
6, c, and d as fields in the POLY entry for Pf to represent
this plane.

Step 2. Computing the Coverage of Representative
Vertices. In this step we use the polygon arrangement
to compute the coverage, c;, of each representative ver-
tex rep(P!) with respect to Pi. We perform this step by
traversing the polygon arrangement in a depth-first
search fashion, storing the names of all the polygons that
contain our current position as we go. Each coverage
computation is done by examining the polygons in this
set. The total time for this traversal is O(n + k + t).

Step 3. Computing Visible Edges. In this step we use
the polygon arrangement to “walk” around the boundary
of each polygon P,f , starting at its representative vertex,
computing the coverage of each edge portion as we go.
All the portions of 8Pi that have zero coverage are
marked “visible” (or displayed). This takes O(n + k)
time and completes the algorithm.

END OF HIGH-LEVEL DESCRIPTION. We now de-
scribe in more detail how to perform each of the above
steps. Since we have already shown how to perform Step
1, we begin with Step 2.

start

FIG. 3. The depth-first traversal. In going from u to w we are enter-
ing PI and in going from w to u (on the way back) we are leaving P,

3.1. Step 2: Computing the Coverage of
Representative Vertices

We begin with some definitions. During any traversal
of the polygon arrangement, suppose we are currently at
a node v and moving to a node w. We say that we are
entering (resp., leaving) the polygon P! along (v, w) if v
(resp., w) belongs to the boundary of Pf and (v, w) inter-
sects the interior of Pf . (See Fig. 3.) Note that for any
edge (v, w) in the polygon arrangement the set of poly-
gon(s) one enters (resp., leaves) in traversing the edge
(v, w) from v to w corresponds exactly to the ENTER1
(resp., ENTER2) list for (v, w).

Step 2 can be performed by traversing the polygon ar-
rangement of I, in the following way. Let G denote the
polygon arrangement of I,, and recall that COMP is the
set of all representative vertices that do not have vertical
shadows in I,., . Starting with w, the first vertex in COMP,
we remove w from COMP and begin traversing G in a
depth-first-search fashion [l] starting with w. As we per-
form the traversal we maintain a list, D, of the polygons
in I,, that contain our current position in the plane. Since
w has --oo as its downward vertical shadow, there can be
no polygons in Is that properly contain w in their inte-
rior. Thus, we begin with D being empty. We represent
each polygon in D by its index in the POLY list, and
maintain a back-pointer from each polygon in POLY to
its position in D (or store a nil pointer, if the polygon is
not in D). As we are traversing G, each time we enter the
interior of a polygon we insert its index in D, and each
time we leave the interior of a polygon we delete its index
from D. Also, when we are “returning” along already
traversed paths, i.e., popping off the stack of visited
nodes in the depth-first search, we reverse any opera-
tions we made along the way. Note that using the
ENTER1 and ENTER2 lists we can immediately deter-
mine which polygons we are entering and leaving in tra-
versing an edge. Thus, using these lists and the POLY
array, we can implement the insertion or deletion of the
index of each polygon we are entering or leaving in 0(1)

6 MICHAEL T. GOODRICH

time per polygon. At the time we encounter a representa-
tive vertex rep(P;) each polygon Pj’ in D is such that
rep(P;) lies in Pj’ . This is because we include vertical
shadows as well as intersection points in the polygon
arrangement-so that if two polygons in I, intersect,
then their vertices are contained in the same connected
component. Thus, we can compute the coverage, ci) of
this rep(PI) by examining all the polygons that are cur-
rently in D and count how many of them correspond to
polygons in ui3 that obscure mi(rep(Pf)). In order to check
if a polygon Pj obscures r;(rep(Pf)) one need only check
whether the plane containing Pj lies before or behind
ni(rep(Pf)), which can be determined in O(1) time using
the extra information we store with each polygon in
POLY. When we return to w, completing a traversal of
the connected component of G containing w, we continue
the depth-first search starting with the next vertex in
COMP. We repeat this traversal until we have visited all
the vertices in COMP.

Let us analyze the time complexity of this traversal.
Since we are traversing the polygon arrangement in a
depth-first fashion, the set D will only change when we
enter or leave a polygon, and then D only gains or loses
one item, which can be performed in O(1) time. The only
other operation we perform in the traversal is computing
the coverage of each representative vertex, which, for
each rep(PI), can be performed in time proportional to
the number of polygons stored in D when we encounter
rep(P;). Since there is only one representative vertex for
each polygon, and for each rep(PI) we only examine
those polygons that properly contain rep(PI) in their inte-
rior, the number of comparisons we make for each P! will
be at most the number of polygons in I, that intersect PI.
Thus, we make at most O(t) comparisons overall, where t
is the number of pairs of intersecting polygons in I,.
Since we are traversing the polygon arrangement in a
depth-first fashion, we will visit each edge at most twice.
Thus, this step takes O(n + k + t) time overall.

3.2. Step 3: Computing Visible Edges

In this step we use the polygon arrangement to “walk”
around the boundary of each polygon PI in I,, in turn,
starting with rep(PI). Specifically, we start with rep(PI)
and walk around Pi’ using its BOUNDARY list, always
maintaining the coverage, with respect to Pi, of the point
on Pf that corresponds to our current position. We initial-
ize a counter c to the value ci, the coverage of rep(Pf)
with respect to Pi (which was computed in Step 2), and
maintain the property that c is the coverage of our cur-
rent position in the walk through the BOUNDARY list as
follows: Let p be our current position in the BOUND-
ARY list and let q be the point we are moving to next in
the traversal. If in going from p to q we enter a polygon Pj’
such that Pj obscures ni(q), we increment the counter c,

and if we leave a polygon Pj’ such that Pj obscures mi(p),
we decrement c. Note that we can determine the poly-
gons we are entering using the ENTER1 and ENTER2
lists for the edges we are traversing, and that determining
whether a polygon Pj obscures ni(p) or not can be done in
O(1) time by checking if the plane containing Pj is in front
or behind mi(p). Any edges of BOUNDARY we traverse
with c = 0 we mark as being “visible.” This gives us all
the visible portions of aP!, since there can be no poly-
gons that obscure the corresponding portions of aPi. The
total time needed to traverse all the polygons in I, in this
manner is O(n + k), since we traverse each vertex once
and each intersection point twice. This completes the
algorithm.

We summarize this section in the following theorem.

THEOREM 3.1. Given a set r of simple, planar poly-
gons in s3, consisting of n total edges, and a projection
plane rr, the hidden-line elimination problem for r can be
solved in O(n log n + k + t) time and O(n + k) space,
where k (resp. t) is the number of intersecting pairs of line
segments (polygons) in r,.

4. HIDDEN-SURFACE ELIMINATION

In this section we show how to use the polygon ar-
rangement to solve the problem of eliminating hidden
surfaces. Let the input be as for the hidden-line elimina-
tion problem. We present a high-level description of our
algorithm below.

HIDDEN-SURFACE ELIMINATION ALGORITHM (HIGH-
LEVEL DESCRIPTION).

Step 1. Constructing the Polygon Arrangement. We
construct the polygon arrangement of I, in this step, as
described in Section 2. As in the hidden-line elimination
algorithm, for each polygon Pf in POLY we store some
additional fields to represent the plane which contains Pi.

Step 2. Constructing the “Overlap” Relation. In this
step we construct a directed graph R that represents the
“overlap” relation determined by the polygons in I. In
particular, each vertex of R corresponds to a polygon in
I, and there is an edge (i, j) in R if Pi obscures some part
of Pi. (See Fig. 4.) We classify each edge (i, j) as to
whether Pi completely contains Pj’ in its interior, or not.
Also, we “prune” out each polygon Pi such that Pi is
completely invisible because there is some other polygon
Pj that completely obscures Pi, i.e., PI is inside Pj’ and Pj
is in front of Pi. We construct this relation by traversing
the polygon arrangement similar to the way we did in the
hidden-line elimination algorithm Steps 2 and 3. The total
time for this traversal is O(n + k + t).

Step 3. Sorting the Polygons. In this step we use the
overlap relation computed in Step 2 to construct the list

HIDDEN-LINE AND HIDDEN-SURFACE ELIMINATION 7

The scene:

FIG. 4. The overlap relation R.

priority of the polygons. That is, we find a labeling of the
polygons such that if P; is in front of Pj then Pi has a
higher label than Pj. This takes O(t) time.

Step 4. “Drawing” the Polygons Back-to-Front. In
this step we use the polygon arrangement and the infor-
mation computed in the previous steps to simulate the
painter’s algorithm in object space. Initially, all the edges
and faces in the polygon arrangement are marked “invisi-
ble.” Starting with the polygon that is farthest from the
viewing position, we activate each polygon one by one in
order based on the list priority labels. When we activate a
polygon Pf we traverse the edges on the boundary of P] ,
marking them as being “visible,” and mark which poly-
gons are visible on their left and right sides. In addition,
we traverse all the previously “visible” edges that are
contained in the interior to Pf and mark them as “invisi-
ble,” since the activation of Pf , in essence, covers them
up. This takes O(n + k) time.

END OF HIGH-LEVEL DESCRIPTION. We begin the
discussion of the details of the hidden-surface algorithm
with Step 2, since the implementation of Step 1 was given
in Section 2.

4.1. Step 2. Constructing the “Overlap” Relation

In this subsection we give the details for constructing a
directed graph R that represents the “overlap” relation
determined by the polygons in I. In particular, each ver-
tex of R corresponds to a polygon in I, and there is an
edge (i, j) in R if P; obscures some part of Pi. Recall that

we also classify each edge (i, j) as to whether Pf com-
pletely contains Pj’ in its interior, or not. In addition, we
remove each polygon that is completely obscured by an-
other. The method is as follows.

Use the COMP list as in the hidden-line algorithm to
begin a depth-first traversal of the polygon arrangement.
As before, we maintain a list D of all the polygons that
contain our current position as we perform this traversal.
Again, we insert into D the index of each polygon we
enter during the traversal, and delete the index of each
polygon we leave. It is when we come to a representative
vertex that we perform a computation different to that
used in the hidden-line elimination algorithm. Namely,
upon reaching a representative vertex rep(PI) (for the
first time) we suspend the process of performing the
depth-first search temporarily and call a procedure
OVERLAP on Pf , which will compute all the polygons
that Pi overlaps, i.e., all the polygons whose boundaries
intersect the boundary of Pf .

PROCEDURE OVERLAP(

Step 1. We begin by copying the entire list D into a
workspace list C (we will discard C at the end of the
OVERLAP procedure). We associate three bit fields with
each polygon Pj’ in C: INT, which will be true if and only
if the boundary of Pj’ intersects the boundary of PI;
OBSCURES, which will be true if Pj obscures some part
Of Pi ; and OBSCURED, which will be true if some part of
Pj is obscured by Pi. Initially, for each polygon P,f in C,
its INT bit is false, and its OBSCURES bit (resp., its
OBSCURED bit) is true if and only if Pj is in front of
(resp., behind) ni(rep(P,!)). We then use the BOUND-
ARY list for POLY[i] to walk around the boundary of Pf
and update these bits as we go. Each time we encounter
an intersection point p, say with a polygon Pi, we check
if Pj’ is in C (which can be done in O(1) using back-
pointers from the POLY array). If Pj’ is not in C, then we
add it to C. In either case, we set the INT bit associated
with Pj’ to true. Then, we set the OBSCURES bit for P,f
to true if Pj is in front of r;(p). Similarly, we set the
OBSCURED bit for Pj’ to true if Pj is behind mi(p).

Step 2. After we complete the walk around P(and
return to rep(Pf) we search through the entire list, C, to
verify that the obscuring relations we have just discov-
ered are consistent. Specifically, for each Pj’ in C, we
check if the OBSCURES and OBSCURED bits for Pj’ are
both set. If both these bits are set, then we stop the
hidden-surface procedure and either query the user or
apply a heuristic as explained by Hearn and Baker 1161
to resolve this ambiguity (by splitting Pi or Pj). For
the remainder of the discussion let us assume that the
OBSCURES and OBSCURED bits are consistent.

Step 3. In this final step of the OVERLAP procedure
we determine whether or not Pi is completely obscured

8 MICHAEL T. GOODRICH

by some other polygon, and if it is not, we add the edges
involving Pi to R (i.e., edges of the form (i,j) or (j, i)) and
set the INT bits of each such edge. In particular, we
search through C to see if the INT bit associated with a
polygon Pj’ in C is false while its OBSCURES bit is true.
If there is such a polygon, then we mark Pi’ as being
“invisible,” we delete all the space used for the list C, we
delete all references to Pi from R, and we return back to
the depth-first search procedure. If Pi is not completely
obscured by some Pj, then we search through C one more
time. For each Pi in C, if Pi is not marked “invisible,”
then we add the edge (j, i) to R if OBSCURES (Pj’) is true
and we add the edge (i,j) to R if OBSCURED (Pj’) is true.
We then set the INT bit for this new edge to the INT bit
associated with Pj’ in the list C (which was computed in
the previous step). As soon as we are done with a Pj’ in C,
we delete all the space used for Pj’ in C. When we have
performed this computation for each Pj’ in C we return to
the depth-first search procedure, picking up where we
left off. This completes the OVERLAP procedure.

Since at the time we reach rep(Pf) in the depth-first
search the list D is the list of all polygons that contain
rep(P& and each polygon has exactly one representa-
tive, the amount of work we perform in the depth-first
traversal is O(n + k + t). The total amount of work spent
in the OVERLAP procedure for each polygon is propor-
tional to the number of vertices in BOUNDARY plus the
number of polygons that completely contain PI. Thus,
the total amount of work spent in Step 2 is proportional to
O(n + k + t). In the following lemmas we characterize
what the directed graph R represents.

LEMMA 4.1. Let Pi be a polygon in r. Pi is completely
obscured by some polygon Pj if and only if Pf has been
marked “invisible.”

Proof. (+I) Suppose Pf has been marked “invisi-
ble.” Then there is a polygon Pj’ in C such that Pj ob-
scures mi(rep(PI)) and the INT bit for Pj’ is set to false.
The only way that the INT bit for Pj’ can be set to false is
if the boundary of Pj’ does not intersect the boundary of
Pf . That is, PI is completely contained in the interior of
Pj’ . Thus, either Pi is completely obscured by Pj or Pi is in
front of Pj . Since Pj obscures a point, ri(rep(Pf)) on Pi, Pj
must obscure all of Pi.

(3:) Suppose Pi is completely obscured by some poly-
gon Pj. Then, when we reach rep(PI) in the depth-first
traversal of the polygon arrangement, P,! must be in the
list D. Also, Pj’ must completely contain Pi’ in its interior.
Thus, the INT bit for Pj’ will not be set to true in the
OVERLAP procedure for Pi. Therefore, since Pj must
obscure ri(rep(P,!)), PI must be marked “invisible” dur-
ing the OVERLAP procedure. n

LEMMA 4.2. Let Pi and Pj be two polygons in r such
that neither Pi nor Pj completely obscures the other. Then

Pi obscures some part of Pj ifand ifthere is an edge (i, j)
in R.

Proof. The “if’ direction follows immediately from
the discussion of the OVERLAP procedure, so suppose
Pi obscures some part of Pj. We want to show that the
edge (i, j) is in R. There are two cases.

Case 1. PI is completely contained in Pj’ . Then
when we reached rep(Pj’) in the depth-first traversal the
polygon Pj’ was in D. Thus, when we initialized the
OBSCURED bit for Pj’ it was set to true. Since it is
always the case that once such a bit is set to true it is
never set to false, we must have added an edge (i, j) to R
at the end of the OVERLAP procedure for Pj’ .

Case 2. The boundary of P,! intersects the boundary
of Pi. Since Pi obscures some part of the polygon Pj,
there must be some point p that is an intersection point of
Pi and Pj’ such that Pi obscures rj(p). This must have
been discovered in the OVERLAP procedure for Pj’ ;
hence, we must have added an edge (i, j) to R during the
OVERLAP procedure for Pj’ . w

Note that these two lemmas imply that if the overlap
relation, defined by the polygons in I and the projection
plane n, does not contain cycles, then the graph R is a
directed acyclic graph that represents it, except that all
pairs (i, j) such that Pi completely obscures Pj are absent
from R.

The alert reader may also have noted that an edge (i, j)
may appear twice in R-inserted once when we discov-
ered that Pi obscures Pj and once when we discovered
that Pj is obscured by Pi. This does not cause any trouble
for us, though, since the size of R is O(t) regardless of
whether some edges appear twice or not, and, as we will
see, the fact that an edge can appear twice in R will not
corrupt the sorting step (Step 3), which comes next.

4.2. Step 3. Sorting the Polygons

In this step we construct the list priority of the poly-
gons. From the previous step we have a graph R that
represents the polygon-overlap relation. We begin by
constructing a depth-first search tree of R, starting from
those nodes that do not have any edges coming into
them. The graph R is acyclic if and only if there are no
back edges in the depth-first search tree (i.e., nontree
edges (v, w) such that the DFS number for v is greater
than that for w) [11. Note that the existence of two copies
of some edges does not corrupt this test. Thus, we can
check in O(t) time whether the graph R is acyclic or not.
If it is not acyclic, then we stop the hidden-surface elimi-
nation procedure and print out enough information about
the cycles that were discovered to enable the user or
some heuristic procedure (e.g., [161) to resolve the ambi-

HIDDEN-LINE AND HIDDEN-SURFACE ELIMINATION 9

guities (by splitting the appropriate polygons). Let US
proceed with the discussion assuming that R is acyclic.

The graph R represents a partial order. To construct a
valid list priority of the polygons we must embed this
partial order in a total order. That is, we must assign
integer labels to the polygons so that if (i, j) is in R then
the label for Pi is greater than the label for Pi. Note that
this is exactly the topological sorting problem; hence, can
easily be solved in 0(t) time given the depth-first search
tree for R (see Aho, Hopcroft, and Ullman [l] or Knuth
[IS]). Let prio(PJ denote the list priority label of polygon
Pi. The only computation left is that of Step 4.

4.3. Step 4. “Drawing” the Polygons Back-to-Front.

In this step we use the polygon arrangement and the
information computed in the previous steps to simulate
the painter’s algorithm in object space.

We give each edge e in the polygon arrangement three
more fields: VIS, a bit that is true if and only if e is
visible; LEFT, the name of the polygon that is visible on
the lefthand side of e; and RIGHT, the name of the poly-
gon that is visible on the righthand side of e. Initially, for
each edge in the polygon arrangement, its VIS is false,
and its LEFT and RIGHT fields are undefined. Let PRIO
be the list of all the polygons in R sorted in increasing
order by their prio labels computed in the previous step.
Note that the first polygon in PRIO is farthest from the
viewing direction and the last polygon in PRIO is the
closest. The main computation for Step 4 is to “activate”
the polygons in PRIO, one by one, starting with the first
polygon in PRIO. In activating a polygon Pi we update
the VIS, LEFT, and RIGHT fields of edges in the poly-
gon arrangement to indicate that the polygon Pi is cur-
rently the frontmost polygon. When the algorithm com-
pletes we will have a representation of a solution to the
hidden-surface elimination problem. The details of this
polygon activation procedure follow.

We begin Step 4 by deleting from R all those edges
whose INT bit is set to true, and let Z? denote the graph
that is left. Thus an edge (i, j) is in 8 if and only Pi’ is
completely contained in Pj’ and P; obscures some part of
Pj. (The relation a will be used to compute “back-
ground” polygons.)

The remainder of Step 4 involves the iterative exami-
nation of each of the polygons in PRIO. Suppose that we
have already activated i polygons, and let Pj be the (i +
1)st polygon in PRIO. We begin the activation of Pj by
determining the background polygon for Pj, i.e., the
polygon Pk with highest priority among those polygons
that completely contain P,f in their interior. We do this by
examining all the edges emanating out fromj in 8 and find
the polygon Pk in this group with highest prio(Pk) value. If
there is no such polygon Pk. then we say that the back-
ground for Pi is --03.

The activation of Pj’ consists of two steps: (1) indicat-
ing that Pj’ is visible, and (2) “painting” out all the edges
that Pj’ makes invisible. In the first step we start with
rep(Pj’) and traverse the edges of the BOUNDARY list
for Pj’ setting their VIS, LEFT, and RIGHT fields as we
go. Before we begin this traversal we initialize a variable,
CURRIGHT, to the background face for Pj’ . For each
edge e in BOUNDARY we set e’s VIS bit to true, we set
e’s LEFT field to Pj, and we set e’s RIGHT field to
CURRIGHT. If we come to an edge that crosses Pj’ and
has its VIS bit set to true, then we update CURRIGHT to
be the polygon that will be on our right after crossing that
edge. We can determine that polygon by examining the
LEFT and RIGHT fields for that edge. There is one prob-
lem, however, and that is that upon encountering the first
edge e whose VIS bit is set to true we may discover that
the CURRIGHT value we started with was wrong (based
on the LEFT and RIGHT fields for that edge). Such a
mistake can occur if, as may often be the case, the bound-
ary polygon for Pj is not the polygon directly below
rep(Pj’). If this should happen, then we mark our current
position in BOUNDARY and march back to rep(P;), up-
dating each edge’s RIGHT field to the correct value. In
particular, if we set any RIGHT fields to the background
polygon, then we must update these fields to this newly
discovered polygon. When we complete this “back-
patching” computation we return to where we left off in
BOUNDARY and continue our traversal. When we com-
plete the traversal of the BOUNDARY list for P,’ we will
have set all the edges of BOUNDARY to indicate that Pj
is not the closest polygon to the viewing direction. We
have not, however, “painted” out the edges that Pj’ has
made invisible. To do that we must perform the second
step in our activation procedure.

In the second step of our activation procedure we again
traverse the BOUNDARY list for Pi’. When we come to
cross an edge e (intersecting Pj’) that has its VIS bit set to
true, then we call a “little” depth-first search procedure
that traverses the polygon arrangement starting with e
and restricts its movements to those edges in the interior
of Pj’ that have their VIS bits set to true. For each edge
we traverse in this depth-first search procedure we set its
VIS bit to false. Note that for this procedure to be effi-
cient we must be able to traverse the edges whose VIS
bits are set to true without having to consider edges
whose VIS bits are set to false. This is not a problem,
however, if we keep two versions of the ADJACENCIES
list-one for edges with their VIS bit set to true and one
for edges with their VIS bit set to false. When we com-
plete this DFS procedure we continue our traversal of the
BOUNDARY list, looking for other edges that cross Pj’
and have their VIS bit set to true. When we complete this
second traversal of BOUNDARY we consider Pj’ to be
activated, and we repeat the above activation procedure
with the next polygon in PRIO.

When we complete the activation of the last polygon in righthand side of the edges in BOUNDARY, and that
PRIO we will have a representation of a solution to the polygon must be the background polygon, which we com-
hidden-surface elimination problem. Namely, we have a puted in initializing CURRIGHT. Therefore, we cor-
graph of visible edges, and for each visible edge e we rectly assign the RIGHT fields of all the edges in
have the name of the polygon that is visible on the BOUNDARY. The only other edges that are affected by
lefthand side of e and the name of the polygon that is the activation of Pj’ are those previously-visible edges
visible on the righthand side of e. contained in the interior of Pi. Recall that we deleted

Let us examine the running time ofStep 4. Determin- edges in the interior of Pj’ by performing “little” depth-
ing the background polygon for all the activation steps first searches on edges whose VIS bits are set to true
takes at most O(t) steps. Since, for any BOUNDARY starting from edges that cross the boundary of Pj’ . Hence,
list, we traverse an edge in BOUNDARY at most two the only way we could have missed an edge e contained
times (not just once, because of possible back-patching), in the interior of Pj’ whose VIS bit was set to true is if all
traversing the edges in all the BOUNDARY lists can be paths that lead to e from the boundary of Pi contain an
done in O(n + k) time. In performing the little depth-first edge whose VIS bit is set to false (and each such path
searches to “paint” out edges that become invisible we visits the “false” edge before e). By the induction hy-
restrict our computation to edges that have their VIS bits pothesis, the only way that an edge can have its VIS bit
set to true. After this computation, these edges have their set to false is if it is not visible. Let H be the component
VIS bits set to false, and they are never set back to true; of G consisting of each currently visible edge e’ (i.e.,
hence, never traversed again. Thus, the total amount of each ,edge with its VIS bit set true) such that there is a
time spent in all these little depth-first search procedures path of currently visible edges from e to e’. Then the
is O(n + k). Therefore, Step 4 can be implemented in edges of H must be completely contained in the interior
O(n + k + t) time. The next lemma establishes the cor- of Pj’ , and all the edges of H must belong to polygons that
rectness of Step 4. are completely contained in the interior of Pi. This of

course implies that Pj completely obscures these poly-
LEMMA 4.3. After Step 4 completes, and edge in the gons. But there cannot be any polygons in PRIO that are

polygon arrangement is visible if and only ifits VZS bit is completely obscured by Pj, since we removed all such
set true. Moreover, if an edge is visible, then its LEFT polygons from the graph R in Step 3 (to construct the
and RIGHT$elds correctly identify the polygonal faces graph a). Therefore, the edge e cannot exist. That is, we
that are on its left and right. correctly “paint out” all the edges that become invisible

as a result of activating Pi. This completes the proof. n

Proof. The proof is by induction on the number of
polygons activated from the PRIO list. The claim is vacu-

We summarize the discussion of this section in the

ously true when there are zero polygons activated, since
following theorem.

all the edges in the polygon arrangement have their VIS THEOREM 4.4. Suppose one is given a set r of simple,
bits initialized to false. planar polygons in \B3, consisting of n total edges, and a

Suppose the lemma is true after the first i polygons projection plane IT, such that the “overlap” relation de-
have been activated from PRIO. Consider the activation termined by r and m does not contain any cycles. Then
of the (i + I)-st polygon, Pj, in PRIO. Because of the way the hidden-surface elimination problem for r and rr can
we constructed the PRIO list, the polygon Pj is not ob- be solved in O(n log n + k + t) time and O(n + k + t)
structed by any of the polygons that have already been space, where k (resp. t) is the number of intersecting
activated (this is the reason why the painter’s algorithm pairs of line segments (polygons) in rr.
works correctly). In activating Pj’ we set the VIS bit of
each edge in the BOUNDARY list for Pj’ to be true. This
is clearly correct. It is also correct that we set each of
their LEFT fields to be the polygon Pi, since Pj is defined 5. CONCLUSION
to be on the left of all the edges on its boundary. By the
induction hypothesis, all the edges that are not contained In this paper we gave algorithms for hidden-line elimi-
in the interior of Pj’ are correctly labeled. Thus, in the nation and hidden-surface elimination that are optimal in
first traversal of BOUNDARY, if we ever cross an edge the worst case and are also able to take advantage of
that has its VIS bit set to true, then we correctly set the problem instances that are “simpler” than in the worst
RIGHT fields of the edges in BOUNDARY (since their case. Our approach was based on the idea of using a
values are determined by the visible edges we cross in structure that we called the polygon arrangement and is
traversing BOUNDARY). If, on the other hand, we an example of the paradigm from computational geome-
never cross any visible edges in traversing BOUND- try of reducing geometric problems to graph problems.
ARY. then there can be onlv one oolvgon on the , 1 ,v Our algorithms both run in O(n log it + k + t) time, where

10 MICHAEL T. GOODRICH

HIDDEN-LINE AND HIDDEN-SURFACE ELIMINATION 11

n is the number of polygon edges, k is the number of
(segment, segment) intersections in the projection plane,
and t is the number of (&ygon, polygon) intersections in
the projection plane.

Our hidden-line elimination algorithm was imple-
mented by Hostetler [17] and compared with the methods
of DCvai [9] and Schmitt [28, 291 on a number of
benchmark examples. For various “randomly” gener-
ated problem instances, our method was always competi-
tive with these other methods, and on some instances its
running time was 88% that of Schmitt’s algorithm and
only 12% that of DCvai’s algorithm [17]. Moreover, these
improvements were for scenes made up of relatively few
polygons (e.g., between 40 and 80 polygons). Also, Hos-
tetler reports that our method was easier to implement
than Schmitt’s method. Thus, we expect our method to
be quite efficient in practice.

Our hidden-surface elimination algorithm provides an
object space analog to the famous “painter’s algorithm”
[31, 161, and achieves the above performance bounds as-
suming that the “overlap” relation, defined by the input
polygons and the projection plane, does not contain any
cycles (we made no restrictive assumptions about the
input for our hidden-line elimination algorithm). It is diffi-
cult to characterize the running time of our algorithm if
the “overlap” relation does contain cycles, because the
method for resolving such situations is a heuristic based
on the idea of “cutting” polygons into smaller pieces.
Thus, the best known worst-case efficient algorithm for
the most general version of the hidden-surface elimina-
tion problem is still the algorithm by McKenna, which
runs in O(n2) time and space [19]. It is an open problem to
improve these worst-case bounds without making any
restrictive assumptions about the input.

Algorithms such as ours, where the running time is
proportional to the size of the input and the number of
intersections the input determines, are known as “inter-
section-sensitive” algorithms. Another important class
of algorithms are those that are “output-sensitive,”
where the running time depends on the size of the input
and the size of the output. The only known output-sensi-
tive algorithms for hidden-line elimination are either sub-
optimal [24] or are for the restricted case when the each
edge on the input polygons is parallel to one of the coor-
dinate axes [5, 8, 15, 11, 261, or the input is a terrain [27].
Thus, the existence of an optimal output-sensitive algo-
rithm (i.e., one that runs in O(n log II + a) time, where a
is the size of the input) remains an open problem.

ACKNOWLEDGMENTS

We thank Mikhail J. Atallah, Larry Blythe Hostetler, Michael
McKenna, Joseph O’Rourke, and E. S. Panduranga for conversations
concerning the tonics of this naner.

1.

2.

3.

4.

5.

6.

7.

8.

9

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

REFERENCES

A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design und
Analysis of Computer Algorithms, Addison-Wesley, Reading, MA,
1974.
B. G. Baumgart, A polyhedron representation for computer vision,
in Proceedings, 197s AFIPS National Computer Conference 44,
pp. 589-596, AFIPS Press, 1975.
J. L. Bentley and T. Ottmann, Algorithms for reporting and count-
ing geometric intersections, IEEE Trans. Comput. C-28, 1979,643-
647.
J. L. Bentley and D. Wood, An optimal worst case algorithm for
reporting intersections of rectangles, IEEE Trans. Comput. C-29,
1980, 571-576.
M. Bern, Hidden surface removal for rectangles, J. Comput. Syst.
Sci. 40, 1990, 49-69.
B. Chazelle and H. Edelsbrunner, An optimal algorithm for inter-
secting line segments in the plane, in Proceedings, 29th IEEE Sym-
posium on Foundations of Computer Science, 1988, pp. 590-600.
K. L. Clarkson, Applications of random sampling in computational
geometry, II, in Proceedings, 4th ACM Symposium on Computa-
tional Geometry, 1988, pp. I-11.
M. de Berg and M. H. Overmars, Hidden Surface Removal for
Axis-Parallel Polyhedru, Technical Report RUU-CS-90-21, Dept.
of Computer Science, Utrecht Univeristy, 1990.
F. DCvai, Quadratic bounds for hidden-line elimination, in Proceed-
ings, 2ndACM Symposium on Computational Geometry. 1986, pp.
269-275.
H. Edelsbrunner and L. J. Guibas, Topologically sweeping an ar-
rangement, in Proceedings, Proc. 18th ACM Symposium on Theory
of Computing, 1986, pp. 389-403.
M. T. Goodrich, M. J. Atallah, and M. Overmars, An input-size/
output-size trade-off in the time-complexity of rectilinear hidden
surface removal, in Proceedings, 17th Internationul Conference on
Automata, Languages, and Programming, 1990.
L. J. Guibas and R. Sedgewick, A dichromatic framework of bal-
anced trees, in Proceedings, 19th IEEE Symposium on Founda-
tions of Computer Science, 1978, pp. 8-21.
L. J. Guibas and R. Seidel, Computing convolutions using recipro-
cal search, in Proceedings, 2nd ACM Symposium on Computa-
tional Geometry, 1986, pp. 90-99.
L. J. Guibas and J. Stolfi, Primitives for the manipulation of general
subdivisions and the computation of voronoi diagrams, ACM
Trans. Graphics 4, 1985. 75-123.
R. H. Giiting and T. Ottmann, New algorithms for special cases of
the hidden line elimination problem, Comput. Vision Graphics Im-
age Process. 40, 1987, 188-204.
D. Heam and M. P. Baker, Computer Graphics, Prentice-Hall,
Englewood Cliffs, NJ, 1986.
L. B. Hostetler, Jr., A Comparison of Three Hidden Line Removal
Algorithms, Technical Report 89-02, Dept. of Computer Science,
Johns Hopkins Univ., 1989.
D. E. Knuth, The Art of Computer Programming, Volume I:
Fundamental Algorithms, Addison-Wesley, Reading, MA, 1968.
M. McKenna, Worst-case optimal hidden-surface removal, ACM
Trans. Graphics 6 No. 1, 1987, 19-28.
D. E. Muller and F. P. Preparata, Finding the intersection of two
convex polyhedra, Theoret. Computer. Sci. 7, No. 2, 1978, 217-
236.
K. Mulmuley, A fast planar partition algorithm, I, in Proceedings.
29th IEEE Symposium on Foundations of Computer Science, 1988,
pp. 580-589.

12 MICHAEL T. GOODRICH

22. 0. Nurmi, A fast line-sweep algorithm for hidden line elimination,
BIT 25, 1985, 466-472.

23. T. Ottmann and P. Widmayer, Solving visibility problems by using
skeleton structures, in Proceedings, 11th Symposium on Mathe-
matical Foundations of Computer Science, 1984, pp. 459-470.

24. M. H. Overmars and M. Sharir, Output-sensitive hidden surface
removal, in Proceedings, 30th IEEE Symposium on Foundations of
Computer Science, 1989, pp. 598-603.

25. F. P. Preparata and M. I. Shamos, Computational Geometry: An
Introduction, Springer-Verlag, New York, NY, 1985.

26. F. P. Preparata, J. S. Vitter, and M. Yvinec, Computation of
the Axial View of a Set of Isothetic Parallelepipeds, Laboratoire
d’btformatique de L’Ecole Normal Superieure, Department de
Mathematiques et d’btformatique, Report LIENS-88-1, 1988.

27. J. H. Reif and S. Sen, An efficient output-sensitive hidden-surface

removal algorithm and its parallelization, in 4th Symposium on
Computational Geometry, 1988, pp. 193-200.

28. A. Schmitt, On the Time and Space Complexity of Certain Exact
Hidden Line Algorithms, Universitat Karlsruhe, Fakultat fur Infor-
matik, Report 24/81, 1981. Cited in [15].

29. A. Schmitt, Time and space bounds for hidden line and hidden
surface algorithms, EUROGRAPHICS ‘81, pp. 43-56.

30. S. Sechrest and D. P. Greenberg, A visibility polygon reconstruc-
tion algorithm, ACM Trans. Graphics 1, No. 1, 1982, 25-42.

31. I. E. Sutherland, R. F. Sproull, and R. A. Schumacker, A charac-
terization of ten hidden-surface algorithms, Comput. Surveys 6,
No. 1. 1974, l-25.

32. R. E. Tatjan, Data Structures and Network Algorithms, SIAM,
Philadelphia, PA, 1983.

