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We present algorithms for the well-known hidden-line and 
hidden-surface elimination problems. Our algorithms are optimal 
in the worst case, and are also able to take advantage of problem 
instances that are “simpler” than in the worst case. Specifically, 
our algorithms run in O(n log n + k + t) time, where n is the 
number of edges, and k (resp. t) is the number of intersecting pairs 
of line segments (resp. polygons) in the projection plane n. Our 
algorithms are based on a polygon-based strategy, rather than an 
edge-based strategy, and are quite simple. D 1992 Academic press, I~C. 

1. INTRODUCTION 

The hidden-line and hidden-surface elimination prob- 
lems are well known in computer graphics [9, 15, 16, 19, 
22, 23, 28-311. In the hidden-line elimination problem 
one is given a set of simple, nonintersecting planar poly- 
gons in 3-dimensional space, and a projection plane GT, 
and wishes to determine which portions of the polygonal 
boundaries are visible when viewed in a direction normal 
to rr, assuming all the polygons are opaque. (See Fig. 1.) 
In the related hidden-surface elimination problem one is 
also interested in determining which portions of the inte- 
riors of the polygons are visible. That is, if one colored 
each polygon with a unique color, then the problem 
would be to determine the color of each face of the draw- 
ing produced by a solution to the hidden-line elimination 
problem. Using the terminology of [31], we are interested 
in the object space versions of these problems; i.e., we 
want solutions that are independent of any specific ren- 
dering device. 

We briefly review some of the efficient algorithms for 
these problems. In [9] DCvai gives an algorithm for 
hidden-line elimination running in O(n2) time and O(n2) 
space. In [I93 McKenna shows how to solve the hidden- 
surface elimination in these same bounds. Both of these 
algorithms are optimal in the worst case, because there 
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are problem instances that have n(n2) output size 19, 191. 
However, these algorithms always take O(n2) time, even 
if the size of the output is small (e.g., O(1)). In [22] Nurmi 
gives an algorithm for hidden-line elimination that runs in 
O((n + k) log n) time and O((n + k) log n) space, where k 
is the number of intersecting pairs of line segments in n (k 
is at most O(n2)). Schmitt [28] is able to achieve this same 
bound using only O(n + k) space. When the number of 
intersecting edges is not too large (i.e., k G n2/log n), 
these algorithms clearly run faster than O(n2). They are 
not worst-case optimal, however. 

Recently, Chazelle and Edelsbrunner [61 have shown 
how to construct the graph of intersections of n line seg- 
ments in the plane in optimal O(n log n + k) time, where k 
is as above. Since segment intersection is important in 
hidden-line elimination, one might think that this immedi- 
ately improves the previous hidden-line elimination algo- 
rithms, but this is not the case. One exception is a hid- 
den-line elimination algorithm by Schmitt [29], which 
runs in O(n + k + r) time given the intersection graph, 
where r is the number of (edge, polygon) intersections in 
n-. His algorithm makes a global visibility test for each 
edge, however, making his algorithm less desirable from 
a practical point of view. 

In this paper we give an algorithm for the hidden-line 
elimination problem that is optimal in the worst case, and 
also takes advantage of problem instances that are “sim- 
pler” than in the worst case. Intuitively, our approach is 
to exploit the polygonal properties of the input, whereas 
previous algorithms concentrate more on edges. Our al- 
gorithm for the hidden-line elimination problem runs in 
O(n log n + k + t) time, where t is the number of (pofy- 
gon, polygon) intersections (which is at most O(n2)). 
Note that t is always less than r, the number of (edge, 
polygon) pairs. In fact, r can be significantly larger than t 
in general. For example, one can easily construct prob- 
lem instances where t is O(n) while r is n(nw2) (e.g., fi 
polygons having X& edges each and projecting so as to be 
nested inside one another). Also note that t is in some 
sense independent of k, the number of (segment, seg- 
ment) intersections, since there are problem instances 
where t is O(n2) and k is O(1) (e.g., n triangles projecting 
so as to be nested) and other problem instances where t is 
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(b) 

FIG. 1. An example of hidden-line elimination. (a) Shows the set of 
polygons before hidden-line elimination, and (b) shows it after. 

O(1) and k is O(n2) (e.g., two polygons shaped like forks 
with many tines and these tines form a cross-hatched 
pattern in r). 

Our hidden-line method has been implemented [ 171 and 
benchmarked against the methods of Devai [9] and 
Schmitt [28, 291. The results of these benchmark tests 
suggest that our method is superior or competitive in 
running time to the algorithms of Devai and Schmitt in 
practice. In addition, our method appears easier to imple- 
ment than Schmitt’s method [17]. 

We also show how to apply our polygonal approach to 
the hidden-surface elimination problem. Our algorithm 
for this problem also runs in O(n log n + k + t) time, 
assuming that the “overlap” relation, defined by the 
polygons and viewing direction, does not contain any 
cycles. Our algorithm does not need the back-to-front 
ordering of the polygons as input, however, since it 
embeds this computation as one of the steps of the algo- 
rithm. Besides being “better” than worst-case optimal, 
our algorithm is also of interest in that it provides an 
object-space version of the famous “painter’s algorithm” 
(which is also known as the “list-priority” or “depth 
sorting” algorithm) [ 16, 3 11, where one renders the poly- 
gons in order by their distance from the viewing “eye,” 
back to front, so that the low-level polygon-filling rou- 
tines for the rendering device automatically eliminate 
nonvisible polygonal regions. 

Both of our algorithms are quite simple, and, given the 
graph of line-segment intersections, can be implemented 
so that the only underlying data structures needed are 
linked lists and arrays. If one is willing to live with an 
algorithm that runs in O(n log n + k + t) expected time 

(rather than in the worst case), then one can use the 
methods of Clarkson [7] or Mulmuley [21] for construct- 
ing the graph of line-segment intersections. This would 
allow one to completely implement our algorithms in a 
simple fashion using just linked lists and arrays. One 
could also use the plane-sweeping method of Bentley and 
Ottmann [3], which runs in O((n + k) log n) time. 

The remainder of this paper is divided into four sec- 
tions. In the next section we describe the main data struc- 
ture used in our algorithms, the polygon arrangement. In 
Section 3 we give our algorithm for hidden-line elimina- 
tion, and in Section 4 we show how to solve the hidden- 
surface elimination problem. We conclude in Section 5. 

2. THE POLYGON ARRANGEMENT 

We begin our discussion by defining the polygon ar- 
rangement of a set of polygons, a structure that repre- 
sents how a collection of polygons intersect in the plane. 
LetasetI={P1,PZ,. . . , P,} of simple polygons in the 
xy-plane be given. For any polygon Pi we let aPi denote 
the boundary of the polygon Pi, and assume, without loss 
of generality, that the vertices of ~3Pi are listed so that the 
interior of Pi would be on the lefthand side if we were to 
traverse the vertices of dPi in the given order. We define 
the representative vertex of Pi, denoted rep(PJ, to be the 
vertex with smallest y-coordinate from all the vertices of 
P; with smallest x-coordinate, i.e., rep(PJ is the vertex 
that would be first if the vertices of Pi were sorted in 
increasing order lexicographically by (x, y)-coordinates. 
For any point p, we define the downward (resp, upward) 
vertical shadow of p in I to be the first point belonging to 
the boundary of a polygon in I that is intersected by the 
vertical ray emanating downward (resp., upward) from p, 
parallel to the y-axis. If no such point exists, then we take 
the downward (resp., upward) vertical shadow to be --oo 
(resp., +m). The polygon arrangement of I is defined on 
the following embedded planar graph G = (V, E): 

1. V consists of all points u that satisfy one of the 
following: 

(a) u is a vertex of a polygon in r, 
(b) u is an intersection point of the boundaries of 

two polygons in r, or 
(4 u is the vertical shadow of the representative 

vertex of a polygon in r; 
2. E consists of all the (undirected) pairs (v, w), u, 

w E V, that satisfy one of the following: 
(a) u and w are connected by a polygonal edge s 

and there is no point z E V between u and w on s, or 
(b) w is the vertical shadow of u and u is the repre- 

sentative vertex of some polygon in r. 
To reflect the polygonal nature of the input one also must 
add some data structures that relate the edges and verti- 
ces of this graph to the polygons in I. 



HIDDEN-LINE AND HIDDEN-SURFACE ELIMINATION 3 

There are a number of ways one can represent the 
polygon arrangement, e.g., by generalizing the “winged 
edge” structure of Baumgart [2], the “quad edge” struc- 
ture of Guibas and Stolfi [14], or the “doubly-connected 
edge list” structure of Muller and Preparata 120, 251. In 
any case, the polygon arrangement would be stored as a 
collection of cross-referenced adjacency lists and arrays. 
In order to be specific in how one can implement the 
various aspects of our algorithms we give an implementa- 
tion of the polygon arrangement here. The implementa- 
tion we choose borrows ideas from each of the above 
data structures, but probably is most similar to the 
“winged edge” structure. 

We store the vertices of V in an array VERT, the edges 
of E in an array EDGE, and the polygons of I in an array 
POLY. Each record of VERT corresponds to a vertex u, 
and contains the following fields: the x-coordinate of u, 
the y-coordinate of u, and a pointer to an adjacency list 
ADJACENCIES, which lists the indices of the edges in 
EDGE which are incident to u. Each record of POLY 
corresponds to a polygon in I, and contains a list, 
BOUNDARY, of the indices of vertices in VERT that are 
on the boundary of Pi, listed as they would occur if one 
were to traverse Pi from rep(PJ so as to keep the interior 
of Pi on the lefthand side. Each record of EDGE corre- 
sponds to an edge (u, w), and contains the following 
fields: (1) the indices of u and w in VERT, (2) a pointer, 
SIDE, which stores the index in POLY of the polygon (if 
any) that contains (u, w) on its boundary, (3) pointers to 
the positions of u and w in the BOUNDARY list for the 
SIDE polygon (assuming SIDE is defined), and (4) two 
lists, ENTER1 and ENTER2 (which we will define 
shortly). Note that using the SIDE pointer and the 
pointers into the BOUNDARY list for the SIDE polygon 
one can determine whether the SIDE polygon for (u, w) is 
on its right or on its left. Note that this also means that we 
consider an edge to belong to the boundary of at most one 
polygon. To allow for more general cases one would sim- 
ply maintain several instances of the “same” edge, each 
one indicating that it belongs to the boundary of a differ- 
ent polygon. The list ENTER1 (resp., ENTER2) lists the 
indices of each polygon Pi in POLY such that u (resp., w) 
is on 8Pi and the edge (u, w) intersects the interior of Pi. 
Intuitively, ENTER1 is the list of all the polygons that 
one enters in traversing (u, w) from u to w, and ENTER2 
lists the polygons one enters in traversing (u, w) from w 
to u. 

In addition to the above lists and arrays, we store all 
the representative vertices that do not have vertical 
shadows in I? in a list COMP (since each entry corre- 
sponds to a connected component in G). See Fig. 2 for an 
example polygon arrangement. 

Let us now turn to the construction of the polygon 
arrangement. As one might suspect, the bottle-neck com- 

FIG. 2. An example of polygon arrangement. In this figure there are 
four polygons, and their arrangement represents 4 (polygon, polygon) 
intersections, 10 (segment, segment) intersections, and 3 vertical 
shadows. The circles denote the vertices of V and the straight lines 
denote the edges of E, where a solid edge denotes part of a polygonal 
segment and a dashed line denotes a vertical shadow edge. The vertical 
shadow edge drawn as an arrow denotes the situation where a represen- 
tative vertex has --3o as its vertical shadow (hence is in the COMP list). 

putation is the construction of the graph of segment inter- 
sections and vertical shadows. Chazelle and Edelsbrun- 
ner prove the following: 

LEMMA 2.1 [6]. Given a set S of n line segments in 
the plane, one can construct the graph of segment inter- 
sections and vertical shadows determined by S in O(n log 
n + k) time and O(n + k) space. 

The algorithm of Chazelle and Edelsbrunner relies on a 
number of beautiful algorithmic techniques (including dy- 
namic binary search trees (e.g., red-black trees [ 12, 32]), 
topological sweeping [lo, 131, and segment trees [41), but 
in somewhat involved. The authors have an implementa- 
tion that consists of approximately 1,500 lines of C code, 
discounting driver and I/O routines, and claim that it is 
competitive with existing methods [6]. If one wants to 
use a simpler method to construct the polygon arrange- 
ment, and does not mind having an algorithm that is not 
worst-case optimal, then we recommend substituting the 
algorithm of Chazelle and Edelsbrunner by the random- 
ized algorithm of Clarkson [7] or Mulmuley [21], which 
relies exclusively on the use of simple data structures 
such as linked lists and arrays. The worst-case complex- 
ity of the algorithms by Clarkson and Mulmuley is not as 
good as that of the algorithm by Chazelle and Edelsbrun- 
ner, but its expected running time matches the worst- 
case bound of their algorithm, as it runs in O(n log n + k) 
expected time (independent of the distribution of seg- 
ments and intersection points). For completeness, and to 
illustrate its simplicity, we include a description of the 
algorithm by Clarkson. 

LINE-SEGMENT INTERSECTION ALGORITHM [7]. Given 
a set S of n line segments in the plane, the line segments 
of S are added in random order, one by one, to a set U. 
An undirected graph, H(U), of the intersection points, 



4 MICHAEL T. GOODRICH 

the segment endpoints, and the (upward and downward) 
vertical shadows of segment endpoints and intersection 
points is maintained as U grows. Note that H(U) decom- 
poses the plane into a collection of cells (i.e., faces) that 
are, more or less, trapezoidal. These trapezoidal cells are 
maintained in a list Q. For each edge e of H(U) one 
stores pointers to the two cells in Q that are adjacent to e, 
and for each cell c in Q one stores a list of the (at most 
four) edges of H(U) that bound c. A bipartite “conflict 
graph” C(U) is also maintained as U grows. Its two ver- 
tex sets are the set of segments in S - U and the set of 
cells in Q, respectively. There is an edge in C(U) be- 
tweenacellcinQandasegmentsinS- Uifcnsf0. 
When a segment s is added to U the cells that are adja- 
cent to s in C(U) must be deleted from Q, since s “cuts” 
each of them into smaller cells. For each cell c that is cut 
by s (as determined by the adjacency list for s in C(U)) 
one deletes c from Q and C(U) and inserts into H(U) and 
Q the (at most four) new cells that s cuts c into. For each 
such new cell c’ one examines the list of segments in 
C(U) that were adjacent to c in C(U) to see which of 
these segments intersect with c’, adding the appropriate 
adjacencies to C(U) and H(U) as necessary. One iterates 
this procedure until U = S. 

Clarkson [7] shows that this simple procedure runs in 
O(n log IZ + k) expected time and space (he also shows 
how the space can be reduced to O(n + k)). 

While the construction of the graph of segment inter- 
sections and vertical shadows is being performed it is 
important that for each line segment s one keep track of 
the polygon, Pi, that contains s on its boundary, as well 
as maintaining the edge on the boundary of Pi that imme- 
diately follows s. This allows one to easily construct the 
POLY array and all its accompanying BOUNDARY lists 
once the graph of segment intersections is constructed. 

Let us suppose we have constructed this graph, with 
the extra information as just described. One can easily 
construct the VERT array, and its accompanying lists, by 
taking the vertices of this graph and deleting all vertical 
shadow vertices that are not the downward vertical 
shadows of representative vertices. Note that we can 
then have the COMP list, as well, by taking all vertices 
that have --00 as their downward vertical shadow. Simi- 
larly, it is fairly straightforward to construct the EDGE 
array by “stitching” back together any edges divided by 
vertices we deleted in constructing the VERT array. Us- 
ing the extra information maintained during the construc- 
tion of the graph of segment intersections and vertical 
shadows, as well as the input specifications of the poly- 
gons, we can then construct the POLY array and its ac- 
companying BOUNDARY lists. Constructing the fields 
of each entry in the EDGE array is also straightforward, 
given this information, except for the construction of the 
ENTER1 and ENTER2 fields. To construct, say, the 

ENTER1 list for an edge e = (u, w) one examines each 
edgef = (u, u) that is incident to u (using the ADJACEN- 
CIES list for u), and determines whether the SIDE poly- 
gon forfcontains e in its interior (using the pointers into 
the BOUNDARY list for the SIDE polygon off). One 
inserts each such polygon into the list ENTERI. Con- 
structing the ENTER2 list is similar. 

Let us examine the time and space complexity of con- 
structing the polygon arrangement. As already men- 
tioned, constructing the graph of line segment intersec- 
tion points and vertical shadows can be done in O(n log 
II + k) time using O(n + k) space, where k denotes the 
number of (segment, segment) intersections. Given this 
graph, constructing all the lists and arrays of the polygon 
arrangement, except for the ENTER1 and ENTER2 lists, 
requires an additional O(n + k) time, since the methods 
used in these constructions examine each edge and ver- 
tex in this graph O(1) times. The construction of the 
ENTER1 and ENTER2 lists for each edge e = (u, w) 
takes time proportional to the number of edges incident 
on u plus the number of edges incident on w. Since u 
(resp., w) is a vertical shadow, a segment endpoint, or an 
intersection point, the time of this construction is 
bounded by 0( 1) * k, , where k, is the number of segments 
that intersect the segment containing (u, w) at u, plus 1 (to 
account for the case when u is not an intersection point). 
Note that x eel k, = O(k), since each intersection will be 
counted only twice by this accounting scheme. Thus, the 
time to construct all the ENTER1 and ENTER2 lists is 
O(n + k). Therefore, the total time needed to construct 
the polygon arrangement is O(n log n + k) using O(n + k) 
space. We summarize this section with the following the- 
orem: 

THEOREM 2.2. Given a set r of simple polygons in the 
xy-plane, the polygon arrangement for I? can be con- 
structed in O(n log n + k) time and O(n + k) space, where 
n denotes the number of polygonal edge segments in IY 
and k is the number of pairs of intersecting line seg- 
ments. 

We next describe how we use the polygon arrangement 
to do hidden-line elimination. 

3. HIDDEN-LINE ELIMINATION 

Suppose we are given a set I = {PI, P2, . . . , P,} of 
simple, planar polygons in 3-dimensional space, as well 
as a projection plane P. The hidden-line elimination prob- 
lem is to determine which portions of the polygonal 
boundaries are visible when viewed in a direction normal 
to r. Without loss of generality, we assume that rr is the 
xy-plane, that the view direction is toward (0, 0, -M), and 
that the vertices of each polygon Pi are listed so that the 
interior of Pi would be one the left if we were “walking” 
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around the boundary of Pi in the order given with our feet 
pointing down toward (0, 0, -cc). In this section we 
present an algorithm for this problem which is both sim- 
ple and efficient. 

Since we will be dealing with 3-dimensional objects as 
well as their 2-dimensional projections, we make the fol- 
lowing definitions. For any point p we let x(p), y(p), and 
z(p) denote the x-, y-, and z-coordinates of p, respec- 
tively. We denote the set of polygons in I projected to 7~ 
by I,, and use PI to denote the projection of the polygon 
Pi to m. Given a point p in 7r, we use TG(P) to denote the 
point on the plane containing Pi that projects to p, and 
define the coverage of p with respect to P; to be the 
number of polygons in I that obscure 7rTTi( p), i.e., the num- 
ber of polygons intersected by the ray emanating out 
from q(p) normal to 7r in the direction of the viewing 
“eye” (0, 0, 00). We present a high-level description of 
our algorithm below. 

HIDDEN-LINE ELIMINATION ALGORITHM (HIGH- 
LEVEL DESCRIPTION). 

Step 1. Constructing the Polygon Arrangement. We 
construct the polygon arrangement of I, in this step, as 
described in the previous section. Since we are dealing 
with 3-dimensional polygons projected to the plane, we 
augment the polygon arrangement to keep track of some 
of the 3-dimensional information. Namely, for each poly- 
gon P,f in POLY we store some additional fields to repre- 
sent the plane which contains Pi. For example, if the 
plane containing Pi is determined by an equation, ax + 
by + cz + d = 0, then one could store the coordinates a, 
6, c, and d as fields in the POLY entry for Pf to represent 
this plane. 

Step 2. Computing the Coverage of Representative 
Vertices. In this step we use the polygon arrangement 
to compute the coverage, c;, of each representative ver- 
tex rep(P!) with respect to Pi. We perform this step by 
traversing the polygon arrangement in a depth-first 
search fashion, storing the names of all the polygons that 
contain our current position as we go. Each coverage 
computation is done by examining the polygons in this 
set. The total time for this traversal is O(n + k + t). 

Step 3. Computing Visible Edges. In this step we use 
the polygon arrangement to “walk” around the boundary 
of each polygon P,f , starting at its representative vertex, 
computing the coverage of each edge portion as we go. 
All the portions of 8Pi that have zero coverage are 
marked “visible” (or displayed). This takes O(n + k) 
time and completes the algorithm. 

END OF HIGH-LEVEL DESCRIPTION. We now de- 
scribe in more detail how to perform each of the above 
steps. Since we have already shown how to perform Step 
1, we begin with Step 2. 

start 

FIG. 3. The depth-first traversal. In going from u to w we are enter- 
ing PI and in going from w to u (on the way back) we are leaving P, 

3.1. Step 2: Computing the Coverage of 
Representative Vertices 

We begin with some definitions. During any traversal 
of the polygon arrangement, suppose we are currently at 
a node v and moving to a node w. We say that we are 
entering (resp., leaving) the polygon P! along (v, w) if v 
(resp., w) belongs to the boundary of Pf and (v, w) inter- 
sects the interior of Pf . (See Fig. 3.) Note that for any 
edge (v, w) in the polygon arrangement the set of poly- 
gon(s) one enters (resp., leaves) in traversing the edge 
(v, w) from v to w corresponds exactly to the ENTER1 
(resp., ENTER2) list for (v, w). 

Step 2 can be performed by traversing the polygon ar- 
rangement of I, in the following way. Let G denote the 
polygon arrangement of I,, and recall that COMP is the 
set of all representative vertices that do not have vertical 
shadows in I,., . Starting with w, the first vertex in COMP, 
we remove w from COMP and begin traversing G in a 
depth-first-search fashion [l] starting with w. As we per- 
form the traversal we maintain a list, D, of the polygons 
in I,, that contain our current position in the plane. Since 
w has --oo as its downward vertical shadow, there can be 
no polygons in Is that properly contain w in their inte- 
rior. Thus, we begin with D being empty. We represent 
each polygon in D by its index in the POLY list, and 
maintain a back-pointer from each polygon in POLY to 
its position in D (or store a nil pointer, if the polygon is 
not in D). As we are traversing G, each time we enter the 
interior of a polygon we insert its index in D, and each 
time we leave the interior of a polygon we delete its index 
from D. Also, when we are “returning” along already 
traversed paths, i.e., popping off the stack of visited 
nodes in the depth-first search, we reverse any opera- 
tions we made along the way. Note that using the 
ENTER1 and ENTER2 lists we can immediately deter- 
mine which polygons we are entering and leaving in tra- 
versing an edge. Thus, using these lists and the POLY 
array, we can implement the insertion or deletion of the 
index of each polygon we are entering or leaving in 0( 1) 
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time per polygon. At the time we encounter a representa- 
tive vertex rep(P;) each polygon Pj’ in D is such that 
rep(P;) lies in Pj’ . This is because we include vertical 
shadows as well as intersection points in the polygon 
arrangement-so that if two polygons in I, intersect, 
then their vertices are contained in the same connected 
component. Thus, we can compute the coverage, ci) of 
this rep(PI) by examining all the polygons that are cur- 
rently in D and count how many of them correspond to 
polygons in ui3 that obscure mi(rep(Pf)). In order to check 
if a polygon Pj obscures r;(rep(Pf)) one need only check 
whether the plane containing Pj lies before or behind 
ni(rep(Pf)), which can be determined in O(1) time using 
the extra information we store with each polygon in 
POLY. When we return to w, completing a traversal of 
the connected component of G containing w, we continue 
the depth-first search starting with the next vertex in 
COMP. We repeat this traversal until we have visited all 
the vertices in COMP. 

Let us analyze the time complexity of this traversal. 
Since we are traversing the polygon arrangement in a 
depth-first fashion, the set D will only change when we 
enter or leave a polygon, and then D only gains or loses 
one item, which can be performed in O( 1) time. The only 
other operation we perform in the traversal is computing 
the coverage of each representative vertex, which, for 
each rep(PI), can be performed in time proportional to 
the number of polygons stored in D when we encounter 
rep(P;). Since there is only one representative vertex for 
each polygon, and for each rep(PI) we only examine 
those polygons that properly contain rep(PI) in their inte- 
rior, the number of comparisons we make for each P! will 
be at most the number of polygons in I, that intersect PI. 
Thus, we make at most O(t) comparisons overall, where t 
is the number of pairs of intersecting polygons in I,. 
Since we are traversing the polygon arrangement in a 
depth-first fashion, we will visit each edge at most twice. 
Thus, this step takes O(n + k + t) time overall. 

3.2. Step 3: Computing Visible Edges 

In this step we use the polygon arrangement to “walk” 
around the boundary of each polygon PI in I,, in turn, 
starting with rep(PI). Specifically, we start with rep(PI) 
and walk around Pi’ using its BOUNDARY list, always 
maintaining the coverage, with respect to Pi, of the point 
on Pf that corresponds to our current position. We initial- 
ize a counter c to the value ci, the coverage of rep(Pf) 
with respect to Pi (which was computed in Step 2), and 
maintain the property that c is the coverage of our cur- 
rent position in the walk through the BOUNDARY list as 
follows: Let p be our current position in the BOUND- 
ARY list and let q be the point we are moving to next in 
the traversal. If in going from p to q we enter a polygon Pj’ 
such that Pj obscures ni(q), we increment the counter c, 

and if we leave a polygon Pj’ such that Pj obscures mi(p), 
we decrement c. Note that we can determine the poly- 
gons we are entering using the ENTER1 and ENTER2 
lists for the edges we are traversing, and that determining 
whether a polygon Pj obscures ni( p) or not can be done in 
O(1) time by checking if the plane containing Pj is in front 
or behind mi(p). Any edges of BOUNDARY we traverse 
with c = 0 we mark as being “visible.” This gives us all 
the visible portions of aP!, since there can be no poly- 
gons that obscure the corresponding portions of aPi. The 
total time needed to traverse all the polygons in I, in this 
manner is O(n + k), since we traverse each vertex once 
and each intersection point twice. This completes the 
algorithm. 

We summarize this section in the following theorem. 

THEOREM 3.1. Given a set r of simple, planar poly- 
gons in s3, consisting of n total edges, and a projection 
plane rr, the hidden-line elimination problem for r can be 
solved in O(n log n + k + t) time and O(n + k) space, 
where k (resp. t) is the number of intersecting pairs of line 
segments (polygons) in r,. 

4. HIDDEN-SURFACE ELIMINATION 

In this section we show how to use the polygon ar- 
rangement to solve the problem of eliminating hidden 
surfaces. Let the input be as for the hidden-line elimina- 
tion problem. We present a high-level description of our 
algorithm below. 

HIDDEN-SURFACE ELIMINATION ALGORITHM (HIGH- 
LEVEL DESCRIPTION). 

Step 1. Constructing the Polygon Arrangement. We 
construct the polygon arrangement of I, in this step, as 
described in Section 2. As in the hidden-line elimination 
algorithm, for each polygon Pf in POLY we store some 
additional fields to represent the plane which contains Pi. 

Step 2. Constructing the “Overlap” Relation. In this 
step we construct a directed graph R that represents the 
“overlap” relation determined by the polygons in I. In 
particular, each vertex of R corresponds to a polygon in 
I, and there is an edge (i, j) in R if Pi obscures some part 
of Pi. (See Fig. 4.) We classify each edge (i, j) as to 
whether Pi completely contains Pj’ in its interior, or not. 
Also, we “prune” out each polygon Pi such that Pi is 
completely invisible because there is some other polygon 
Pj that completely obscures Pi, i.e., PI is inside Pj’ and Pj 
is in front of Pi. We construct this relation by traversing 
the polygon arrangement similar to the way we did in the 
hidden-line elimination algorithm Steps 2 and 3. The total 
time for this traversal is O(n + k + t). 

Step 3. Sorting the Polygons. In this step we use the 
overlap relation computed in Step 2 to construct the list 
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The scene: 

FIG. 4. The overlap relation R. 

priority of the polygons. That is, we find a labeling of the 
polygons such that if P; is in front of Pj then Pi has a 
higher label than Pj. This takes O(t) time. 

Step 4. “Drawing” the Polygons Back-to-Front. In 
this step we use the polygon arrangement and the infor- 
mation computed in the previous steps to simulate the 
painter’s algorithm in object space. Initially, all the edges 
and faces in the polygon arrangement are marked “invisi- 
ble.” Starting with the polygon that is farthest from the 
viewing position, we activate each polygon one by one in 
order based on the list priority labels. When we activate a 
polygon Pf we traverse the edges on the boundary of P] , 
marking them as being “visible,” and mark which poly- 
gons are visible on their left and right sides. In addition, 
we traverse all the previously “visible” edges that are 
contained in the interior to Pf and mark them as “invisi- 
ble,” since the activation of Pf , in essence, covers them 
up. This takes O(n + k) time. 

END OF HIGH-LEVEL DESCRIPTION. We begin the 
discussion of the details of the hidden-surface algorithm 
with Step 2, since the implementation of Step 1 was given 
in Section 2. 

4.1. Step 2. Constructing the “Overlap” Relation 

In this subsection we give the details for constructing a 
directed graph R that represents the “overlap” relation 
determined by the polygons in I. In particular, each ver- 
tex of R corresponds to a polygon in I, and there is an 
edge (i, j) in R if P; obscures some part of Pi. Recall that 

we also classify each edge (i, j) as to whether Pf com- 
pletely contains Pj’ in its interior, or not. In addition, we 
remove each polygon that is completely obscured by an- 
other. The method is as follows. 

Use the COMP list as in the hidden-line algorithm to 
begin a depth-first traversal of the polygon arrangement. 
As before, we maintain a list D of all the polygons that 
contain our current position as we perform this traversal. 
Again, we insert into D the index of each polygon we 
enter during the traversal, and delete the index of each 
polygon we leave. It is when we come to a representative 
vertex that we perform a computation different to that 
used in the hidden-line elimination algorithm. Namely, 
upon reaching a representative vertex rep(PI) (for the 
first time) we suspend the process of performing the 
depth-first search temporarily and call a procedure 
OVERLAP on Pf , which will compute all the polygons 
that Pi overlaps, i.e., all the polygons whose boundaries 
intersect the boundary of Pf . 

PROCEDURE OVERLAP( 

Step 1. We begin by copying the entire list D into a 
workspace list C (we will discard C at the end of the 
OVERLAP procedure). We associate three bit fields with 
each polygon Pj’ in C: INT, which will be true if and only 
if the boundary of Pj’ intersects the boundary of PI; 
OBSCURES, which will be true if Pj obscures some part 
Of Pi ; and OBSCURED, which will be true if some part of 
Pj is obscured by Pi. Initially, for each polygon P,f in C, 
its INT bit is false, and its OBSCURES bit (resp., its 
OBSCURED bit) is true if and only if Pj is in front of 
(resp., behind) ni(rep(P,!)). We then use the BOUND- 
ARY list for POLY[i] to walk around the boundary of Pf 
and update these bits as we go. Each time we encounter 
an intersection point p, say with a polygon Pi, we check 
if Pj’ is in C (which can be done in O(1) using back- 
pointers from the POLY array). If Pj’ is not in C, then we 
add it to C. In either case, we set the INT bit associated 
with Pj’ to true. Then, we set the OBSCURES bit for P,f 
to true if Pj is in front of r;(p). Similarly, we set the 
OBSCURED bit for Pj’ to true if Pj is behind mi(p). 

Step 2. After we complete the walk around P( and 
return to rep(Pf) we search through the entire list, C, to 
verify that the obscuring relations we have just discov- 
ered are consistent. Specifically, for each Pj’ in C, we 
check if the OBSCURES and OBSCURED bits for Pj’ are 
both set. If both these bits are set, then we stop the 
hidden-surface procedure and either query the user or 
apply a heuristic as explained by Hearn and Baker 1161 
to resolve this ambiguity (by splitting Pi or Pj). For 
the remainder of the discussion let us assume that the 
OBSCURES and OBSCURED bits are consistent. 

Step 3. In this final step of the OVERLAP procedure 
we determine whether or not Pi is completely obscured 
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by some other polygon, and if it is not, we add the edges 
involving Pi to R (i.e., edges of the form (i,j) or (j, i)) and 
set the INT bits of each such edge. In particular, we 
search through C to see if the INT bit associated with a 
polygon Pj’ in C is false while its OBSCURES bit is true. 
If there is such a polygon, then we mark Pi’ as being 
“invisible,” we delete all the space used for the list C, we 
delete all references to Pi from R, and we return back to 
the depth-first search procedure. If Pi is not completely 
obscured by some Pj, then we search through C one more 
time. For each Pi in C, if Pi is not marked “invisible,” 
then we add the edge (j, i) to R if OBSCURES (Pj’) is true 
and we add the edge (i,j) to R if OBSCURED (Pj’) is true. 
We then set the INT bit for this new edge to the INT bit 
associated with Pj’ in the list C (which was computed in 
the previous step). As soon as we are done with a Pj’ in C, 
we delete all the space used for Pj’ in C. When we have 
performed this computation for each Pj’ in C we return to 
the depth-first search procedure, picking up where we 
left off. This completes the OVERLAP procedure. 

Since at the time we reach rep(Pf) in the depth-first 
search the list D is the list of all polygons that contain 
rep(P& and each polygon has exactly one representa- 
tive, the amount of work we perform in the depth-first 
traversal is O(n + k + t). The total amount of work spent 
in the OVERLAP procedure for each polygon is propor- 
tional to the number of vertices in BOUNDARY plus the 
number of polygons that completely contain PI. Thus, 
the total amount of work spent in Step 2 is proportional to 
O(n + k + t). In the following lemmas we characterize 
what the directed graph R represents. 

LEMMA 4.1. Let Pi be a polygon in r. Pi is completely 
obscured by some polygon Pj if and only if Pf has been 
marked “invisible.” 

Proof. (+I) Suppose Pf has been marked “invisi- 
ble.” Then there is a polygon Pj’ in C such that Pj ob- 
scures mi(rep(PI)) and the INT bit for Pj’ is set to false. 
The only way that the INT bit for Pj’ can be set to false is 
if the boundary of Pj’ does not intersect the boundary of 
Pf . That is, PI is completely contained in the interior of 
Pj’ . Thus, either Pi is completely obscured by Pj or Pi is in 
front of Pj . Since Pj obscures a point, ri(rep(Pf)) on Pi, Pj 
must obscure all of Pi. 

(3:) Suppose Pi is completely obscured by some poly- 
gon Pj. Then, when we reach rep(PI) in the depth-first 
traversal of the polygon arrangement, P,! must be in the 
list D. Also, Pj’ must completely contain Pi’ in its interior. 
Thus, the INT bit for Pj’ will not be set to true in the 
OVERLAP procedure for Pi. Therefore, since Pj must 
obscure ri(rep(P,!)), PI must be marked “invisible” dur- 
ing the OVERLAP procedure. n 

LEMMA 4.2. Let Pi and Pj be two polygons in r such 
that neither Pi nor Pj completely obscures the other. Then 

Pi obscures some part of Pj ifand ifthere is an edge (i, j) 
in R. 

Proof. The “if’ direction follows immediately from 
the discussion of the OVERLAP procedure, so suppose 
Pi obscures some part of Pj. We want to show that the 
edge (i, j) is in R. There are two cases. 

Case 1. PI is completely contained in Pj’ . Then 
when we reached rep(Pj’) in the depth-first traversal the 
polygon Pj’ was in D. Thus, when we initialized the 
OBSCURED bit for Pj’ it was set to true. Since it is 
always the case that once such a bit is set to true it is 
never set to false, we must have added an edge (i, j) to R 
at the end of the OVERLAP procedure for Pj’ . 

Case 2. The boundary of P,! intersects the boundary 
of Pi. Since Pi obscures some part of the polygon Pj, 
there must be some point p that is an intersection point of 
Pi and Pj’ such that Pi obscures rj(p). This must have 
been discovered in the OVERLAP procedure for Pj’ ; 
hence, we must have added an edge (i, j) to R during the 
OVERLAP procedure for Pj’ . w 

Note that these two lemmas imply that if the overlap 
relation, defined by the polygons in I and the projection 
plane n, does not contain cycles, then the graph R is a 
directed acyclic graph that represents it, except that all 
pairs (i, j) such that Pi completely obscures Pj are absent 
from R. 

The alert reader may also have noted that an edge (i, j) 
may appear twice in R-inserted once when we discov- 
ered that Pi obscures Pj and once when we discovered 
that Pj is obscured by Pi. This does not cause any trouble 
for us, though, since the size of R is O(t) regardless of 
whether some edges appear twice or not, and, as we will 
see, the fact that an edge can appear twice in R will not 
corrupt the sorting step (Step 3), which comes next. 

4.2. Step 3. Sorting the Polygons 

In this step we construct the list priority of the poly- 
gons. From the previous step we have a graph R that 
represents the polygon-overlap relation. We begin by 
constructing a depth-first search tree of R, starting from 
those nodes that do not have any edges coming into 
them. The graph R is acyclic if and only if there are no 
back edges in the depth-first search tree (i.e., nontree 
edges (v, w) such that the DFS number for v is greater 
than that for w) [ 11. Note that the existence of two copies 
of some edges does not corrupt this test. Thus, we can 
check in O(t) time whether the graph R is acyclic or not. 
If it is not acyclic, then we stop the hidden-surface elimi- 
nation procedure and print out enough information about 
the cycles that were discovered to enable the user or 
some heuristic procedure (e.g., [ 161) to resolve the ambi- 



HIDDEN-LINE AND HIDDEN-SURFACE ELIMINATION 9 

guities (by splitting the appropriate polygons). Let US 
proceed with the discussion assuming that R is acyclic. 

The graph R represents a partial order. To construct a 
valid list priority of the polygons we must embed this 
partial order in a total order. That is, we must assign 
integer labels to the polygons so that if (i, j) is in R then 
the label for Pi is greater than the label for Pi. Note that 
this is exactly the topological sorting problem; hence, can 
easily be solved in 0(t) time given the depth-first search 
tree for R (see Aho, Hopcroft, and Ullman [l] or Knuth 
[IS]). Let prio(PJ denote the list priority label of polygon 
Pi. The only computation left is that of Step 4. 

4.3. Step 4. “Drawing” the Polygons Back-to-Front. 

In this step we use the polygon arrangement and the 
information computed in the previous steps to simulate 
the painter’s algorithm in object space. 

We give each edge e in the polygon arrangement three 
more fields: VIS, a bit that is true if and only if e is 
visible; LEFT, the name of the polygon that is visible on 
the lefthand side of e; and RIGHT, the name of the poly- 
gon that is visible on the righthand side of e. Initially, for 
each edge in the polygon arrangement, its VIS is false, 
and its LEFT and RIGHT fields are undefined. Let PRIO 
be the list of all the polygons in R sorted in increasing 
order by their prio labels computed in the previous step. 
Note that the first polygon in PRIO is farthest from the 
viewing direction and the last polygon in PRIO is the 
closest. The main computation for Step 4 is to “activate” 
the polygons in PRIO, one by one, starting with the first 
polygon in PRIO. In activating a polygon Pi we update 
the VIS, LEFT, and RIGHT fields of edges in the poly- 
gon arrangement to indicate that the polygon Pi is cur- 
rently the frontmost polygon. When the algorithm com- 
pletes we will have a representation of a solution to the 
hidden-surface elimination problem. The details of this 
polygon activation procedure follow. 

We begin Step 4 by deleting from R all those edges 
whose INT bit is set to true, and let Z? denote the graph 
that is left. Thus an edge (i, j) is in 8 if and only Pi’ is 
completely contained in Pj’ and P; obscures some part of 
Pj. (The relation a will be used to compute “back- 
ground” polygons.) 

The remainder of Step 4 involves the iterative exami- 
nation of each of the polygons in PRIO. Suppose that we 
have already activated i polygons, and let Pj be the (i + 
1)st polygon in PRIO. We begin the activation of Pj by 
determining the background polygon for Pj, i.e., the 
polygon Pk with highest priority among those polygons 
that completely contain P,f in their interior. We do this by 
examining all the edges emanating out fromj in 8 and find 
the polygon Pk in this group with highest prio(Pk) value. If 
there is no such polygon Pk. then we say that the back- 
ground for Pi is --03. 

The activation of Pj’ consists of two steps: (1) indicat- 
ing that Pj’ is visible, and (2) “painting” out all the edges 
that Pj’ makes invisible. In the first step we start with 
rep(Pj’) and traverse the edges of the BOUNDARY list 
for Pj’ setting their VIS, LEFT, and RIGHT fields as we 
go. Before we begin this traversal we initialize a variable, 
CURRIGHT, to the background face for Pj’ . For each 
edge e in BOUNDARY we set e’s VIS bit to true, we set 
e’s LEFT field to Pj, and we set e’s RIGHT field to 
CURRIGHT. If we come to an edge that crosses Pj’ and 
has its VIS bit set to true, then we update CURRIGHT to 
be the polygon that will be on our right after crossing that 
edge. We can determine that polygon by examining the 
LEFT and RIGHT fields for that edge. There is one prob- 
lem, however, and that is that upon encountering the first 
edge e whose VIS bit is set to true we may discover that 
the CURRIGHT value we started with was wrong (based 
on the LEFT and RIGHT fields for that edge). Such a 
mistake can occur if, as may often be the case, the bound- 
ary polygon for Pj is not the polygon directly below 
rep(Pj’). If this should happen, then we mark our current 
position in BOUNDARY and march back to rep(P;), up- 
dating each edge’s RIGHT field to the correct value. In 
particular, if we set any RIGHT fields to the background 
polygon, then we must update these fields to this newly 
discovered polygon. When we complete this “back- 
patching” computation we return to where we left off in 
BOUNDARY and continue our traversal. When we com- 
plete the traversal of the BOUNDARY list for P,’ we will 
have set all the edges of BOUNDARY to indicate that Pj 
is not the closest polygon to the viewing direction. We 
have not, however, “painted” out the edges that Pj’ has 
made invisible. To do that we must perform the second 
step in our activation procedure. 

In the second step of our activation procedure we again 
traverse the BOUNDARY list for Pi’. When we come to 
cross an edge e (intersecting Pj’) that has its VIS bit set to 
true, then we call a “little” depth-first search procedure 
that traverses the polygon arrangement starting with e 
and restricts its movements to those edges in the interior 
of Pj’ that have their VIS bits set to true. For each edge 
we traverse in this depth-first search procedure we set its 
VIS bit to false. Note that for this procedure to be effi- 
cient we must be able to traverse the edges whose VIS 
bits are set to true without having to consider edges 
whose VIS bits are set to false. This is not a problem, 
however, if we keep two versions of the ADJACENCIES 
list-one for edges with their VIS bit set to true and one 
for edges with their VIS bit set to false. When we com- 
plete this DFS procedure we continue our traversal of the 
BOUNDARY list, looking for other edges that cross Pj’ 
and have their VIS bit set to true. When we complete this 
second traversal of BOUNDARY we consider Pj’ to be 
activated, and we repeat the above activation procedure 
with the next polygon in PRIO. 



When we complete the activation of the last polygon in righthand side of the edges in BOUNDARY, and that 
PRIO we will have a representation of a solution to the polygon must be the background polygon, which we com- 
hidden-surface elimination problem. Namely, we have a puted in initializing CURRIGHT. Therefore, we cor- 
graph of visible edges, and for each visible edge e we rectly assign the RIGHT fields of all the edges in 
have the name of the polygon that is visible on the BOUNDARY. The only other edges that are affected by 
lefthand side of e and the name of the polygon that is the activation of Pj’ are those previously-visible edges 
visible on the righthand side of e. contained in the interior of Pi. Recall that we deleted 

Let us examine the running time ofStep 4. Determin- edges in the interior of Pj’ by performing “little” depth- 
ing the background polygon for all the activation steps first searches on edges whose VIS bits are set to true 
takes at most O(t) steps. Since, for any BOUNDARY starting from edges that cross the boundary of Pj’ . Hence, 
list, we traverse an edge in BOUNDARY at most two the only way we could have missed an edge e contained 
times (not just once, because of possible back-patching), in the interior of Pj’ whose VIS bit was set to true is if all 
traversing the edges in all the BOUNDARY lists can be paths that lead to e from the boundary of Pi contain an 
done in O(n + k) time. In performing the little depth-first edge whose VIS bit is set to false (and each such path 
searches to “paint” out edges that become invisible we visits the “false” edge before e). By the induction hy- 
restrict our computation to edges that have their VIS bits pothesis, the only way that an edge can have its VIS bit 
set to true. After this computation, these edges have their set to false is if it is not visible. Let H be the component 
VIS bits set to false, and they are never set back to true; of G consisting of each currently visible edge e’ (i.e., 
hence, never traversed again. Thus, the total amount of each ,edge with its VIS bit set true) such that there is a 
time spent in all these little depth-first search procedures path of currently visible edges from e to e’. Then the 
is O(n + k). Therefore, Step 4 can be implemented in edges of H must be completely contained in the interior 
O(n + k + t) time. The next lemma establishes the cor- of Pj’ , and all the edges of H must belong to polygons that 
rectness of Step 4. are completely contained in the interior of Pi. This of 

course implies that Pj completely obscures these poly- 
LEMMA 4.3. After Step 4 completes, and edge in the gons. But there cannot be any polygons in PRIO that are 

polygon arrangement is visible if and only ifits VZS bit is completely obscured by Pj, since we removed all such 
set true. Moreover, if an edge is visible, then its LEFT polygons from the graph R in Step 3 (to construct the 
and RIGHT$elds correctly identify the polygonal faces graph a). Therefore, the edge e cannot exist. That is, we 
that are on its left and right. correctly “paint out” all the edges that become invisible 

as a result of activating Pi. This completes the proof. n 

Proof. The proof is by induction on the number of 
polygons activated from the PRIO list. The claim is vacu- 

We summarize the discussion of this section in the 

ously true when there are zero polygons activated, since 
following theorem. 

all the edges in the polygon arrangement have their VIS THEOREM 4.4. Suppose one is given a set r of simple, 
bits initialized to false. planar polygons in \B3, consisting of n total edges, and a 

Suppose the lemma is true after the first i polygons projection plane IT, such that the “overlap” relation de- 
have been activated from PRIO. Consider the activation termined by r and m does not contain any cycles. Then 
of the (i + I)-st polygon, Pj, in PRIO. Because of the way the hidden-surface elimination problem for r and rr can 
we constructed the PRIO list, the polygon Pj is not ob- be solved in O(n log n + k + t) time and O(n + k + t) 
structed by any of the polygons that have already been space, where k (resp. t) is the number of intersecting 
activated (this is the reason why the painter’s algorithm pairs of line segments (polygons) in rr. 
works correctly). In activating Pj’ we set the VIS bit of 
each edge in the BOUNDARY list for Pj’ to be true. This 
is clearly correct. It is also correct that we set each of 
their LEFT fields to be the polygon Pi, since Pj is defined 5. CONCLUSION 
to be on the left of all the edges on its boundary. By the 
induction hypothesis, all the edges that are not contained In this paper we gave algorithms for hidden-line elimi- 
in the interior of Pj’ are correctly labeled. Thus, in the nation and hidden-surface elimination that are optimal in 
first traversal of BOUNDARY, if we ever cross an edge the worst case and are also able to take advantage of 
that has its VIS bit set to true, then we correctly set the problem instances that are “simpler” than in the worst 
RIGHT fields of the edges in BOUNDARY (since their case. Our approach was based on the idea of using a 
values are determined by the visible edges we cross in structure that we called the polygon arrangement and is 
traversing BOUNDARY). If, on the other hand, we an example of the paradigm from computational geome- 
never cross any visible edges in traversing BOUND- try of reducing geometric problems to graph problems. 
ARY. then there can be onlv one oolvgon on the , 1 ,v Our algorithms both run in O(n log it + k + t) time, where 
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n is the number of polygon edges, k is the number of 
(segment, segment) intersections in the projection plane, 
and t is the number of (&ygon, polygon) intersections in 
the projection plane. 

Our hidden-line elimination algorithm was imple- 
mented by Hostetler [17] and compared with the methods 
of DCvai [9] and Schmitt [28, 291 on a number of 
benchmark examples. For various “randomly” gener- 
ated problem instances, our method was always competi- 
tive with these other methods, and on some instances its 
running time was 88% that of Schmitt’s algorithm and 
only 12% that of DCvai’s algorithm [17]. Moreover, these 
improvements were for scenes made up of relatively few 
polygons (e.g., between 40 and 80 polygons). Also, Hos- 
tetler reports that our method was easier to implement 
than Schmitt’s method. Thus, we expect our method to 
be quite efficient in practice. 

Our hidden-surface elimination algorithm provides an 
object space analog to the famous “painter’s algorithm” 
[31, 161, and achieves the above performance bounds as- 
suming that the “overlap” relation, defined by the input 
polygons and the projection plane, does not contain any 
cycles (we made no restrictive assumptions about the 
input for our hidden-line elimination algorithm). It is diffi- 
cult to characterize the running time of our algorithm if 
the “overlap” relation does contain cycles, because the 
method for resolving such situations is a heuristic based 
on the idea of “cutting” polygons into smaller pieces. 
Thus, the best known worst-case efficient algorithm for 
the most general version of the hidden-surface elimina- 
tion problem is still the algorithm by McKenna, which 
runs in O(n2) time and space [19]. It is an open problem to 
improve these worst-case bounds without making any 
restrictive assumptions about the input. 

Algorithms such as ours, where the running time is 
proportional to the size of the input and the number of 
intersections the input determines, are known as “inter- 
section-sensitive” algorithms. Another important class 
of algorithms are those that are “output-sensitive,” 
where the running time depends on the size of the input 
and the size of the output. The only known output-sensi- 
tive algorithms for hidden-line elimination are either sub- 
optimal [24] or are for the restricted case when the each 
edge on the input polygons is parallel to one of the coor- 
dinate axes [5, 8, 15, 11, 261, or the input is a terrain [27]. 
Thus, the existence of an optimal output-sensitive algo- 
rithm (i.e., one that runs in O(n log II + a) time, where a 
is the size of the input) remains an open problem. 
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