
Computational Geometry: Theory and Applications 2 (1993) 267-278

Elsevier

267

COMGEO 135

Constructing the convex hull of a
partially sorted set of points

Michael T. Goodrich*
Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218-2694,

USA

Communicated by Raimund Seidel

Accepted 19 February 1992

Abstract

Goodrich, M.T., Constructing the convex hull of a partially sorted set of points, Computational

Geometry: Theory and Applications 2 (1993) 267-278.

In this paper we give an optimal algorithm for constructing the convex hull of a partially sorted

set S of n points in R2. Specifically, we assume S is represented as the union of a collection of

non-empty subsets S,, S,, S,, . , S,n, where the x-coordinate of each point in S, is smaller

than the x-coordinate of any point in S, if i <j. Our method runs in O(n log h,,,) time, where

h max is the maximum number of hull edges incident on the points of any single subset S,. In

fact, if one is only interested in finding the hull edges that ‘bridge’ different subsets, then our

method runs in O(n) time.

1. Introduction

Suppose we are given a set S of n points in the plane. We are interested in

constructing the convex hull of S, which we denote by CH(S), that is, the

smallest convex set containing the points in S. This problem is perhaps the

most-studied problem in computational geometry, and has a host of applications

(see [S, 14, 171). Typically, the problem of constructing CH(S) is divided into that

of constructing the upper hull, UH(S), and lower hull, LH(S), of S, where

UH(S) (respectively, LH(S)) is defined to be the edges on the boundary of

CH(S) that are visible from above (respectively, below). That is, any vertical line

L intersects the boundary of CH(S) m a point p on UH(S) and a point q on

LH(S) with either p = q or p being directly above q. (See Fig. 1.) Thus, it is

Correspondence to: Michael T. Goodrich, Department of Computer Science, The Johns Hopkins

University, Baltimore, MD 21218-2686, USA.
* This research was supported by the National Science Foundation under Grant CCR-9003299.

0925-7721/93/$06.00 @ 1993 - Elsevier Science Publishers B.V. All rights reserved

268 M. T. Goodrich

Fig. 1. A convex hull. UH(S) is shown with solid edges, and LH(S) is shown with dashed edges

sufficient for one to show how to construct UH(S), as the method for constructing

LH(S) is similar, and merging UH(S) and LH(S) into CH(S) is quite easy.

1.1. Review of previous results

Before we give our algorithm for constructing UH(S), let us first review a few

results that relate to convex hull construction. We begin with a lemma that shows

that one can ‘probe’ UH(S) in linear time.

Lemma 1.1. Given a vertical line L, and an m-point subset S’ of S, one can
determine the edge e of UH(S’) that intersects L (or that no such edge exists) in
O(m) time.

Proof. The proof follows immediately, by duality [S, 9, 131, from the methods of

Dyer [7] and Megiddo [15, 161 for solving a fixed-dimensional linear program in

linear time. Cl

Typically, the edge e is referred to as the bridge for S’ with respect to L [13].

Kirkpatrick and Seidel [13] use this lemma as a building block for an

asymptotically fast convex hull algorithm for the case when S is unsorted, proving

the following lemma.

Lemma 1.2 (Kirkpatrick and Seidel [13]). G’ lven a set S of n points in the plane,
one can construct UH(S) in time O(n log h), where h = lUH(S)l.

The method of Kirkpatrick and Seidel for proving this lemma involves a

paradigm they call marriage-before-conquest, where one divides a set of points

into two equal halves by a vertical line L, uses Lemma 1.1 to find the bridge e

with respect to L, and then recurses on the points of each half that are not

Constructing the conuex hull 269

directly below e. This results in an algorithm whose running time is optimal, since

Q(n log h) is a lower bound for the running time of constructing UH(S) [13, 191.

Nevertheless, if all the points of S are given in sorted order, say by increasing

x-coordinates, then, by the following lemma, one can do better than this.

Lemma 1.3. Given a set S of n points in the plane sorted by increasing
x-coordinates, one can construct UH(S) in time O(n).

Proof. The method follows by a straightforward adaptation of the convex hull

algorithm due to Graham [ll] (indeed, the proof of this lemma is often given as a

homework exercise in computational geometry courses). In particular, the

approach for proving this lemma, commonly referred to as the Graham scan
method [17], is to construct the upper hull on-line by considering the points one

at a time by increasing x-coordinates. It is clearly optimal for any sorted point set

s. q

In addition to the methods above, there are a large number of other interesting

convex hull algorithms (e.g., see [l, 2, 3, 4, 6, 8, 10, 12, 14, 17, 18]), but none are

more efficient than the two above for their respective versions of the problem.

1.2. Our results

In this paper we address an intermediate version of the convex hull problem,

one in which the input is partially sorted. In particular, we assume we are given a

set S of n points in the plane, and a set R of m vertical lines that induce a

partitioning II of S into subsets So, S,, S,, . . . , S,,, in the natural way, i.e., the

x-coordinate of each point in Si is smaller than the x-coordinate of any point in S,

if i <j, and Si is separated from S,,, by a line in R, for i = 1, 2, . . . , m. Without

loss of generality, we assume that m <n. If this is not the case, then we can

‘collapse’ each pair of lines that have no points of S between them-these lines

will intersect the same edge of UH(S).

Our method for constructing UH(S), which we describe in the subsequent

sections, can be viewed as a nontrivial ‘blend’ of the Graham scan and

marriage-before-conquest methods. In particular, we show how to find the edges

of UH(S) that intersect the vertical lines in R in O(n) time. We refer to these

edges as the bridge edges of S and R, and the problem of finding them as the

multiple bridge finding problem. Given a solution to the multiple bridge finding

problem, it is a simple matter to then apply Lemma 1.2 on the points of each Si

not covered by a bridge edge to derive a running time that is O(n log h,,,), where

h,,, is the maximum, taken over the subsets S,, of the number of edges in UH(S)

that are incident on points in S,. Thus, let us restrict our attention to the multiple

bridge finding problem. In the following section we describe a simple, but

inefficient method, and we then show how to use it as a stepping stone to a

linear-time method.

270 M. T. Goodrich

2. A simple stack algorithm

The algorithm we describe in this subsection solves the multiple bridge finding

problem in a fashion very reminiscent of Graham’s convex hull algorithm [ll].

The output of our algorithm is a chain of edges that describes a solution to the

multiple bridge finding problem. To be precise, if E = (el, e2, . . . , eh) is a list of

the bridge edges for S with respect to R, listed from left to right, then we define

the partition hull of S with respect to R as the chain that is formed by first

removing any duplicate edges from E and then inserting a (possibly degenerate)

edge joining the right endpoint of ei with the left endpoint of ei+i, for each

i=l,2,..., h - 1. This forms a chain H = (e,, fi, e2, f3, . . . , fhr, e,.), and this is

what our method returns. We refer to each fi as a pseudo-edge. (See Fig. 2.) For

any point p we use x(p) and y(p) to respectively denote the s- and y-coordinate

of p, and we assume that any non-vertical edge e = uu is represented so that

x(u) <x(v).

Since we are confining our attention to the edges of UH(S) that intersect R, we
use the term upper-convex to refer to a chain C that is monotone with respect to

the x-axis and such that each consecutive pair of edges in C makes a right turn
when the edges are transversed from left to right. That is, if d = uz1 and f = WV,
then w is either on or to the right of the oriented line determined by e. (Note that

this definition allows for collinear edges on an upper-convex chain.) The

following lemma establishes an important property of H.

Lemma 2.1. H is an upper-convex chain.

Proof. If a consecutive pair of edges (e,, fi) or (fi, ej+,) in H form a left turn, then

either ej or e,+i cannot be an edge of UH(S). The proof follows, then, since each

ej is an edge of UH(S) by definition. 0

i di . .

- , ,- . I

. .

: :

I I
I , l :.

I .

. : :

Fig. 2. An example partition hull. The edges (a, b), (c, d), (f, g), and (h, i) are bridges; the edges

(b, c), (d, d), (e, f) and (g, h) are pseudo-edges (with (d, d) being a degenerate pseudo-edge).

Constructing the convex hull 271

Given a partition hull H for S with respect to R it is a simple matter to

reconstruct a solution to the multiple bridge finding problem by removing the

pseudo-edges from H and then merging this list of bridge edges with the list R (to

enumerate all the duplicate bridge edges for consecutive lines in R). Thus,

without loss of generality, we may concentrate on the problem of computing the

partition hull of S with respect to R. We consider each subset S, in turn, while

maintaining the partition hull of the subsets considered so far. We store the

vertices of this partition hull on a stack (T. With each vertex ZJ, we store a pointer

to the subset, S, that contains u, and we let S(v) denote this subset. We initially

push the leftmost vertex p of S, on o (a vertex that must be on UH(S)). This will

cause our partition to always begin with a pseudo-edge f, whose left endpoint is p,
a convention that will simplify the comparison operation we use in our method.

Let S; be the next subset to be considered, let u denote the vertex at the top of

the stack a, and let u denote the vertex below u in CT (if u exists). Note that the

edge d = uu is a bridge for the subsets considered so far. We use the

bridge-finding procedure (Lemma 1.1) to find the bridge b = 65 between S(V)

and S,. Let w be the left endpoint of b (a point in S(u)). We say that e and b form
-.

a right turn, if uvwx is a upper-convex chain (possibly with IJ = w, so that uw 1s an

degenerate pseudo-edge) or if u does not exist (in which case S(V) = S,).

Otherwise, we say e and b form a left turn. (See Fig. 3.) If e and b from a right

turn, then push w and z, and this completes this iteration (for S;). Otherwise, we

pop u and u, and repeat this test. The algorithm terminates when we complete

the iteration for S,.

By a simple induction argument, the above algorithm, which we call the simple
stack method, produces a solution to the multiple bridge finding problem. We

leave the details of this argument to the interested reader.

The running time of this method is O(ms,,,), where s,,, is the size of the

largest subset Sj. The proof of this fact is based on an accounting argument that is

very similar to the accounting argument for Graham’s convex hull algorithm [ll,

171. The main idea is that for each step in the simple stack algorithm we spend at

most O(s,,,) time performing a comparison between an S(v) and S,, and we can

charge the work for the operation to S(V) if we must perform a pop or,

alternatively, to Si if we must perform a push. Each subset has its ‘representative

vertices’ pushed or popped at most once; hence, there are O(m) stack operations.

Unfortunately, the product ms,ax can be as bad as Q(n’). Moreover, an example

that has this as its time bound can be constructed by having (S,] = n/2 and],!$I = 1

for i E {2,3, . . . , n/2} such that the above algorithm must perform a bridge

computation between S, and each Si in turn. (See Fig. 4.) All is not lost, however,

for the above method does result in an efficient algorithm if all the subsets are,

more or less, the same size, as the following lemma shows.

Lemma 2.2. Zf there is an integer s such that s /2 < ISi1 < 2s, for all i E
(1, 2, . . . , m}, then the simple stack method constructs the partition hull of S with
respect to R in O(n) time.

272

’ . r
: .

.

: .

M. T. Goodrich

(4

. .
.

) .

.

.
. . l

.

.
l :

1
.

’ :

.

, ’
h . l

z

.
I . .

. .

2 .i
’ :

* . . 1

. . :

(14
Fig. 3. Illustrating an iteration in the simple stack algorithm. The edges e and b form a right turn in

(a) and form a left turn in (b).

.

. . :
. a

. .:
.

Fig. 4. A counter-example. The figure illustrates an example that forces the simple stack algorithm to

take P(n’) time.

Constructing the convex hull

Proof. In this case m G 2nls and s,,, c 2.r, so ms,,, is O(n). Cl

273

We show below how to use the simple stack algorithm as a stepping stone to a

method that runs in linear time for every problem instance.

3. Merging partition hulls with buckets

Before we give our optimal method, however, we first describe a method for

merging two partition hulls HI and HZ that are separated by a vertical line L (with

Hi to the left of H,). Specifically, suppose we are given two sets of points Si and

S, and two sets of vertical lines RI and RZ, such that S, and R, are separated from

S, and R, by the vertical line L. In addition, assume that we have partition hulls

H, HZ, such that H, is defined on S, with respect to R,, and H2 is defined on S,

with respect to RZ. We show in this section how to efficiently produce the

partition hull H defined on S1 U S, with respect to R, U {L} U R,.
We define the weight of a vertex Z.J in a partition hull to be the size of S(v), and

use s, to denote this value. Let s = max{s,: u E H2 U Hz}, i.e., s is the weight of

the largest-weight node in H, U Hz. We form two ‘buckets’ BI and B, for H, and

Hz, respectively, where B, is the maximal suffix of nodes of HI such that sum of

their weights is less than 2s, and B, is the maximal prefix of nodes of H2 such that

sum of their weights is less than 2s. Note that the total weight of the nodes in BI
(respectively, B,) is at least s, since no vertex has weight more than s.

We compute the bridge 6 between Bl and B,, which can be done in O(s) time,

since with each partition hull vertex u we store a pointer to S(V). (See Fig. 5.) We

then pop from H, any nodes of B, that b makes redundant, i.e., we perform the

’ . r
I .

A-
I ,

Fig. 5. Merging two partition hulls with buckets. In this case, s = 5.

274 M. T. Goodrich

repeated comparison test as in the simple stack operation. Note, however, that

we never need to compute any new bridges while we are comparing two nodes in

the bucket, BI, since b is the bridge for all the points of BI. If this popping action

ultimately removes all the points from B,, then we construct a new BI from the

remaining nodes in H, by again taking a maximal suffix whose total weight is less

than 2s. It is only at this point that we compute a new bridge b between B, and

B,. We continue this bucketing and iteration on H, until the bridge b finally forms

a right turn with the previous edge in Hr.

Once b forms a right turn with the previous edge in H,, we then use b to

perform an operation symmetric to the comparisons with the nodes of BI to then

pop from HZ any edges of B, that b makes redundant. If this popping action

ultimately removes all the points from B,, then we construct a new B, from the

remaining nodes in HZ, i.e., we take a maximal prefix whose total weight is less

than 2s. As in the previous case, it is only at this point that we compute a new

bridge b between BI and B,. If we do compute a new bridge at this point, then we

repeat our comparison operation with H, (not HZ), repeating the computation of

the previous paragraph. We do not compare b with nodes of HZ until we have

once again terminated our comparisons with H,. That is, the comparison

operations with H1 form the ‘inner loop’ of our computation. We terminate the

‘outer loop’ of our computation when we finally find a bridge b that forms a right

turn with the previous edge in H, and the successive edge in H2. The new

partition hull H is formed by concatenating the remaining nodes of H,, the

endpoints of b, and the remaining nodes of Hz.
The correctness of this computation follows by an argument similar to that used

in the simple stack algorithm, which, as in that case, we leave to the interested

reader. Considering the time complexity, note that we must spend O(S) time each

time we compute a bridge. Note, however, that before we compute a new bridge,

we must pop a collection of nodes with total weight at least S. Moreover, between

bridge computations, all the comparison operations can be implemented in O(S)

time. Thus, we can charge all but the first and last bridge computations to the

points in subsets that are never again to be considered (for they were ‘popped’).

In addition, if H, and H, are represented as doubly-linked lists, the final

concatenation process can be implemented in O(1) time. Therefore, we have the

following lemma.

Lemma 3.1. Given the partitional hulls HI and Hz, as described above, one can
compute the partition hull H, defined on S, U S, with respect to RI U {L} U R,, in
O(r + s) time, where r is the total weight of all the nodes removed during the
process and s is the weight of the largest-weight node in HI U Hz.

Having presented and analyzed our method for merging partition hulls, we are

now ready to give our optimal method for constructing a partition hull.

Constructing the conuex hull 275

4. A stack-of-stacks method

Suppose we are given a set S of n points in the plane, and a set R of m vertical

lines that induce a partitioning H of S into subsets S,, S,, S,, . . . , S, in the

natural way. In this section we describe our method for constructing the partition

hull H of S with respect to R in O(n) time. Our method is based on the idea of

maintaining a stack r of simple stacks, where each simple stack o represents a

partition hull restricted to subsets of S that are no larger than a weight value s,

associated with C-J. Moreover, we maintain the invariant that the weight associated

with a stack u in r is at most half that of the next deeper stack in r.

The details of our method are as follows. As an initialization step, we augment

S with a new set Sm+,, where S,,, is a set of n points ‘at --t/3’ that are below and

to the right of all the points of S. That is, if we let q be a point in Sm+1, and

e = uv be any nonvertical edge determined by points u, v ES, and we define

f = Vq, then (e, f) is a right turn. We initialize r to contain a single (empty) stack

u with weight s, = 0.

The Test for Si. Let o denote the topmost stack in r, and let Si be the next subset

to be considered. There are two cases:

Case 1. [,!$I >s,/2, i.e., Si is either appropriate or too large for o.
Let o* denote the stack just below o in r. There are two subcases:

Subcase 1 (a): IS,l <s,./2 (i.e., S, is too small for a*) or o* does not exist.
Then we use the partition hull merging method described in the previous

section to merge the partition hull represented by u with the (degenerate)

partition hull represented by the rightmost point in Si, giving a,,,,. We then

update s,“~~ to be the smallest power of 2 greater than or equal to max(lSjl, s,).

This completes the processing for S,.

Subcase 1 (b): ISi1 BS,./~, i.e., S, is either appropriate or too large for 8.
Then we merge o* and o using the partition hull merging procedure described

in the previous subsection, with uc playing the role of H1 and u playing the role

of Hz. We give the resulting partition hull u,,, weight sonCw = s,*. We then pop u

and u* and push a,,, onto r (so that it will play the role of the topmost stack)

and we repeat the test for Si.

Case 2: ISi1 < s,/2, i.e., S, is too small for u.

Then we create a new stack unew, and give it as its weight, sUnCw, the smallest

power of 2 greater than or equal to IS,1 (i.e., 2T’“g’“‘1). We push the leftmost

vertex of Sj onto u,,, and then push a,,, onto r. This completes the processing

for Si*

We repeat the above iterative procedure until we exhaust all the subsets in the

partition for S. Since we padded the partition of S with a set S,,, of size II, r will

contain a single stack u at the end of the procedure, and u will be a solution to

the partition hull problem for S. The correctness of this method follows by a

276 M. T. Goodrich

simple induction argument based on the correctness of our method for merging

partition hulls with buckets.

Let us, therefore, analyze the running time of this stack-of-stacks method for

computing partition hulls. We provide for all the work used by our algorithm by a

simple accounting scheme, showing that the entire method requires only O(n)

time. Let us take each case in turn. In Subcase l(a) we require O(r + [,!$I) time,

where r is the total size of nodes removed during the partition hull merging

procedure, by Lemma 3.1. Thus, we can account for the work in this case by

charging each point in Si one charge and also charging each point in a removed

subset one charge. The accounting for Subcase l(b) is a little more involved,

however. So, let k be the number of times we must iterate Subcase l(b) before

we can perform Subcase l(a), and let ol, a,, 03, . . . , ok denote the sequence of

stacks in I’ that we iteratively merge before performing Subcase l(a), listed as

they originally appeared in r (with o, being below o,+i). By Lemma 3.1, the total

time needed to merge all these stacks is O(r + s,, + s,, + s,, + . . * + s&), where r

is the total size of all the nodes removed during the merges. Note, however that

s,, + s, + s,, + . . . + s,, d s,, + so,/2 + &,I4 + . . . + s,,/2k

s 2s,, G 41&l.

Thus, we can account for the time we spend performing all the iterations of

Subcase l(b) by charging each point in Si four charges and each point in a

removed subset one charge. In Case 2 we require O((S,l) time, which we can

account for by charging each point in Si one charge. Thus, each point in S gets

charged at most O(1) times during the entire procedure. This gives us the

following theorem.

Theorem 4.1. Given a set S of n points in the plane, partitioned in the natural way
by a set R of m vertical lines, then one can construct the partition hull for S with
respect to R in O(n) time.

This, in turn, gives us the following two corollaries.

Corollary 4.2. Given S and R as in the theorem, one can solve the multiple bridge
finding problem for S and R in O(n) time.

Corollary 4.3. Given S and R as in the theorem, one can construct UH(S) in
O(n log h,,,) time, where h,,, is the maximum number of edges of UH(S)

incident upon a single subset of S induced by R.

5. Conclusion

We have given an efficient method for constructing the convex hull of a

partially sorted set of points in the plane. The definition of ‘partially sorted’ that

Constructing fhe convex hull 277

we have chosen to use is that of an induced partition of the set of points by a
collection of vertical lines. As a direction for future research one could also
imagine other definitions of ‘partially sorted’.

Incidentally, our original interestefor this work was actually motivated by the
3-dimensional convex hull algorithm of Edelsbrunner and Shi [9]. In their
algorithm they repeatedly construct Z-dimensional convex hulls of the projections
of the 3-dimensional points. If one uses the 2-dimensional convex hull to partially
sort the set of points in R3, then this iterative process can be viewed as that of
repeatedly constructing 2-dimensional convex hulls of partially sorted sets (which
can then be further refined using the newly-constructed hull). Unfortunately, if
applied to the implementation as stated in [9], this approach only eliminates half
of the bottle-neck procedure calis in their algorithm; hence, can only improve
their running time of O(n log* h) by a constant factor (recall that h is the size of
the 3-D hull in this case). Interestingly, however, as recently shown by Chazelle
and MatouSek [5], one can achieve an O(n log h) running time for constructing a
3-dimensional convex hull using a completely different method.

Acknowledgement

We would like to thank the anonymous referees for many helpful comments.

References

[l] A. Aggarwal, 8. Chazelle, L. Guibas, C. 6’DfinIaing and C. Yap, Parallel computational
geometry, Algorithmica 3 (1988) 293-328.

[2] M.J. Atallah and M.T. Goodrich, Eticient parallel solutions to some geometric problems,
Parallel Distributed Comput. 3 (1986) 492-507.

[3] B. Chazelle, On the convex layers of a planar set, IEEE Trans. Inform. Theory 31 (1985)
509-517.

f4] B. Chazelle, An optimal convex hull algorithm for point sets in any fixed dimension, Tech.
Report CS-TR-336-91, Dept. of Computer Science, Princeton University, 1991.

[5] B. Chazelie, private communization.
[6] K. Clarkson and P. Shor, Applications of random sampling in computationai geometry, II

Discrete Comput. Geom. 4 (1989) 387-421.
[7] M.E. Dyer, Linear time algorithms for two- and three-dimensional linear programs, SIAM J.

Comput. 13 (1984) 31-45.
[S] H. Edelsbrunner, Algorithms in Combinatorial Geometry (Springer, Berlin, 1987).
[9] H. Edelsbrunner and W. Shi, An O(n log2 h) time algorithm for the three-dimensional convex

hull problem, SIAM J. Comput. 20 2 (1991) 259-269.
[lOI M.T. Goodrich, Finding the convex huli of a sorted point set in parallel, Inform. Process. Lett.

26 (1987) 173-179.
[Ill R.L. Graham, An efficient algorithm for determining the convex hull of a finite planar set,

Inform. Process Lett. 1 (1972) 132-133.
[12] R.L. Graham and F.F. Yao, Finding the convex hull of a simple polygon, J. Algorithms 4 (1983)

324-331.

278 M. T. Goodtich

[13] D.G. Kirkpatrick and R. Seidel, The ultimate convex hull algorithm?, SIAM J. Comput. 15
(1986) 287-299.

1141 D.T. Lee and F.P. Preparata, Computational Geometry-A survey, IEEE Trans. Comput. Vol.
33 (December 1984) 872-1101.

[i5] N. Megiddo, Linear-time algorithms for linear programming in lR3 and related problems, SIAM
J. Comput. 12 (1983) 759-766.

[16] N. Megiddo, Linear Programming in linear time when the dimension is fixed, J. ACM 31 (1984)
114-127.

(171 F.P. Preparata and M.I. Shamos, Computational Geometry: An Introduction (Springer, Berlin,
1985).

[18] R. Seidel, Linear Programming and Convex Hulls Made Easy, Proc. 6th ACM Symp. on
Computational Geometry (1990) 211-215.

[19] A.C. Yao, A lower bound to finding convex hulls, J. ACM 28 (1981) 780-789.

