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Abstract 

Goodrich, M.T., Constructing the convex hull of a partially sorted set of points, Computational 

Geometry: Theory and Applications 2 (1993) 267-278. 

In this paper we give an optimal algorithm for constructing the convex hull of a partially sorted 

set S of n points in R2. Specifically, we assume S is represented as the union of a collection of 

non-empty subsets S,, S,, S,, . , S,n, where the x-coordinate of each point in S, is smaller 

than the x-coordinate of any point in S, if i <j. Our method runs in O(n log h,,,) time, where 

h max is the maximum number of hull edges incident on the points of any single subset S,. In 

fact, if one is only interested in finding the hull edges that ‘bridge’ different subsets, then our 

method runs in O(n) time. 

1. Introduction 

Suppose we are given a set S of n points in the plane. We are interested in 

constructing the convex hull of S, which we denote by CH(S), that is, the 

smallest convex set containing the points in S. This problem is perhaps the 

most-studied problem in computational geometry, and has a host of applications 

(see [S, 14, 171). Typically, the problem of constructing CH(S) is divided into that 

of constructing the upper hull, UH(S), and lower hull, LH(S), of S, where 

UH(S) (respectively, LH(S)) is defined to be the edges on the boundary of 

CH(S) that are visible from above (respectively, below). That is, any vertical line 

L intersects the boundary of CH(S) m a point p on UH(S) and a point q on 

LH(S) with either p = q or p being directly above q. (See Fig. 1.) Thus, it is 
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Fig. 1. A convex hull. UH(S) is shown with solid edges, and LH(S) is shown with dashed edges 

sufficient for one to show how to construct UH(S), as the method for constructing 

LH(S) is similar, and merging UH(S) and LH(S) into CH(S) is quite easy. 

1.1. Review of previous results 

Before we give our algorithm for constructing UH(S), let us first review a few 

results that relate to convex hull construction. We begin with a lemma that shows 

that one can ‘probe’ UH(S) in linear time. 

Lemma 1.1. Given a vertical line L, and an m-point subset S’ of S, one can 
determine the edge e of UH(S’) that intersects L (or that no such edge exists) in 
O(m) time. 

Proof. The proof follows immediately, by duality [S, 9, 131, from the methods of 

Dyer [7] and Megiddo [15, 161 for solving a fixed-dimensional linear program in 

linear time. Cl 

Typically, the edge e is referred to as the bridge for S’ with respect to L [13]. 

Kirkpatrick and Seidel [13] use this lemma as a building block for an 

asymptotically fast convex hull algorithm for the case when S is unsorted, proving 

the following lemma. 

Lemma 1.2 (Kirkpatrick and Seidel [13]). G’ lven a set S of n points in the plane, 
one can construct UH(S) in time O(n log h), where h = lUH(S)l. 

The method of Kirkpatrick and Seidel for proving this lemma involves a 

paradigm they call marriage-before-conquest, where one divides a set of points 

into two equal halves by a vertical line L, uses Lemma 1.1 to find the bridge e 

with respect to L, and then recurses on the points of each half that are not 
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directly below e. This results in an algorithm whose running time is optimal, since 

Q(n log h) is a lower bound for the running time of constructing UH(S) [13, 191. 

Nevertheless, if all the points of S are given in sorted order, say by increasing 

x-coordinates, then, by the following lemma, one can do better than this. 

Lemma 1.3. Given a set S of n points in the plane sorted by increasing 
x-coordinates, one can construct UH(S) in time O(n). 

Proof. The method follows by a straightforward adaptation of the convex hull 

algorithm due to Graham [ll] (indeed, the proof of this lemma is often given as a 

homework exercise in computational geometry courses). In particular, the 

approach for proving this lemma, commonly referred to as the Graham scan 
method [17], is to construct the upper hull on-line by considering the points one 

at a time by increasing x-coordinates. It is clearly optimal for any sorted point set 

s. q 

In addition to the methods above, there are a large number of other interesting 

convex hull algorithms (e.g., see [l, 2, 3, 4, 6, 8, 10, 12, 14, 17, 18]), but none are 

more efficient than the two above for their respective versions of the problem. 

1.2. Our results 

In this paper we address an intermediate version of the convex hull problem, 

one in which the input is partially sorted. In particular, we assume we are given a 

set S of n points in the plane, and a set R of m vertical lines that induce a 

partitioning II of S into subsets So, S,, S,, . . . , S,,, in the natural way, i.e., the 

x-coordinate of each point in Si is smaller than the x-coordinate of any point in S, 

if i <j, and Si is separated from S,,, by a line in R, for i = 1, 2, . . . , m. Without 

loss of generality, we assume that m <n. If this is not the case, then we can 

‘collapse’ each pair of lines that have no points of S between them-these lines 

will intersect the same edge of UH(S). 

Our method for constructing UH(S), which we describe in the subsequent 

sections, can be viewed as a nontrivial ‘blend’ of the Graham scan and 

marriage-before-conquest methods. In particular, we show how to find the edges 

of UH(S) that intersect the vertical lines in R in O(n) time. We refer to these 

edges as the bridge edges of S and R, and the problem of finding them as the 

multiple bridge finding problem. Given a solution to the multiple bridge finding 

problem, it is a simple matter to then apply Lemma 1.2 on the points of each Si 

not covered by a bridge edge to derive a running time that is O(n log h,,,), where 

h,,, is the maximum, taken over the subsets S,, of the number of edges in UH(S) 

that are incident on points in S,. Thus, let us restrict our attention to the multiple 

bridge finding problem. In the following section we describe a simple, but 

inefficient method, and we then show how to use it as a stepping stone to a 

linear-time method. 
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2. A simple stack algorithm 

The algorithm we describe in this subsection solves the multiple bridge finding 

problem in a fashion very reminiscent of Graham’s convex hull algorithm [ll]. 

The output of our algorithm is a chain of edges that describes a solution to the 

multiple bridge finding problem. To be precise, if E = (el, e2, . . . , eh) is a list of 

the bridge edges for S with respect to R, listed from left to right, then we define 

the partition hull of S with respect to R as the chain that is formed by first 

removing any duplicate edges from E and then inserting a (possibly degenerate) 

edge joining the right endpoint of ei with the left endpoint of ei+i, for each 

i=l,2,..., h - 1. This forms a chain H = (e,, fi, e2, f3, . . . , fhr, e,.), and this is 

what our method returns. We refer to each fi as a pseudo-edge. (See Fig. 2.) For 

any point p we use x(p) and y(p) to respectively denote the s- and y-coordinate 

of p, and we assume that any non-vertical edge e = uu is represented so that 

x(u) <x(v). 

Since we are confining our attention to the edges of UH(S) that intersect R, we 
use the term upper-convex to refer to a chain C that is monotone with respect to 

the x-axis and such that each consecutive pair of edges in C makes a right turn 
when the edges are transversed from left to right. That is, if d = uz1 and f = WV, 
then w is either on or to the right of the oriented line determined by e. (Note that 

this definition allows for collinear edges on an upper-convex chain.) The 

following lemma establishes an important property of H. 

Lemma 2.1. H is an upper-convex chain. 

Proof. If a consecutive pair of edges (e,, fi) or (fi, ej+,) in H form a left turn, then 

either ej or e,+i cannot be an edge of UH(S). The proof follows, then, since each 

ej is an edge of UH(S) by definition. 0 

i di . . 

- , ,- . I 
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I , l :. 

I . 

. : : 

Fig. 2. An example partition hull. The edges (a, b), (c, d), (f, g), and (h, i) are bridges; the edges 

(b, c), (d, d), (e, f) and (g, h) are pseudo-edges (with (d, d) being a degenerate pseudo-edge). 
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Given a partition hull H for S with respect to R it is a simple matter to 

reconstruct a solution to the multiple bridge finding problem by removing the 

pseudo-edges from H and then merging this list of bridge edges with the list R (to 

enumerate all the duplicate bridge edges for consecutive lines in R). Thus, 

without loss of generality, we may concentrate on the problem of computing the 

partition hull of S with respect to R. We consider each subset S, in turn, while 

maintaining the partition hull of the subsets considered so far. We store the 

vertices of this partition hull on a stack (T. With each vertex ZJ, we store a pointer 

to the subset, S, that contains u, and we let S(v) denote this subset. We initially 

push the leftmost vertex p of S, on o (a vertex that must be on UH(S)). This will 

cause our partition to always begin with a pseudo-edge f, whose left endpoint is p, 
a convention that will simplify the comparison operation we use in our method. 

Let S; be the next subset to be considered, let u denote the vertex at the top of 

the stack a, and let u denote the vertex below u in CT (if u exists). Note that the 

edge d = uu is a bridge for the subsets considered so far. We use the 

bridge-finding procedure (Lemma 1.1) to find the bridge b = 65 between S(V) 

and S,. Let w be the left endpoint of b (a point in S(u)). We say that e and b form 
-. 

a right turn, if uvwx is a upper-convex chain (possibly with IJ = w, so that uw 1s an 

degenerate pseudo-edge) or if u does not exist (in which case S(V) = S,). 

Otherwise, we say e and b form a left turn. (See Fig. 3.) If e and b from a right 

turn, then push w and z, and this completes this iteration (for S;). Otherwise, we 

pop u and u, and repeat this test. The algorithm terminates when we complete 

the iteration for S,. 

By a simple induction argument, the above algorithm, which we call the simple 
stack method, produces a solution to the multiple bridge finding problem. We 

leave the details of this argument to the interested reader. 

The running time of this method is O(ms,,,), where s,,, is the size of the 

largest subset Sj. The proof of this fact is based on an accounting argument that is 

very similar to the accounting argument for Graham’s convex hull algorithm [ll, 

171. The main idea is that for each step in the simple stack algorithm we spend at 

most O(s,,,) time performing a comparison between an S(v) and S,, and we can 

charge the work for the operation to S(V) if we must perform a pop or, 

alternatively, to Si if we must perform a push. Each subset has its ‘representative 

vertices’ pushed or popped at most once; hence, there are O(m) stack operations. 

Unfortunately, the product ms,ax can be as bad as Q(n’). Moreover, an example 

that has this as its time bound can be constructed by having (S,] = n/2 and ],!$I = 1 

for i E {2,3, . . . , n/2} such that the above algorithm must perform a bridge 

computation between S, and each Si in turn. (See Fig. 4.) All is not lost, however, 

for the above method does result in an efficient algorithm if all the subsets are, 

more or less, the same size, as the following lemma shows. 

Lemma 2.2. Zf there is an integer s such that s /2 < ISi1 < 2s, for all i E 
(1, 2, . . . , m}, then the simple stack method constructs the partition hull of S with 
respect to R in O(n) time. 
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Fig. 3. Illustrating an iteration in the simple stack algorithm. The edges e and b form a right turn in 

(a) and form a left turn in (b). 
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Fig. 4. A counter-example. The figure illustrates an example that forces the simple stack algorithm to 

take P(n’) time. 
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Proof. In this case m G 2nls and s,,, c 2.r, so ms,,, is O(n). Cl 
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We show below how to use the simple stack algorithm as a stepping stone to a 

method that runs in linear time for every problem instance. 

3. Merging partition hulls with buckets 

Before we give our optimal method, however, we first describe a method for 

merging two partition hulls HI and HZ that are separated by a vertical line L (with 

Hi to the left of H,). Specifically, suppose we are given two sets of points Si and 

S, and two sets of vertical lines RI and RZ, such that S, and R, are separated from 

S, and R, by the vertical line L. In addition, assume that we have partition hulls 

H, HZ, such that H, is defined on S, with respect to R,, and H2 is defined on S, 

with respect to RZ. We show in this section how to efficiently produce the 

partition hull H defined on S1 U S, with respect to R, U {L} U R,. 
We define the weight of a vertex Z.J in a partition hull to be the size of S(v), and 

use s, to denote this value. Let s = max{s,: u E H2 U Hz}, i.e., s is the weight of 

the largest-weight node in H, U Hz. We form two ‘buckets’ BI and B, for H, and 

Hz, respectively, where B, is the maximal suffix of nodes of HI such that sum of 

their weights is less than 2s, and B, is the maximal prefix of nodes of H2 such that 

sum of their weights is less than 2s. Note that the total weight of the nodes in BI 
(respectively, B,) is at least s, since no vertex has weight more than s. 

We compute the bridge 6 between Bl and B,, which can be done in O(s) time, 

since with each partition hull vertex u we store a pointer to S(V). (See Fig. 5.) We 

then pop from H, any nodes of B, that b makes redundant, i.e., we perform the 

’ . r 
I . 

A- 
I , 

Fig. 5. Merging two partition hulls with buckets. In this case, s = 5. 
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repeated comparison test as in the simple stack operation. Note, however, that 

we never need to compute any new bridges while we are comparing two nodes in 

the bucket, BI, since b is the bridge for all the points of BI. If this popping action 

ultimately removes all the points from B,, then we construct a new BI from the 

remaining nodes in H, by again taking a maximal suffix whose total weight is less 

than 2s. It is only at this point that we compute a new bridge b between B, and 

B,. We continue this bucketing and iteration on H, until the bridge b finally forms 

a right turn with the previous edge in Hr. 

Once b forms a right turn with the previous edge in H,, we then use b to 

perform an operation symmetric to the comparisons with the nodes of BI to then 

pop from HZ any edges of B, that b makes redundant. If this popping action 

ultimately removes all the points from B,, then we construct a new B, from the 

remaining nodes in HZ, i.e., we take a maximal prefix whose total weight is less 

than 2s. As in the previous case, it is only at this point that we compute a new 

bridge b between BI and B,. If we do compute a new bridge at this point, then we 

repeat our comparison operation with H, (not HZ), repeating the computation of 

the previous paragraph. We do not compare b with nodes of HZ until we have 

once again terminated our comparisons with H,. That is, the comparison 

operations with H1 form the ‘inner loop’ of our computation. We terminate the 

‘outer loop’ of our computation when we finally find a bridge b that forms a right 

turn with the previous edge in H, and the successive edge in H2. The new 

partition hull H is formed by concatenating the remaining nodes of H,, the 

endpoints of b, and the remaining nodes of Hz. 
The correctness of this computation follows by an argument similar to that used 

in the simple stack algorithm, which, as in that case, we leave to the interested 

reader. Considering the time complexity, note that we must spend O(S) time each 

time we compute a bridge. Note, however, that before we compute a new bridge, 

we must pop a collection of nodes with total weight at least S. Moreover, between 

bridge computations, all the comparison operations can be implemented in O(S) 

time. Thus, we can charge all but the first and last bridge computations to the 

points in subsets that are never again to be considered (for they were ‘popped’). 

In addition, if H, and H, are represented as doubly-linked lists, the final 

concatenation process can be implemented in O(1) time. Therefore, we have the 

following lemma. 

Lemma 3.1. Given the partitional hulls HI and Hz, as described above, one can 
compute the partition hull H, defined on S, U S, with respect to RI U {L} U R,, in 
O(r + s) time, where r is the total weight of all the nodes removed during the 
process and s is the weight of the largest-weight node in HI U Hz. 

Having presented and analyzed our method for merging partition hulls, we are 

now ready to give our optimal method for constructing a partition hull. 
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4. A stack-of-stacks method 

Suppose we are given a set S of n points in the plane, and a set R of m vertical 

lines that induce a partitioning H of S into subsets S,, S,, S,, . . . , S, in the 

natural way. In this section we describe our method for constructing the partition 

hull H of S with respect to R in O(n) time. Our method is based on the idea of 

maintaining a stack r of simple stacks, where each simple stack o represents a 

partition hull restricted to subsets of S that are no larger than a weight value s, 

associated with C-J. Moreover, we maintain the invariant that the weight associated 

with a stack u in r is at most half that of the next deeper stack in r. 

The details of our method are as follows. As an initialization step, we augment 

S with a new set Sm+,, where S,,, is a set of n points ‘at --t/3’ that are below and 

to the right of all the points of S. That is, if we let q be a point in Sm+1, and 

e = uv be any nonvertical edge determined by points u, v ES, and we define 

f = Vq, then (e, f) is a right turn. We initialize r to contain a single (empty) stack 

u with weight s, = 0. 

The Test for Si. Let o denote the topmost stack in r, and let Si be the next subset 

to be considered. There are two cases: 

Case 1. [,!$I >s,/2, i.e., Si is either appropriate or too large for o. 
Let o* denote the stack just below o in r. There are two subcases: 

Subcase 1 (a): IS,l <s,./2 (i.e., S, is too small for a*) or o* does not exist. 
Then we use the partition hull merging method described in the previous 

section to merge the partition hull represented by u with the (degenerate) 

partition hull represented by the rightmost point in Si, giving a,,,,. We then 

update s,“~~ to be the smallest power of 2 greater than or equal to max(lSjl, s,). 

This completes the processing for S,. 

Subcase 1 (b): ISi1 BS,./~, i.e., S, is either appropriate or too large for 8. 
Then we merge o* and o using the partition hull merging procedure described 

in the previous subsection, with uc playing the role of H1 and u playing the role 

of Hz. We give the resulting partition hull u,,, weight sonCw = s,*. We then pop u 

and u* and push a,,, onto r (so that it will play the role of the topmost stack) 

and we repeat the test for Si. 

Case 2: ISi1 < s,/2, i.e., S, is too small for u. 

Then we create a new stack unew, and give it as its weight, sUnCw, the smallest 

power of 2 greater than or equal to IS,1 (i.e., 2T’“g’“‘1). We push the leftmost 

vertex of Sj onto u,,, and then push a,,, onto r. This completes the processing 

for Si* 

We repeat the above iterative procedure until we exhaust all the subsets in the 

partition for S. Since we padded the partition of S with a set S,,, of size II, r will 

contain a single stack u at the end of the procedure, and u will be a solution to 

the partition hull problem for S. The correctness of this method follows by a 
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simple induction argument based on the correctness of our method for merging 

partition hulls with buckets. 

Let us, therefore, analyze the running time of this stack-of-stacks method for 

computing partition hulls. We provide for all the work used by our algorithm by a 

simple accounting scheme, showing that the entire method requires only O(n) 

time. Let us take each case in turn. In Subcase l(a) we require O(r + [,!$I) time, 

where r is the total size of nodes removed during the partition hull merging 

procedure, by Lemma 3.1. Thus, we can account for the work in this case by 

charging each point in Si one charge and also charging each point in a removed 

subset one charge. The accounting for Subcase l(b) is a little more involved, 

however. So, let k be the number of times we must iterate Subcase l(b) before 

we can perform Subcase l(a), and let ol, a,, 03, . . . , ok denote the sequence of 

stacks in I’ that we iteratively merge before performing Subcase l(a), listed as 

they originally appeared in r (with o, being below o,+i). By Lemma 3.1, the total 

time needed to merge all these stacks is O(r + s,, + s,, + s,, + . . * + s&), where r 

is the total size of all the nodes removed during the merges. Note, however that 

s,, + s, + s,, + . . . + s,, d s,, + so,/2 + &,I4 + . . . + s,,/2k 

s 2s,, G 41&l. 

Thus, we can account for the time we spend performing all the iterations of 

Subcase l(b) by charging each point in Si four charges and each point in a 

removed subset one charge. In Case 2 we require O((S,l) time, which we can 

account for by charging each point in Si one charge. Thus, each point in S gets 

charged at most O(1) times during the entire procedure. This gives us the 

following theorem. 

Theorem 4.1. Given a set S of n points in the plane, partitioned in the natural way 
by a set R of m vertical lines, then one can construct the partition hull for S with 
respect to R in O(n) time. 

This, in turn, gives us the following two corollaries. 

Corollary 4.2. Given S and R as in the theorem, one can solve the multiple bridge 
finding problem for S and R in O(n) time. 

Corollary 4.3. Given S and R as in the theorem, one can construct UH(S) in 
O(n log h,,,) time, where h,,, is the maximum number of edges of UH(S) 

incident upon a single subset of S induced by R. 

5. Conclusion 

We have given an efficient method for constructing the convex hull of a 

partially sorted set of points in the plane. The definition of ‘partially sorted’ that 
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we have chosen to use is that of an induced partition of the set of points by a 
collection of vertical lines. As a direction for future research one could also 
imagine other definitions of ‘partially sorted’. 

Incidentally, our original interestefor this work was actually motivated by the 
3-dimensional convex hull algorithm of Edelsbrunner and Shi [9]. In their 
algorithm they repeatedly construct Z-dimensional convex hulls of the projections 
of the 3-dimensional points. If one uses the 2-dimensional convex hull to partially 
sort the set of points in R3, then this iterative process can be viewed as that of 
repeatedly constructing 2-dimensional convex hulls of partially sorted sets (which 
can then be further refined using the newly-constructed hull). Unfortunately, if 
applied to the implementation as stated in [9], this approach only eliminates half 
of the bottle-neck procedure calis in their algorithm; hence, can only improve 
their running time of O(n log* h) by a constant factor (recall that h is the size of 
the 3-D hull in this case). Interestingly, however, as recently shown by Chazelle 
and MatouSek [5], one can achieve an O(n log h) running time for constructing a 
3-dimensional convex hull using a completely different method. 
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