INFORMATION AND COMPUTATION 107, 1-24 (1993)

Output-Sensitive Methods for Rectilinear
Hidden Surface Removal*

MicHaEL T. GoobricH!

Department of Computer Science,
Johns Hopkins University, Baltimore, Maryland 21218

MIKHAIL J. ATALLAH?

Department of Computer Science,
Purdue University, West Lafavette, Indiana 47907

AND

Mark H. OVERMARS'

Depariment of Computer Science,
University of Utrecht, 3508 TB Utrecht, The Netherlands

We present an algorithm for the hidden-surface elimination problem for
rectangles, which is also known as window rendering. The time complexity of our
algorithm is dependent on both the number of input rectangles, n, and on the size
of the output, k. Our algorithm obtains a trade-off between these two components,
in that its running time is O{r(n'*'"+k)), where 1 <r<logn is a tunable
parameter. By using this method while adjusting the parameter r “on the fly” one
can achieve a running time that is O(nlogn + k(log n/log(1 + k/n))). Note that
when k is ©(n), this achieves an O(n log n) running time, and when & is &(n' "9
for any positive constant ¢, this achieves an O(k) running time, both of which are
optimal. - 1993 Academic Press, Inc.

* A preliminary announcement of this research is to appear at the 17th International
Colloquium on Automata, Languages, and Programming. Part of this research was carried
out while the authors were visiting Princeton University for the DIMACS Workshop on
Geometric Complexity.

* This author’s research was supported by the National Science Foundation under Grant
CCR-8810568 and by the NSF and DARPA under Grant CCR-8908092.

* This author’s research was supported by the Office of Naval Research under Grants
N00014-84-K-0502 and N00014-86-K-0689, the National Science Foundation under Grant
DCR-8451393, and the National Library of Medicine under Grant RO1-LMO05118. Part of this
research was carried out while this author was visiting the Research Institute for Advanced
Computer Science, NASA Ames Research Center, Moffett Field, California.

* This author’s research was partially supported by the ESPRIT 11 Basic Research Actions
Program of the EC, under Contract 3075 {Project ALCOM).

1

0890-5401/93 $5.00

Copyright ¢ 1993 by Academic Press, Inc.
All rights of reproduction in any form reserved.

[9]

GOODRICH, ATALLAH, AND OVERMARS
1. INTRODUCTION

1.1. The Problem

The hidden-surface elimination problem is well known in computer
graphics and computational geometry. In this problem one is given a set of
simple, non-intersecting planar polygons in 3-dimensional space and a
projection plane 7, and one wishes to determine which portions of the
polygons are visible when viewed from infinity along a direction normal to
n, assuming all the polygons are opaque. An important special case of this
problem occurs when the polygons are all isothetic rectangles; i.e., the rec-
tangles are all parallel to the xy-plane and have sides that are parallel to
either the x- or the y-axis. This version of the hidden-surface elimination
problem is also known as the window rendering problem, since it is the
problem that must be solved to render the windows that might need to be
displayed on the screen of a workstation. (See Fig. 1.)

Using the terminology of [28], we are interested in the object space ver-
sion of this problem. That is, we want a method that produces a device-
independent, combinatorial representation of the visible surfaces. Such a
solution is not dependent on any specific method for rendering polygons
nor on the number of pixels on a display screen. In addition, an object
space solution gives us a representation that is easily scaled and rotated.

1.2. Previous Work

We briefly review some of the more efficient known algorithms for the
window rendering problem. Since this problem is a special case of the
general hidden-surface elimination problem, any algorithm for the general
case can also be used for this problem. In [16] McKenna shows how to
solve the general hidden-surface elimination problem in O(n?) time,
generalizing an algorithm by Dévai [8] for the hidden-line elimination

(@ (b)

FiG. 1. (a) Isothetic rectangles; (b) their visible portion.

HIDDEN SURFACE REMOVAL 3

problem that also runs in O(n?) time (in the hidden-line elimination
problem one is only interested in computing the portions of the polygonal
boundaries that are visible). These algorithms are worst-case optimal,
because there are problem instances that have @(»n?) output size (e.g., sec
Fig. 2a). Unfortunately, these algorithms always take @(n?) time [8, 16],
even if the size of the output is very small.

In [19] Nurmi gives an algorithm for general hidden-line elimination
that runs in O((n+ I)log n) time, where [is the number of pairs of line
segments whose projections on = intersect (I is O(n?)). Schmitt [25] also
achieves this bound. If 7 is o(n’/log n), then these algorithms clearly run
faster than O(»?) time. Their worst-case performance is, however, a sub-
optimal O(n® log n) time (if 1 is @(n*)).

In [13] Giiting and Ottmann address the window rendering problem,
giving an algorithm that runs in O(nlog?n+ 1) time. Using results of
Goodrich [11] and Larmore [14] this can be improved to O(rnlogn+1)
time. Doh [9] also achieves this bound. All of these algorithms are not
truly output-sensitive, however. Indeed, there are problem instances where
these algorithms run in O(n?) time even though the output size is constant
(e.g., in the case where a large rectangle obscures a collection of rectangles
that intersect to form a “grid,” as in Fig. 2b).

There are methods whose running time depends on both the input size
and output size, however. In [13] Giiting and Ottmann also gave an out-
put-sensitive window rendering algorithm that runs in O(nlog?n+
klog? n) time, where k is the actual size of the output. Bern [4] and
Preparata et al. [24] have subsequently shown that one can solve the
window rendering problem in O(nlognloglogn +klogn) time and
O(nlog? n+ k log n) time, respectively. In algorithms such as these, the
term in the time complexity involving only »n is called the input-size
component and the term involving k (and possibly n as well) is called the
output-size component.

(b)

FiG. 2. (a) Quadratic output size; (b) small output size with quadratic /.

4 GOODRICH, ATALLAH, AND OVERMARS

1.3. Our Results

In this paper we give a new algorithm for the window rendering problem
whose running time depends on both the input size and output size. Our
algorithm allows one to specify a trade-off between these two components
of the running time, in that its running time is O(r(n'*'" +k)), where
1 =2rzlognis a tunable parameter. Using this method while adjusting the
parameter r “on the fly”, one can easily achieve O(nlogn + k(log n/
log(l + k/n})) time, as observed by Paterson [22]. Independently, Bern
[5] and Mehlhorn [17] were recently able to achieve O(nlogn+
k log(2n?/k)) time using an elegant method, which is quite different from
ours. Note, however, that our time bound is always at least as good as
theirs, and is better for quite a large range of k values. For example, if k
is @(n'*¢) for any constant ¢, 0 <& < 1, then our method achieves an O(k)
running time, which is optimal, whereas theirs still has a suboptimal
@(k log n) running time.

We sweep through the collection of rectangles from front to back with
a plane parallel to the xy-plane. During this sweep we maintain the shadow
of all the rectangles already encountered (i.e., the union of their projections
on the xy-plane). In encountering a new rectangle R, we determine all the
intersections of R with the shadow—each intersection determines a “piece”
of a solution to the hidden-surface elimination problem. We complete the
processing of R by updating the shadow to include the region obscured by
R. The main difficulty is in performing these operations efficiently.

To obtain an efficient running time we develop a new data structure that
we call the hive tree. This structure is a combination of the hive graph
structure of Chazelle [6] and the segment tree structure of Bentley and
Wood [3], augmented with a number of supporting auxiliary structures.
Each supporting structure is implemented with the simplest data struc-
tures—arrays and linked lists—hence, our method should be fairly easy to
program.

The paper is organized as follows. In the next section we describe the
hive tree data structure and give a method for its construction. In Section 3
we show how to use the hive tree to derive a simple, efficient method for
rectilinear hidden-line elimination. We show how to extend this method to
the hidden-surface elimination problem in Section 4. Both of these methods
run in time that is O(r(n'*'" + k)), except for a preprocessing step that
requires O(r(n'*'"logn+k)) time. In Section 5 we show how to derive
the claimed time bound by eliminating this preprocessing bottleneck (at the
expense of introducing some sophisticated data structuring techniques).

HIDDEN SURFACE REMOVAL 5
2. THE Hive TREE

Suppose we are given a collection S of n non-intersecting isothetic rec-
tangles in R, ie., a collection of rectangles parallel to the xy-plane such
that all edges are parallel to either the x- or the y-axis. The problem is to
compute all the portions of each rectangle that are visible from z = oo with
light rays that are parallel to the z-axis (i.e., the projection plane is the
xy-plane).

Specifically, each rectangle R is given by a triple ((x,, y;), (x2, ¥, Z),
where (x,, y,;) is the lower-left corner of R, (x,, y,) is the upper-right
corner of R, and z is the z-coordinate of the plane to which R belongs. For
the remainder of this paper we assume that the relationships “to the right
of” and “to the left of” are with respect to x-coordinates, that the
relationships “above” and “below™ are with respect to y-coordinates, and
that the relationships “in front of” and *“behind” are with respect to
z-coordinates. Given an isothetic rectangle R in R® we let z(R) denote the
z-coordinate of the plane to which R belongs. Similarly, for any point p in
R, we use x(p), ¥(p), and z(p) to denote the x-, y-, and z-coordinate of
p, respectively.

Let Hid(S) be the planar subdivision determined by a solution to the
hidden-line elimination problem. That is, Hid(S) is an embedded planar
graph whose edges correspond to the visible segments. In order to better
motivate our hidden-surface method, let us examine the structure of Hid(S)
more closely. For each vertex v of Hid(S) either v corresponds to a (visible)
corner point of a rectangle in S or v corresponds to an intersection of two
visible edges (where one of them becomes occluded by the other, ie., an
intersection of the form T, L, I, or). We call such intersections dead
ends, and classify them into two types: vertical dead ends, where the
terminating segment is vertical (ie., T or 1), and horizontal dead ends,
where the terminating segment is horizontal (i.e., - or).

Before we give our hidden-line elimination method, we describe the
primary data structure we use in our algorithm, namely, the hive tree. This
data structure is defined for a given collection of rectangles in the plane. In
our case we use the projections of the rectangles in S on the xy-plane. To
construct a hive tree we project the vertical rectangle boundaries on the
x-axis and place a vertical line between each consecutive pair of projection
points (any such vertical line will do). This partitions the plane into at
most 2n+ 1 “slabs.” Note that none of the dividing vertical lines contains
the vertical boundary of a rectangle in .S. We then build a complete n'"-ary
tree T (i.e., a rooted tree such that each internal node has n'” children) on
these slabs in the natural way, so that each leaf is associated with a slab,
where 2<1<logn is a tunable parameter. We will use ¢ to denote this
“branching factor” throughout the remainder of this paper, and use the

6 GOODRICH, ATALLAH, AND OVERMARS

relationship r = t/2 to derive the bounds claimed in the introduction (which
involve the parameter r). To simplify computations that we perform for leaf
nodes, we augment T by giving each leaf v a parent w, such that v is the
only child of w (so that the parent of w has n'" children). Thus, T has
height [¢+ 1, since each leaf node has no siblings.

We use 11, to denote the slab associated with the leaf v. To each internal
node v in T we associate a slab /7., which is the union of all the slabs
associated with the children of v. Let ¥(/1,) (resp., #(11,)) denote the
left (resp., right) vertical line that is the boundary of I7,. Note that by
projecting back to three dimensions £([1,) (resp., #£(I1.)) can also be
viewed as a plane parallel to the yz-plane such that any rectangle Re S
intersects this plane in a line segment parallel to the y-axis. (This alternate
view will be useful for our window-rendering methods.)

We define some relationships similar to those defined for the segment
tree data structure of Bentley and Wood [3]. We say that a rectangle R
spans a slab I7, if R intersects 7., but neither of R’s vertical boundaries lie
inside I7,. A rectangle R covers a node v in T if it spans /7, but does not
span /7., where z is the parent of v. A rectangle R ends in a slab I1, if R
does not span /1, and has a vertical boundary inside 77,. Foreach v in T
we define two lists, Cover(v) and End(v), such that Cover(v) stores all the
rectangles that cover v and End(v) stores all the rectangles that end in /7.
Note that any rectangle in S can belong to at most 2[1]+ 2 of the End(v)
lists and no more than (2[¢]+ 2) n"" of the Cover(v) lists.

We partition each /7, slab into horizontal strips, whose vertical
boundaries are delimited by ¥ (/7,) and #([1,), respectively, and whose
horizontal boundaries are delimited by horizontal lines passing through
two consecutive y-coordinates in a y-sorted listing of the horizontal
boundaries of the rectangles in Cover(v)u End(v). We let Strip(v) denote
the list of horizontal strips so-constructed for /7,.

We also define two lists, Up(#) and Down(k), for each horizontal strip
h in Strip(v), as follows:

» Up(h) is the set of horizontal strips &’ such that 4’ is in Strip(z) and
h' intersects 4, where z is the parent of v in T;

» Down(h) is the set of horizontal strips 4’ such that A4’ is in Strip(w)
for some child w of v and 4’ intersects A.

Note that a € Down(b) if and only if e Up(a). Let Y(h) denote the (inter-
val) projection of a horizontal strip 4 onto the y-axis. The following lemma
establishes an important relationship between Y(#) and Y(#'), where
he Down(h'), respectively.

LEMMA 2.1. Let h be a strip such that he Down(h') and hnh' # (.
Then Y(H')< Y(h).

HIDDEN SURFACE REMOVAL 7

Proof. Let v and z be the nodes in T such that heStrip(v) and
h’ € Strip(z). Thus, z is the parent of v. Since the strips in Strip(z) are built
on consecutive y-coordinates in a y-sorting of the horizontal boundaries of
the rectangles in Cover(z) U End{z) (and similarly for v), it suffices to show
that Cover(v)u End(v) < Cover(z)w End(z). By the definition of I7.,
End(v)< End(z), since I7,<[Il.. By the definition of Cover(v), each
rectangle in Cover(v) does not span I7_; hence, each rectangle in Cover(v)
has a vertical boundary in /1.. Thus, Cover(v) € End(z). |}

COROLLARY 2.2. Let h be a strip such that he Up(h') and hn h' £ (.
Then Y(h)c Y(#').

We call the property defined by Lemma 2.1, and its corollary, the
enclosure property of the strips in the hive tree. (See Fig.3.) Viewed
another way, if v is a child of z, then constructing Strip(z) involves
extending the horizontal boundaries of strips in Strip(v) to be horizontal
boundaries in Strip(z) as well. This extending of boundaries is reminiscent
of segment extensions used by Chazelle [6] in his hive graph structure, and
motivates the name, hive tree, for our structure.

Algorithmically, Lemma 2.1 implies that constructing the Up(k) and
Down(#) lists will increase the space complexity of the data structure by at
most a factor of n'”. We assume that Up and Down lists are represented
as doubly linked lists, and are augmented with extra pointers so that for

h,

_—— e m e — = e R e g e — = —
hy] J

[U FERRIEL GRSt I [
h. k
hq

____}____.___»_L__J JESRIEE!

FiG. 3. lllustrating the enclosure property: / is the shaded region, Up(h)=h,, h,. h., h,,
h,. and Down(h)=h,, hy, k., h,.

8 GOODRICH, ATALLAH, AND OVERMARS

each (4, &') pair with Ae Up(#') we have symmetric pointers between the
copy of 4 in Up(#’) and the copy of 4’ in Down(h).

Before we show how we use the hive tree for hidden-line and hidden-
surface elimination, let us briefly outline how to efficiently construct a hive
tree. As shown in [3] it is fairly straightforward to determine for each
rectangle R all the nodes in 7 that R covers or ends in. This takes O(tn'")
time for each R, or O(tn'*'") time overall (since we are using an n'"-ary
tree instead of a binary tree). Thus we can construct all the Cover(v) and
End(v) lists in O(tn' * ') time. As for the Strip lists (and the associated Up
and Down lists), note that, by the enclosure property, the y-coordinates of
the boundaries of the strips in Strip(v) are a subset of the y-coordinates of
the boundaries of the strips in Strip(z), where z is ¢’s parent. Our method,
then, is to construct the Strip(r) list for the root node, r. This takes
O(nlogn) time (to sort all the y-coordinates). Then, we copy out (in
order) the boundaries that are also in each of Strip(v,), Strip(vs), ...,
Strip(t, <), in turn, where v, v,, ..., v,., are the children of r. Given the lists
Cover(v;) and End(v,) already constructed for each v, this is easy to do in
O(IStrip(r)|) time for each v, Repeating this recursively, for v, .., v,
constructs all the Strip lists in D. While we are copying out the strips from
the Strip lists for a node, v, to one of its children, v,, it is a straightforward
addition to also be constructing the Up lists for the strips in Strip(v,) and
adding the Strip(v;) strips to the Down lists for the strips in Strip(v).
In addition, while we are building these lists we also build a list
CoverStrips(R) for each rectangle R that contains a pointer to each strip
A in D such that /4 is in Strip(v), R is in Cover(v), and a horizontal
boundary of R contains a horizontal boundary of A Since each recursive
call takes O(|Strip(v)| n'*) time plus the time for the smaller recursive calls,
the total time for this construction is O(nlogn+ tn'*?"). Thus, we have
the following lemma:

LemMma 23, Given a collection S of n isothetic rectangles in the plane,
one can construct a hive tree for S in O(tn'*2") time, where 2<t<logn is
a tunable parameter.

Proof. nlognis O(tn'* ¥ for 2<t<logn. |

In the next section we show how to use the hive tree to solve the hidden-
line elimination problem for isothetic rectangles.

3. RECTILINEAR HIDDEN-LINE ELIMINATION

Suppose we are given a collection, S, of # isothetic rectangles in R>. In
this section we show how to construct Hid(S). For simplicity of expression

HIDDEN SURFACE REMOVAL 9

in the description that follows we assume that no two horizontal (resp.,
vertical) boundaries have the same y-coordinate (resp., x-coordinate). It is
straightforward to modify our algorithm for the more general case, as this
only adds a number of trivial special cases to various steps in our method.

As mentioned above, the main idea of our algorithm is to sweep through
the collection of rectangles from front to back with a plane parallel to the
xy-plane, maintaining the shadow of all the rectangles encountered as we
go. (The shadow of a collection of rectangles is the union of their projec-
tions of the xy-plane.) We use a hive tree, constructed on the projection of
the rectangles in S, to maintain the shadow of the rectangles in the subset
S’ < S of rectangles encountered so far by the sweep. In particular, there
are two operations that we support:

« v-query(R): Given a rectangle Re §— S’, determine all the intersec-
tions R has with vertical edges in the shadow of the rectangles in S'. This
operation also identifies which corner points of R (in any) are not obscured
by the shadow. (See Fig. 4a.)

« add(R), update D so as to represent the shadow of S'u {R}, and
assign S’ :=S8"uU {R}. (See Fig. 4b.)

We sort the rectangles in S by decreasing z-coordinates and add the rec-
tangles in S to S, one by one, in this order. Just before adding a rectangle
R to S’ we perform a v-query for R. Since we add the rectangles to S’ in
order by their z-coordinates, any intersections a rectangle R has with the
shadow of the rectangles in S’ (at that time) must all be part of the hidden-
surface map for S. In fact, these are all the horizontal dead ends in Hid(S)
that are determined by R. In addition, a v-query for a rectangle R tells us
whether each corner point p of R is visible or not. Thus, this space-sweep
gives us all the corner points and horizontal dead ends (i.e., points of the
form -~ or -)in Hid(5). We then repeat this same space-sweep one more

[—
¥ Rt

(b)
FiG. 4. The two shadow operations: (a) v-query(R); (b) add(R).

10 GOODRICH, ATALLAH, AND OVERMARS

time, with the roles of the x- and y-axes interchanged (that is, with the
hive tree determined by the vertical segments in S), giving us all the vertical
dead ends in Hid(S) (i.., points of the form T or 1). We focus on the first
space-sweep, the second one being similar.

We complete the algorithm by constructing a representation of the
Hid(S) (minus edge—face adjacency information) from the corner and
intersection points, which are the vertices of Hid(S). This can easily be
done by sorting the corner points lexicographically twice—once with the
x-coordinate being most significant and once with the y-coordinate being
most significant. This allows us to determine for any point p the points
immediately adjacent to p in each of the four possible directions. To
implement this post-processing step, we can normalize all the x- and
y-coordinates to be integers in the range [1,»] and use radix sort to
perform the sorting (see [1]). This step takes O(nlog n+ k) time.

The remainder of this section, then, is devoted to explaining how to
augment the hive tree for shadow maintenance and also how to use this
augmented hive tree to perform the operations v-query(R) and add(R),
given S. Given a parameter, f, we show that the running time of our pre-
processing step is O(tn'*'"log n+ tn' *%"), that the running time of any
v-query(R) operation is O(:(n*"' + k)}, where k 4 is the number of answers,
and that the amortized running time of any add(R) operation is O(tn?").
This shows that the total running time of our method is O(¢(n'* " logn +
n'* 2"+ k)), where k is the size of the output. We show in Section 5 how
to eliminate the log » factor in the running time of the pre-processing step.

3.1. Using the Hive Tree for Shadow Maintenance

So let T be a hive tree constructed on the projections of the rectangles
in S on the xy-plane. In order to use the hive tree for shadow maintenance,
we define three states for any strip 4 in Strip(v) for some node v in T as
follows:

o full: his full if it is completely obscured by the shadow of the
rectangles in S’

« open: h is open if it is not full and is not intersected by a vertical
boundary of the shadow of the rectangles in S".

* touched: h is touched if it is not full but is intersected by a vertical
boundary of the shadow of the rectangles in S'.

It should be clear that any strip & will always be in exactly one of these
states. Also note that, by the enclosure property, if a strip h € Strip(v) is
open, then any full strip 4’ that intersects A must span I7, and 4’ ~ IT, must
be completely contained inside A. Similarly, if a strip 4 € Strip(v) is touched,
then any full strip 4’ that intersects # must either span /7, or intersect both

HIDDEN SURFACE REMOVAL 11

of the horizontal boundaries of 4. Moreover, if such an 4’ spans /7,, then
h' n 11, is completely contained inside 4.

To facilitate the searching and updating of the shadow of S’, we main-
tain the following auxiliary structures for quickly differentiating between
strips in different states:

e NFU(h): for each h in Strip(v) we maintain a doubly linked list,
NFU(h), which stores all the strips in Up(/4) that are not full.

» TD(h): for each non-full / in Strip(r) we maintain a doubly linked
list, TD(h), which stores all the strips in Down(h) that are touched.

e OD(h): for each non-full # in Strip(v) we maintain a doubly linked
list, OD(h), which stores all the strips in Down(4) that are open.

Initially, NFU(h)=Up(h), TD(h)=, and OD(h)=Down(h) for all
strips 4 in T. Thus, each of these lists can easily be constructed prior to the
space sweep in the same bounds as all the Up(4) and Down(4) lists.

3.2. Principal Rectangles

There is one more auxiliary structure that we add to T to help imple-
ment our space sweeping procedure. Its definition is a little more invoived
that the previous auxiliary structures, however. It is based on the following
notion.

DEeFINITION. Given a strip h in Strip(v), the rectangle with largest
z-coordinate (i.e., the first one to be added), over all rectangles that are in
Cover(v) and completely obscure 4, is called the principal rectangle for h.

Note that a strip k can have at most one principal rectangle, and that it
is possible that # has no principal rectangle. The final auxiliary structure
we add to T is a list, P(R), for each rectangle R, which is defined as
follows:

e P(R): for each rectangle R in S, P(R) stores each strip 4 such that
R is the principal rectangle for A.

We can construct all the P(R) lists as follows.

1. For each v construct a representation, Vis,, of a solution to the
hidden-surface elimination problem for the rectangles in Cover{v),
restricted to I7,. Since all the rectangles in Cover(v) span II,, this is
essentially equivalent to the problem of computing the upper envelope, in
the £ (I1,) plane, of a collection of line segments parallel to the y-axis (the
so-called “skyline problem™ {15]). This step can easily be implemented, for
each v in T, by a mergesort-like divide-and-conquer scheme, where the
“merge” step amounts to combining two lists of y-parallel segments in the

12 GOODRICH, ATALLAH, AND OVERMARS

yz-plane ordered by y-coordinates while maintaining the segment (piece)
with largest z-coordinate. Since each merge can be done in linear time,
this computation requires O(n logn,) time for each v in 7, where
n, = |Cover(v)|. Thus, the total time for this step is O(tn'*'" log n).

2. For each v merge Vis, and Strip(v) (as in the mergesort procedure
[17), to assign to each A e Strip(v) the rectangle associated with the face in
Vis, that contains 4. This is the principal rectangle for 4, so add A to the
P(R) list for this rectangle. This takes an additional O(n, + |Strip(v)|) time
for each v; hence, a total of O(¢tn'*?") time.

The correctness of the above method follows immediately from the fact that
each horizontal boundary of a rectangle in Cover(v) (restricted to 71,) is
also a horizontal boundary of a strip in Strip(v), by definition. Thus, in
Step 2 there can be at most one face in Vis, that contains any 4 and the
rectangle corresponding to this face must be the principal rectangle for A
(unless of course this face is assigned the “rectangle at + oc,” in which case
this A has no principal rectangle).

This completes the description of the data structure, which we call the
augmented hive tree and denote by D, for maintaining the shadow of §'.
We have the following lemma:

LemMa 3.1. Given a collection S of n isothetic rectangles in R>, one can
construct an augmented hive tree, D, for the rectangles in S in
O(tn'*""logn+ tn' *%") time, where t is a tunable parameter.

Proof. The proof follows immediately from the above discussion and
Lemma 2.3. |

Having described our method for constructing D, let us turn to our
method for performing each of the operations v-query and add. We begin
with v-query.

3.3. Performing a Query on the Shadow

Recall that in the v-query(R) operation we wish to determine all the
intersections between R’s horizontal boundaries and the vertical edges of
the shadow, as well as to determine which corner points of R (if any) are
not obscured by the shadow. So let s be one of R’s horizontal boundaries,
say the top one. For each node v that s covers (in the segment tree sense)
we locate the horizontal strip A in Strip(v) whose bottom boundary coin-
cides with s (note that A is not obscured by R, since s is the top boundary
of R). Since R is in Cover(v) for any such node v, s corresponds to a
horizontal boundary between two strips in Strip(v); hence, each such s can
be derived by searching through the CoverStrips(R) list for R. Thus,
searching through all such 4’s can be done in O(tn'") time. If an individual

HIDDEN SURFACE REMOVAL 13

h from this group is not marked “touched,” then s intersects no vertical
edges of the shadow boundary in A. Thus, after examining such a strip, we
need not perform any more work for it. If, on the other hand, an 4 is
marked “touched,” then we must determine all the visible vertical edges of
the shadow that are in A—-they must all intersect s. We do this by calling
the following recursive procedure, passing it s and 4.

Search(s, k).
If k& is a bottom-level strip then
Return the (single) vertical boundary cutting through A.
Else
Combine all the vertical boundaries returned by calling
Search(s, h’) for each h' € TD(h).
End-if
End Search(s, /).

By collecting the answers from all calls of Search(s, #) (i.e., for all A’s
such that s intersects A € Strip(v) and s covers t), we get all the intersections
of s with vertical edges of the shadow. Let us analyze how long this takes.
There are O(tn'"*) nodes v such that s covers v. For each such node we only
call Search(s, #) if we know there is an answer in A, ie., if & is touched.
Moreover, we only call Search(s, 4’} recursively if we know there is an
answer in A'. Therefore, since there can be at most ¢ levels of recursion, and
we perform the same computation for R’s lower horizontal boundary, the
total time spent in calls to the Touch procedure is O(t(n"" + k z)), where k &
is the number of - or — intersection points determined by R in the
hidden-surface map.

It is an easy matter to determine also if the four corner points of R are
visible or not, within these same time bounds. In particular, we can deter-
mine if a corner point p is visible or not as follows. First, locate the leaf v
with strip A e Strip(v) such that /# contains p. Note that 4 must be the leaf
strip associated with one of R’s vertical boundaries. If 4 is full, then p is not
visible. If 4 is not full, then we “march up” the tree from v to the root,
testing for each w on this path if the strip /2 € Strip(w') that contains p is full
or not. If none of these strips are full, then p is visible. Since this can easily
be done in O(t(n"")) time for each corner point of R, the total time for
performing a v-query(R) is O(t(n"" + k)).

3.4. Updating the Shadow

So, having described how to perform a v-query(R)} operation, let us now
describe how to perform an add(R) operation. Recall that in this operation
we must update D to reflect the adding of R to the subset S, i.e., so that
D represents the shadow of the rectangles in S’ {R}. Our method
consists of two steps. In the first step we process all the “open” strips in T

643,107 °1-2

14 GOODRICH, ATALLAH, AND OVERMARS

that become “touched” by the addition of R, and in the second step we
process all the “open” and “touched” strips in T that become “full” by the
addition of R.

In the first step we must correctly mark all the “open” strips in T that
become “touched” because of the addition of R (i.e., because they are inter-
sected by one of the vertical boundaries of R). We begin by locating in D
the two leaves that contain the vertical boundaries of R. Because of our
convention of making the parent of each leaf node in T have only one
child, there are three strips in the slab for such a leaf (i.e., |Strip(v)| = 3).
Moreover, it is the middle strip, A, that contains the vertical boundary of
R.If 4 is marked “full,” then we need not update anything for A, for adding
R does not change how the shadow intersects A. If, on the other hand, A
is “open” (4 cannot be “touched” prior to adding R), then we mark 4 as
“touched.” This is because the vertical boundary of R can only partially
obscure this strip, by our convention of not allowing the dividing lines to
contain vertical boundaries. Doing this for each of the two vertical
boundaries of R can easily be done in O(7) time.

This is clearly not enough, however, for we must update al/ the strips in
D that become “touched” by the addition of R to the subset S'. We
perform all of these updates by “climbing” up D, incorporating the effect
of adding R. Since we can ignore any strips that are marked “full,” for any
strip #" we mark as “touched,” we need only examine the non-full strips in
Up(#') (i.e., the strips in NFU(h')), and mark any that were “open” as
“touched.” This observation immediately gives us the following recursive
procedure. Touch(#), for updating all the strips in D that must be marked
“touched” by the addition of R. We call Touch(/) at most twice, once for
each leaf-level non-full strip, 4, containing a vertical boundary of R.

Touch(h):
1. For each /' in NFU(h) do
Remove & from OD(A') and add s to TD(h').
If 4’ is “open” then
Mark A’ as “touched” and call Touch(#').

s

End-for
End Touch(h).

By a simple inductive argument one can show that, for each strip 4 that
is an argument to the Touch procedure, & does not become full, since R
cannot completely obscure 4, by definition. There are a number of other
strips in D that R can completely obscure, however. For this reason, we
follow the above step by our second step, where we process all the “open”
and “touched” strips in D that become “full” by the addition of R. In par-
ticular, we mark as “full” all the non-full strips in P(R). These are all the
strips in a Strip(v) list for which R is the first rectangle added in the sweep

HIDDEN SURFACE REMOVAL 15

such that R covers v (in the segment tree sense) and R completely obscures
h. Note that some of the strips in P(R) may already be marked “full.” For
example, a strip 4 in P(R) would become full if all the strips in Down(k)
become full (by different rectangles).

As we mark each of the non-full strips /4 in P(R) as “full” we update any
other strips in D that become “full” because of & becoming full. There are
two possible ways a strip 4’ could become full as a result of 4 becoming
full. The first way is that 4" belongs to a Down(h) list, where he P(R) is
the last non-full strip in Up(#’). For example, this situation would arise in
the configuration of Fig. 3 should 4, be the last non-full strip in Up(#) and
h, is now being marked “full.” The second way a strip 4’ could become full
is that A" belongs to an Up(4) list, where and 4 € P(R) is the last non-full
strip in Down(#’). For example, this situation would arise in the configura-
tion of Fig. 3 should A, be the last non-full strip in Down(/) and A, is now
being marked “full.” Thus, we must update the shadow structure, D, for
cach previously non-full strip #e P(R) that we are now marking as “full,”
by alternately climbing D and descending D to cascade the effects of
marking this A as “full.” In particular, we do this by calling the following
recursive procedures, FullUp(#) and FullDown(#), in turn, for each
previously non-full e P(R). Intuitively, FullUp(k) cascades the affect of
marking £ as “full” up D and FullDown(#4) cascades the affect of marking
h as “full” down D.

FullUp(h):
1. For each #' in NFU(h) do
2 If 4 was “open” then Remove /4 from OD(h').
3. if h was “touched” then Remove A from TD(h').
4, I OD(W)u TD(h')=(J then
5 Mark A’ as “full” (for it is obscured by the strips in Down(h')).
6 Call FullUp(#').
End-if
End-for
End FullUp(h).

Note that in Step 6 we do not also call FullDown(#'), for all of the
strips in Down(#’) are already full. Also note that we have omitted a test
for the case when OD(h')+# & and the removal of A from TD(h') leaves
TD(h'y= &. Such a case would require us to mark 4 as “open”. For-
tunately, however, as we will show later, such a situation cannot occur, for
once a strip is marked “touched” it remains touched until it becomes full.

Having given our FullUp procedure we next give the recursive proce-
dure, FullDown, which we use to mark as “full” any strips below each
non-full strip A, that are now full.

16 GOODRICH, ATALLAH, AND OVERMARS

FullDown(/1):
1. For each /' in OD(h)uw TD(h) do
2. Remove A from NFU(K').
3. If NFU(KW')= & then
4. Mark 4’ as “full” (for it is obscured by the strips in Up(h')).
5 Call FullDown(#’).
End-if

End-for

End FullDown(h).

Note that in Step 5 we do not also call FullUp(4'), for all of the strips
in Up(#’) are already full. Performing these two procedures on all the A,’s
marks as full all the strips in T that were previously non-full and become
full by the introduction of the rectangle R.

3.5. Analyzing the Time Complexity of Shadow Updating

A crude analysis of the time complexity of performing all the Touch,
FullUp, and FullDown calls associated with a single add(R) is that each
takes at most O(rn' * ') time. Thus, an upper bound on the time we spend
updating the shadow is O(tn?*'"), since we call add(R) once for each of
the » rectangles in S. This is a significant overestimate, however, for, as we
now show, the total time spent performing add(R) operations is O(in'*3"),
implying that a single add(R) has an amortized running time of O(m>").

One of the important factors in our analysis is the observation that once
a strip becomes full it remains full for the rest of the computation. We also
have a similar property for touched strips: namely, once a strip becomes
touched it remains touched until it becomes full. Both of these observations
follow from the fact that we never remove rectangles from the collection S’
(whose shadow D represents); no operation we perform on D can reduce
the portions of any strip that are obscured.

We use these observations to help us account for the work that is done
by an operation ¢ =add(R). Let us consider each sub-operation we per-
form for ¢. The first sub-operation we perform is to visit the leaf-level strips
for R’s two vertical boundaries, marking these regions as “touched” (if they
are not already full) and calling the recursive procedure Touch(#). For each
recursive call of Touch(#') let us charge all the work done by this call to
the strip #". The total time required for any call of Touch(#’), not counting
any recursive calls it generates, is O(|NFU(h')|), for we perform O(1) work
for each strip in NFU(h'). Since |NFU(h')| <|Up(k’)|, the most we can
charge for any single cell, then, is O(JUp(#’)}). Since A’ can become
“touched” at most once, in the entire space sweep procedure we call
Touch(#') on a strip A" in D at most once. Thus, the total time we spend
on performing Touch operations during the sweep is O(Y, ., |Up(h)|). By

HIDDEN SURFACE REMOVAL 17

Lemma 2.1, any strip /4 can belong to at most #"' of the Up(h’) lists. Thus,
since there are at most O(rn'*'") strips in D, the total time we spend
performing Touch operations is O(tn'*). Therefore, the amortized time
complexity, per add operation, for any call to Touch is O(tn*").

The other major sub-procedures we perform for ¢ =add(R) are the
FullUp and FullDown procedures, for marking as “full” all the open and
touched strips that R obscures. Recall that we call these procedures for
each strip A in a Strip(v) list, provided R covers v, R obscures A, and 4 is
not full (ie., ~Ae P(R)). Now we may also have considered some strips in
P(R) that were previously marked “full.” But this is the only P(R) list to
which any such 4 is marked “full.” But this is the only P(R) list to which
any such 4 could belong, so we can charge the cost of this O(1)-time test
to A itself. Also recall that each such # is marked “full” before we call
FullUp(4) and FullDown(/). Moreover, we call FullUp(/’) or FullDown{/')
recursively only if 2 has just been marked “full” (hence, #" was previously
not full). For each call (recursive or otherwise) of FullUp(k) or
FullDown(#4), let us charge the work of this call to the strip s The
total time required for the FullUp (resp., FullDown) call, not counting
recursive calls, is at most O({Up(h)}) (resp., O(|Down(h}|)). Thus, the total
time we spend performing FullUp and FullDown operations is at most
O3 ,cp (JUp(h) + |{Down(#)])). By an argument similar to that above,
this implies that the total time we spend performing these operations is
O(tn' *2"). Therefore, the amortized time complexity, per add operation,
for such a call is O(tn*"). Combining these observations with those made
above, we have the following lemma:

LEMMA 3.2. Given a collection S of n isothetic rectangles in R, and an
augmented hive tree for the rectangles in S, one can construct Hid(S) in
O(t(n' 2" 1 k)) time, where k is the size of the output and 2 <1 <lognisa
tunable parameter.

In the next section we show how to extend our method to the hidden-
surface elimination problem for a set of rectangles.

4. EXTENDING OUR METHOD TO HIDDEN-SURFACE ELIMINATION

The method of the previous section gave us Hid(S). In this section we
show how to adapt our method to give us Vis(S). That is, we extend the
method of the previous section to give us not only the graph of visible
edges, but also the rectangle that is visible in each face of this graph. We
can easily modify our method so as to store with each vertical edge of the
shadow the name (and z-coordinate) of the rectangle that determined that

18 GOODRICH, ATALLAH, AND OVERMARS

edge (this essentially “comes for free”). Thus, whenever we use the Search
procedure to locate vertices of Hid(S) we can actually get some informa-
tion about Vis(S). In particular, with each horizontal dead end v (ie, a
vertex of the form | or -) in Hid(S) we immediately know two of the
three visible rectangles that are adjacent to v. In addition, for any visible
rectangle corner vertex v, we immediately know one of the two visible
rectangles that are adjacent to v (i.ec., the rectangle with v as its corner
point). The difficulty, then, is to determine the identity of the unknown
adjacent visible rectangle. Viewed another way, the problem that remains
is to determine the “background” rectangle for v.

The main obstacle to determine the background rectangle R’ for a vertex
v in Hid(S) is that, in our space-sweep procedure, R’ may not be added to
the shadow until long after the rectangle that discovered v (i.e., the rec-
tangle R such that v was one of the vertices returned by v-query(R)). We
can modify our procedure to overcome this obstacle, however.

Our solution is to augment D so as to also store all the vertices of
Hid(S) for which we have yet to determine their background rectangle. We
call these the incomplete vertices in D. Intuitively, our method for main-
taining the incomplete vertices is to have the search procedure “leave a
trail” in D of the vertices it discovers. We then augment the FullUp and
FullDown procedures to tag each incomplete vertex v they encounter as
“complete” and identify v’s background as the current rectangle (for which
we are performing the add operation). We give the details below.

Recall that the Search(s, #) procedure is called on each strip 4 that the
segment s covers (in the segment-tree sense). Also recall that for each strip
I’ in TD(h) (the touched strips below /) we recursively call Search(s, #').
We now augment the procedure so that when all the recursive calls return
we copy all the discovered answers into a list I(h), which will always
contain all the incomplete vertices in h. We represent I(h) as a doubly
linked list. In addition, for each v in I(h) we store a pointer to the copy
of v in I(#’), where 2" € Down(/), and also a pointer from this copy of v
to its copy in I(#). This does not alter the time complexity of the Search
procedure, for we will store at most ¢ coptes of any incomplete vertex and
the adding of m new items to an /(#) list can easily be done in O(m) time.

As mentioned above, we also modify the FullUp and FullDown proce-
dures to tag incomplete vertices that they discover. More precisely, any
time we mark a strip & as “full” because of the addition of a rectangle R
we immediately search through the list I(h) and tag each vertex v as having
R as its background rectangle. In addition, for each v in I(h) we remove all
copies of v in D by following the up and down pointers associated with
each v in I(h). This takes O(¢) time for each v in I(h). At the end of the
space-sweep procedure, when all the rectangles in S have been incor-
porated into the shadow, we tag all the remaining incomplete vertices in D

HIDDEN SURFACE REMOVAL 19

as having — oo (i.e., the true background) as their background rectangle. In
the lemma below we show that these modifications are sufficient for solving
the hidden-surface elimination problem.

LEMMA 4.1. Given the above modifications, the space sweep algorithm
correctly determines the adjacent visible rectangles for each vertex of Hid(S).

Proof. Suppose there is a vertex v of Hid(S) that is labeled with an
incorrect background rectangle R. Let R’ be the true background rectangle
for v. There are two cases:

Case 1. z(R')>z(R). Then R’ is added to the shadow before R.
Moreover, since R’ is the background rectangle for v, v must be stored as
an incomplete vertex in D at the time we add R’ to D. By definition, R’
contains v (in its projection on the xy-plane). Thus, when we add R' to D
we must mark as “full” some strip that contains v. But this strip must
contain v in its I(h) list. Therefore, we remove all copies of v in D before
R is added (— «).

Case 2. z(R')<z(R). Then R’ is added to the shadow after R, and R
removed all copies of v before R’ was added. But the fact that R is v’s true
background vertex implies that v’s projection on R’ is not obstructed by ¢’s
projection on R. Thus, R cannot contain v (in its projection on the
xy-plane). But this implies that R cannot obscure any strip that contains
v, contradicting the assumption that R removed all copies of v before R’
was added (— «).

This completes the proof. |

Having established the correctness of our modifications, we have the
following lemma:

LemMMa 4.2, Given a collection S of n isothetic rectangles in R>, and an
augmented hive tree constructed for the rectangles in S, one can solve the
window -rendering problem for S in O(t(n'**" +k)) time, where k is the size
of the output, and 2 < t<logn is a tunable parameter.

Proof. The proof follows immediately from the above description and
Lemma 3.2. |}

Combining this lemma with Lemma 3.1, we have the following theorem:

THEOREM 4.3. Given a collection S of n isothetic rectangles in W3, one
can solve the window rendering problem for S in O(t(n'* "' logn+
n' ¥ 4 k) time.

20 GOODRICH, ATALLAH, AND OVERMARS

Note that the input-size component of the above running time is a log n
factor from that claimed in the introduction (with r=1/2). In the next
section we show how to eliminate this log n factor.

S. IMPROVING THE RUNNING TIME

In this section we show how to modify the pre-processing for our algo-
rithm to achieve a running time for the entire algorithm of O(r(n' =" + k)).
Recalling the analysis given previously, the only obstacle to achieving this
time bound is that of constructing all the P(R) lists, where we compute for
each v in D a solution, Vis,, to the hidden-surface elimination problem for
the rectangles in Cover(v), restricted to I7.. As we show, achieving an
improved running time for this step requires the use of more sophisticated
techniques than those we have used so far.

5.1. A Modest Improvement

We can achieve a modest improvement by noting that we can simplify
the problem by normalizing the rectangles so that their z-coordinates fall
in the range (1, n] (in a preprocessing step that requires O(r log n) time).
This immediately implies that we can construct all the Vis,’s in
O(n, loglogn) time by a simple plane-sweeping procedure using the
priority queue data structure of van Emde Boas [29, 30], where n. =
|Cover(R})]. In particular, we can sweep the yz-plane from y= —oo to
y= +oc with a line parallel to the z-axis, maintaining the collection of
rectangles “stabbed” by this line. At each rectangle endpoint we perform a
max operation to determine the visible rectangle at this point, and then
perform the appropriate insert or delete operation to maintain the collec-
tion of rectangles stabbed by this line. This is not sufficient for our goals,
however, for ¥, ., n, is O(tn'*''"); hence, this approach would result in a
running time of O(sn'* " log log n). Thus, we must be more clever in how
we construct the Vis,’s.

5.2. 4 Coordinated Atrack

Our approach to achieving O(tx(n'**')) time for the entire pre-
processing step is to coordinate the construction of all the Vis,’s, instead
of viewing the pre-processing for each v in 7 as an isolated problem.
We also use a [log log n}-stratification paradigm [7]. Our method is as
follows:

0. We begin by normalizing the z-coordinates of the rectangles in S
to be integers in the range [1, n]. This takes O(nlogn) time [1].

1. We mark each node that is on a level of 7 that is a multiple of

HIDDEN SURFACE REMOVAL 21

[log log n| as a super node, where, to avoid confusion, we use 7 to denote
the underlying (n'"’-ary) tree for D. For each super node v, on level i, we
let T, denote the subtree of 7 rooted at v and having the super nodes at
level i+ [loglog n] as its leaves (the root is on level 0).

2. For each super node v, let z be the nearest super node ancestor
of v (so v is a leaf in T.). We construct Vis_Left Long(v) and
Vis_Right_Long(v), where Vis_Left_Long(v) is a representation of the
upper envelope in the #(J7.) plane of the segments formed by intersecting
Z(I1.) with the rectangles in End(v), ignoring the rectangles in End(v) that
do not intersect & (I7.). Intuitively Vis_Left_Long(v) is the upper envelope
of the “long” rectangles in End(v). Vis_Right_Long(v) is defined similarly.
Since the horizontal boundaries of the rectangles in End(v) are given in
sorted order in Strip(v), we can extract a y-sorted listing of the boundaries
of rectangles in each End(v) in O(n'* ') time (for all ©’s). Given these lists
we can then construct Vis_Left Long(v) and Vis_Right_Long(v) in
O(n, loglogn) time for each v, where n, is the number of rectangles
involved for v, by the plane-sweeping method described above. Since a
rectangle R can be involved in at most 7/[log log n7] of these computations,
this also takes O(n' *') time.

3. For each node v that is not a super node we let = be the nearest
super node ancestor of v (so v is an internal node in 7). We construct
Vis_Left_Long(v) and Vis_Right_Long(v), as defined in the previous step.
We perform this computation for each z by applying the mergesort-like
procedure of Section 3.2 to the solutions already at the leaves of T. (com-
bining solutions up the tree using a n'’-way merge). Since the height of
each T.is O(log log n), and each node in T. has »'/' children this step takes
O(n.log n'" loglog n) = O((n./t} log n log log n) time, where »_ is the num-
ber of rectangles which are stored in the leaves of 7. (in Vis_Left Long(v)
and Vis_Right Long(v) lists) at the beginning of this step. Since a rec-
tangle R can be contained in at most ¢/ loglog n7] of these (leaf) super
node lists, 3 .n.=nt/lloglogrn7; hence, the total time for this step is
O(nlog n).

4. For each node v that is not a super node (hence, has a
nearest super node ancestor z), we construct Vis_Cover_Short(v), where
Vis_Cover_Short(v) is a representation of the upper envelope (in the
#(I1,) plane) of the segments formed by intersecting £ (/1.) with the
rectangles in Cover(v) that have both of their vertical boundaries properly
contained in IT.. This can be done in O(m, loglogn) time using the
method given above (in Section 5.1), where m, is the number of rectangles
involved for v. Since any rectangle can cover at most O(n'" log log n) nodes
in this way, this step can be implemented in O(n'*'/(log log n)?) time.

22 GOODRICH, ATALLAH, AND OVERMARS

5. For each node v we compute Vis,, the upper envelope (in
the #(H,) plane) of the segments formed by intersecting ¥ (fI,) with
the rectangles in Cover(v). We do this by initializing Vis, to be
Vis_Cover_Short(r) and iteratively merging the current Vis, with each
upper envelope Vis _Left_Long(w) (resp., Vis_Right_Long(w}) such that w
is a sibling of v and w is to the right (resp., left) of v. Since any rectangle
that covers v either has both its vertical boundaries in /7. or has one in a
I1, (where w is a sibling of v) and the other ouside of I7_, this gives us Vis,
for each v in T. Note that each segment in such a Vis_Left_Long(w) or
Vis_Right_Long(w) list will be examined at most O(n'"} times by v. Thus,
each segment in a Vis_Left_Long(w) or Vis_Right_Long(w) list will be
examined at most O(n*") times (O(n'") times for each sibling of w). In
addition, each segment in Vis_Cover Short(r) will be examined at most
O(n"") times (only by v). Any rectangle R can contribute a segment to at
most O(t) Vis_Left_Long(w) or Vis_Right_Long(w) lists and at most
O(n'") Vis_Cover_Short(v) lists. Thus, this step takes at most O(n'**")
time.

Therefore, we have the following lemma:

LEMMA 5.1. Given a collection S of n isothetic rectangles in R>, one can
construct an augmented hive tree, D, for the rectangles in S in O(tn'**")
time, for 2<t<logn.

Proof. The proof follows from Lemma 2.3 and the fact that nlogn+
n'*Yiloglogn)is O(m' *¥) for 2<1<logn. |

Incidentally, a method of Bern [5] and Mehlhorn [17], which was
discovered independent of the above method, can also be used with
Lemma 2.3 to derive Lemma 5.1. Their method depends on the union-find
data structuring techniques of Gabow and Tanan [10], for they both
reduce the skyline problem to an off-line min problem. In any case, having
established Lemma 5.1, one immediately has the following theorem:

THEOREM 5.2. Given a collection S of n isothetic in R, one can solve the
window-rendering problem for S in O(r{n' * """+ k)) time, where k is the size
of the output and 1 <r<logn is a tunable parameter.

Proof. Apply Lemmas 5.1 and 4.2, taking r=1¢/2. |

5.3. Tuning the Algorithm “On the Fly”

Having established a method that can be tuned by a parameter, r, one
can use this to derive an improved window-rendering algorithm for all
values of k. We give this result as a corollary to Theorem 5.2:

HIDDEN SURFACE REMOVAL 23

CorOLLARY 5.3 (Paterson [22]). One can solve the window -rendering
problem for S in O(nlog n+ k(log n/log(1 + k/n))) time.

Proof. The method is to iteratively update the value for r on the fly. We
run the algorithm with different values of r: the ith time, we use r = log n/2’
and let the algorithm run for t(n, i) time where t(n, i)=c2'* " "nlogn and
¢ is a constant (any ¢ will do). As soon as the /th run of the algorithm
takes longer than t(n, i) time steps, we stop it and launch the (i + 1)th one
(using r=1logn/2’*' and t(n,i+1)=c2*"""""'nlogn). Should r ever
become equal to 2 (ie, i=loglogn), then we simply let the algorithm
complete (we no longer interrupt it). A straightforward analysis shows that

this strategy results in the time bound claimed. §

Thus, we can solve the window-rendering problem in time that is both
O((n+k)logn) and O(n'**+k) for any positive constant & We leave
open the following question: Can one solve the hidden-surface elimination
problem for rectangles in O(n log n+ k) time? Such an algorithm would be
the best possible for all values of k, for it would optimize both components
of the running time.

ACKNOWLEDGMENTS

We thank Michael McKenna for several helpful discussions and S. Rao Kosaraju for his
never-ending encouragement.

RECEIVED September 20, 1988; FINAL MANUSCRIPT RECEIVED June 25, 1991

REFERENCES

1. AHo, A. V., HopcrorT, J. E., AND UrLMax, J. D. (1974), “The Design and Analysis of
Computer Algorithms,” Addison-Wesley, Reading, MA.

2. BauMGarT, B. G. (1975), A polyhedron representation for computer vision, in
“Proceedings, 1975 AFIPS National Computer Conference, 44," AFIPS Press,
pp. 589-596.

3. BenTLEY, J. L., AND WooD, D. (1980), An optimal worst case algorithm for reporting
intersections of rectangles, /[EEE Trans. Compur. C-29, 571-577.

4. BErN, M. (1988), Hidden surface removal for rectangles, in “Proceedings, 4th ACM
Symposium on Computational Geometry,” pp. 183-192.

S. BErN, M. Hidden surface removal for rectangles, manuscript (an improved version of
(41

6. CuazELLE, B. (1986), Filtering search: A new approach to query-answering, S/AM
J. Comput. 15, 703-724.

7. CHAZELLE, B. (1984), Intersecting is easier than sorting, in “16th ACM Symposium on
Theory of Computing,” pp. 125-134.

8. DEval, F. (1986), Quadratic bounds for hidden-line elimination, in “Proceedings. 2nd
ACM Symposium on Computational Geometry,” pp. 269-275.

GOODRICH, ATALLAH., AND OVERMARS

. Don, J. 1. to appear, Visibility problems for orthogonal objects in two- or three-

dimensions, Visual Computer.

. Gasow, H. Nooanp Tarsan, R EL (1983), A lincar-time algorithm for a special case of

disjoint set union, i “15th ACM Symposium on Theory of Computing.” pp. 246-251.

. GoopricH, M. T. (1987), A polygonal approach to hidden-line elimination, in

“Proceedings of 25th Annual Allerton Conference on Communication, Control, and
Computing,” pp. 849 858.

. Guisas, L. ., axp Stour, J. (198S), Primitives for the manipulation of general sub-

divisions and the computation of Voronoi diagrams, ACM Trans. Graphics 4, 75-123.

. GUTING, R. H., axD OTTMANN, T. (1987}, New algorithms for special cases of the hidden

line elimination problem, Compui. Vision Graphics Image Process. 40, 188-204.

. LARMORE, L. (1989), An optimal query-update structure for the interval valuation

problem, manuscript.

. Maxser, U. (1989), “Introduction to Algorithms: A Creative Approach,” Addison

Wesley, Reading, MA.

. MCKENNA, M. (1987), Worst-case optimal hidden-surface removal, ACM Trans. Graphics

6, 1928

. MEHLHORN, K. (1989). private communication.
. Muiler, D. E.. axp PreparaTa, F. P {1978), Finding the intersection of two convex

polyhedra. Theoret. Comput. Sei. 7, 217-236.

. Nurmi. O. (1985), A fast linc-sweep algorithm for hidden line elimination, BIT 25.

466-472.

. OTTMANN, T.. AND WIDMAYER, P. (1984), Solving visibility problems by using skeleton

structures, in “Proceedings. 11th Symposium on Mathematical Foundations of Computer
Science.” pp. 459-470.

. Overmars, M. H., anD SHarirR, M. (1989), Output-sensitive hidden surface removal, in

“Proceedings, 30th IEEE Symposium on Foundations of Computer Science,” in press.

. PaTerson, M. (1989), private communication.
. PrREPARATA, F. P, AND SHamos, M. 1. (1985), “Computational Geometry: An Introduc-

tion.” Springer-Verlag, New York.

24. PREPARATA. F. P, VITTER, J. S., AND YVINEC, M. (1988). “Computation of the Axial View

of a Set of Isothetic Parallelepipeds.” Laboratoire d'Informatique de L'Ecole Normal
Supéricure, Départment de Mathématiques et d’Informatique, Report LIENS-88-1.

. ScHMITT, A. (1981), “On the Time and Space Complexity of Certain Exact Hidden Line

Algorithms,” Universitit Karlsruhe, Fakultdt fiir Informatik, Report 24/81.

26. SCHMITT, A. (1981), Time and space bounds for hidden line and hidden surface

algorithms, in "EUROGRAPHICS 81" pp. 43-56.

. SECHREST, S., a~N» GREENBERG, D. P. (1982), A visibility polygon reconstruction

algorithm, ACM Trans. Graphics 1, 25-42.

. SutHErRLAND, [E., SprouLL, R. F., AND SCHUMACKER, R. A. (1974), A characterization

of ten hidden-surface algorithms, Comput. Surr. 6, 1-25.

. vaN EMDE Boas, P. (1977), Preserving order in a forest in less than logarithmic time and

lincar space, Inform. Process. Lett. 6, 80 82.

. van Empe Boas. P.. Kaas, R., anD ZuLsTra, E. (1977), Design and implementation of

an efficient priority queue. Math. Systems Theory 10, 99-127.

