
Information Processing Letters 26 (1987/88) 173- 179
North-Holland

4 December 1987

FINQING THE CONVEX HULL OF A SOJ?TED POINT SET IN

Michael T. GOODRICH

Department of Computer Science, Purdue University West Lafayette. IN 47907, U.S.A.

Communicated by G.R. Andrews
Received 20 January 1987
Revised 11 May 1987

PAIU.LLEL *

We present a parallel algorithm for finding the convex hull of a sorted planar point set. Our algorithm runs in O(log ra) time
using O(n/log n) processors in the CREW PRAM computational model, which IS optimal. Onz of the techniques we use to
achieve these optimal bounds is the use of a parallel data structure which we call the hull tree.

Keywords: Parallel algorithms, computational geometry, divide-and-conquer, convex hull problem

1. InQroductisn

Given M points in the plane, the convex hull
problem is that of finding which of these points
belong to the perimeter of the smallest convex
region (a p’olygon) containing all n points. We are
interested in solving this problem efficiently in
parallel in the CREW PRAM computational
model (i.e., the synchronous parallel model where
processors share a common memory in which
concurrent reads are allowed, but no two
processors can simultaneously write to the same
memory location!). More for..qz!!y, we are inter-
ested in finding the fastest algorithm which mini-
mizes the product tp, where t is the time complex-
ity of the algorithm and p is the number of
processors used by it.

The convex hull problem is well known in
co,nputational geometry, and has been well studied
in sequential computational models (see [14]). Yao
[20] has shown that this problem has an &!(n log n)
sequential lower bound (in the quadratic deci-
sion-tree model) if the points are input in arbi-
trary order, and there are a number of algorithms

* This research was supported by the Office of Naval Re-
search under Grants Nos. NOOO14-84-K-0502 and NOOO14-
86-K-0689, and the National Science Foundation under
Grant No. DCR-8451393, with matching fun& from AT&U.

which achieve this lower bound [10,11,17,18]. If
we are given the points Iii sorted order (e.g., by
increasing x-coordinate), however, it is well known
that we can solve the convex hull problem sequen-
tially in O(n) time only [lo].

Also, a considerable amount of work has been
done on finding convex hulls in parallel. For
example, Chazelle [5] shows how to solve the
problem systolically on an n-node linear array of
processors m O(n) time, and Miller and Stout [151
present an O(\/;;) time solution on an n-node
square-mesh of processors. Although both of these
algorithms are optimal for their respective compu-
tational models, they are sub-optimal if imple-
mented on a CREW PRAM. The first convex hull
algorithm for the CREW PRAM model is due to
Chow]6], and runs in O(log*n) time using O(n)
processors. Since then, Aggarwal et al. [l] and
Atallah and Goodrich [2,3] have been able to
improve this to O(lcg n) time still using only C(n)
processors. By a simple simulation argument it is
easy to see that these latter algorithms are opti-
mal, since they have a fp product which is O(n
log n). Of course, this assumes that the input
points are given m arbitrary order. As it turns out,
each of these optimal CREW PRAM algorithms
[I,23 sk r A c a co,mmon structure in that they

. C,Il,...,A I%*, n consist Ol’ SL %X*e1i$ &p I’SIIVW~U vy ~nrnltol u PUI&.&k1~fi

0020-0190/87/$3.50 0 1987, Elsevier Science Publishers B.V. (North-Holland) 173

Volume 26, Number 4 INFORMATIoN PROCESSING LETTERS 4 December 1987

divide-and-conquer step, both of which require
O(log n) time using O(n) processors. Thus, these
algorithms ai SF: not optimal if the input points are
given in sorted order, for even though we can skip
the sorting step in this case, the previous al-
go+hms’ second phase will still have a tp product
of O(n log n).

In this paper we give a CREW PRAM al-
gorithm which finds the convex hull in O(log n)
time using only 0(n/log n) processors if we are

_ given the points in sorted order (e.g., by increasing
x-coordinates). This algorithm is clearly optimal,
since it has a tp product which is O(n). One
technique which is often utilized to reduce
processor bounds is the method of ‘cutting-off’ a
parallel recursion early and finishing the remain-
ing subproblems sequentially [7,8]. It is not clear
how to apply this technique here, however, to
reduce the processor bound to O(n/log n), be-
cause this would not provide enough processors to
quickly perform the merge procedures for higher
levels of the recursion. Instead, the method we use
involves introducing a parameter d into the recur-
sion to govern how the subproblems are divided,
and using a parallel data structure, which we call
the Ml tree, to aid in quickly merging subproblem
solutions. In the next section we make some pre-
liminary definitions and observations. In Section 3
we describe the hull tree data structure, studying
solme of its properties, and in Section 4 we give
our algorithm for constructing the convex hull of a
point set in which input points are given in sorted
order.

2. Preliminaries

We first present some definitions and observa-
tions. For any point 11 in the plane we let x(p)
and v(p) respectively denote the x- and y-coordi-
nate of p. We say a list S = (pi, p2,. . . , p,) of

points in the plane is x-sorted if the points of s
are listed by increasing x-coordinate (i.e., X(pi) <

x(pi+])). We generalize this to a collection of
point sets II = (S,, S,, . . . , S,,,); saying that n is
x-sorted if each Si is x-sorted and all the points in
each Si are no greater than any point in S,, 1.

Let an x-sorted point set S be given. We

174

denote a clockwise listing of the points which
belong to the convex hull of S by CH(S). Let p1
and p, be the points of ,? with the smallest and
largest x-coordinate, respcctvely. Clearly, p1 and
p, are both in CH(S). ‘Zey divide CH(S) into
two sets: an upper hull, UH(S), consisting of
points from p1 to pn, inclusive, in the clockwise
listing of CH(S), and a lower hull, LH(S), con-
sisting of points in CH(S) from p,, to pl, inclu-
sive. Without loss of generality, for the remainder
of this paper we shall co,.centrate on the problem
of computing UH(S), as the method for comput-
ing LH(S) is symmetric. Given two disjoint upper
hulls UH(R) and UH(S), we refer to the common
tangent T such that both UH(R) and h/H(S) ara
below T as the upper common tangent between
UH(R) and UH(S). Also, when we say that a
point p is ‘to the left’ of another point 4, we
mean that x(p) -C x(q). For simplicity of expres-
sion, we also assume that the input points have
distinct x-coordinates and no three points are
collinear (our results can easily be ,modified for
the general case).

We make use of the fact that the parallel prefix
of a sequence of n integers can be computed in
O(log n) time using 0(n/log n) processors [12,13].
Recall that, in the parallel prefix CrQblem, we are
given an array of integers (a,, az, . . . , a,) and
wish to compute all the partial sums sk = Cfs,ai.

As mentioned above, our method for construct-
ing upper hulls involves the use of a data structure
which we call the hull tree. Since the skeleton of
this data structure is a binary tree, we need the
following definitions. Let B be a binary tree. We
define the height of B, denoted height(B), to be
the length of the longest leaf-to-root path. Let 7r
be a leaf-to-root path. We say that a node v
belongs to the left fringe (respectively right fringe)
of v if v is not on ?T and is the left child
(respectively right child) of a node on Q. We
describe the hull tree data structure in the next
section.

3. The hull tree data structure

Let R be an x-sorted set of n points in the
plane. We define the hull tree data structure as

Volume 26, Number 4 INFORMATION PROCESSING LETTERS 4 December 1987

v4

UH(E): VP
%

v2

d: 2
m: v)6

2
"6

Vl v2 v3 v4 v5 v6 v7

Fig. 1. An example hull tree HT(S) for IJH(S). The d and M
labels are given for each internal node, and the WCC and preu

pointers are denoted by arrows at the lcaves.

follows. It is a binary search tree HT(R) which
stores the points of UH(R) in its leaf nodes,
sorted from left to right by increasing x-coor-
dinates. For simplicity of expression. for each leaf
node u we also let u denote the point in UH(R)
associated with this node. With each leaf 11 we
store two labels preu(u) and succ(u) which are,
respectively, the predecessor and successor points
of u in UH(R). For each internal node u E T we
let Desc(u) denote the set of descendent leaves of
u. With each internal node u E T we store two
labels d(u) and m(u j which are, respectively, the
number of points in Desc(u) and the point in
Desc(u) with m!nimum x-coordinate (see Fig. 1).
In the followmg lemmas we study some of the
properties of hull trees.

3.1. Lemma. Let (R, , R 2) be an x-sorted collection
of two planar point sets. Given hull trees HT(R,)
and HT(R,), we can find the common upper tan-
gen: of UH(R,) and UH(R 2) in n(h) time using a
single processor where

h = height(HT(R,)) + height(HT(Rz)).

Proof. The method is based on the binary search

procedure of Overmars and ‘Van Leeuwen 1161 for
finding the common upper tang:r:it between two
convex PO~Y~OIU. The proof follows from the fact
that the hoary tree structure and the labels pred,
succ, d, anu m can be used to mimic the binary
search method (see [9) for details). q

Thus, we can quickly find the common tangent
of the hulls repA-esenaed in two different hull trees.
In the next lemma we show how to perform a split
operation quickly on a hull tree.

3.2. Lemma. Let R be an x-sorted planar point set,
and let HT(XI) be a hull tree *for UH(R)* Giuen any
x-coordinate .x,, we can split HT(R) into two hull
trees HT(R, 1 and jW “T(R 2) such that each point in
R, has x-coordinate at most x0 and each point in
R 2 has x-coordinate greater than x0, and this con-
struction can be done in O(h) time using a single
processor, where

h = height(HT(R)).

Proof. The method is to trace a root-to-leaf path
searching for x,, between the m label values, copy-
ing the nodes on this path as we go. In the original
path we delete any children on the right fringe and
in the copied path we delete children on the left
fringe. Once we have reached the location in the
leaf level where x0 belongs, we update the label
pred(succ(u)) to nil, and then update succ(u) to
nil, where u is the leaf node with greatest x-coor-
dinate less than or equal to x0. We then retrace
our steps in each path, updating the d an
labels as we go so their new values are correct. It
is clear that this method takes at most
0(height(HT(R))) time using a single processor
D

Note that the previous two lemmas both in-
volve the use of a single processor. In the follow-
ing two lemmas we explore some of the ways hull
trees can be utilized in parallel. Both of these
lemmas involve doing various computations on a

collection of hull trees.

3.3. Lemma. tit 27 = (R,, R,, . . . , R,) be an x-

sorted collection of planar point sets, and let S = RI
u R, u . - - uR,. If we have a h~AN tree HT(R,)

constructed for each UH(Ri), then for any i =

175

Volume 26, Number 4 INFORMATION PROCESSING LETI-ERS 4 December 1987

Fig. 2. An illustration of the case when none of UH(Ri)*s points are in UH(S), because V, and q form an angle which is less than
180°.

1, 2 , . . . , m we can construct a hull tree for UH(R i)
n UH(S) in O(h + log m) time using O(m) proc-
essors in the CREW I’RA M model, where

h = max (height(HT(Ri))>.
1 Gibm

Proof. Let i E (1, 2 ,..., m) be given. Our method
for constructing a hull tree Hi’ containing the
points in UH(Ri) n UH(S) is as follows. Assign a
single processor to each pair (i, j), j = 1, 2,. . . ,
i - 1, i + 1,. . . , m, and, using the method of
Lemma 3.1, find the common upper tangent ~,j
between UH(Ri) and UH(Rj). This will take at
most O(h + log m) time (it takes O(log m) time to
compute the value of h). Let 5 be the tangent
with smallest slope in (q ,,,..., r17_,i_1} (i.e., 5 is
the smallest-slope tangent which ‘comes from the
left’ of UH(Ri)), and let I#$ be the tangent with
largest slope in (q.i+i, q,m} (i.e., F is the
largest-slope tangent which ‘comes from the right’
of UH(Ri)). Both V;: and Wi can clearly be found

in O(log m) time by the m processors assigned to
Ri. Let Ui be the point of contact of y with
UH(R,j, and let W i be the point of contact of W;
with UH(RJ. Since neither y nor Wi can be
vertical, they intersect and form an angle (with
interior pointing upward). If this angle is less than
180 O (as in Fig. 2), then none of the points of
UH(Ri) belong to UH(S). This is because in this
case the straight-line segment joining the other
endpoints of & and K (which are contained in
CH(S)) is entirely above UH(Ri); hence, no vertex
of UH(Ri) can belong to UH(S j. In this case, the
hull tree H,’ is empty. Otherwise (as in Fig. 3), if
this angle is greater than 180’) then all the points
from Vi to Wi, inclusive, belong to UH(S). For if
the angle between 5 and II$ is greater than 180 O,
then the points from all the other UH(RJs must
be below 5 and I+$. In this case, we can construct
H,’ by performing two sprit operations on HT(Ri),
one to remove points with x-coordinates less than
x(Oi) and one to remove points with x-coordinate

Fig. 3. The points between u, and w,, inclusive. are in UH(S), because V, and w form an angle which is at least 180 O.

176

Volume 26. Number 4 INFORMATION PROCESSING LETTERS 4 December 1987

greater than x(wJ. These split operations can be
done in O(h) time using a single processor by
Lemma 3.2. Thus, the entire computation requires
0(h + log m) time using O(m) processors. q

In the next lemma we show that we can use the
method of the previous lemma to construct a hull
tree for the upper hull of the union of the sets in
17 from hull trees for each set in n.

3.4. Lemma. Let KI=(R,, R, ,..., R,) be an x-
sorted collection of planar point sets, and let S = R,
u R, u 0.. uR,. If we have a hull tree HT(Ri)
constructed for each UH(R i), then we can construct
a hull tree HT(S) for UH(S) in O(h + log m)
time using O(m2) processors, where

h= max {height(HT(Ri))).
Igi,cm

Also, the resulting tree will have height at most
h + [log ml.

Proof. By Lemma 3.3 we can assign O(m)
processors to each Ri and construct a hull tree Hi’
for UH(Ri) n UH(S) in O(h f log m) time. We
can then perform a parallel prefix computation to
remove any empty trees from the list H,‘, Hi,. . . ,

H,:. This takes O(log m) time using O(m/log m)
processors. Let Hi:, Hi:, . . . , Hip be the resulting
list of nonempty hull trees. We then construct a
hull tree HT(S) by building a complete binary
tree ‘on top’ of the Hi: ‘s (that is, each leaf of this
tree is the root of an H/). This new hull tree
clearly has maximum height at most [log ml + h.
The total time is clearly O(h + log m) and the
number of processors is 0(m2). 0

In the next section we show htiw the hull tree
data structure can be used it t drid the upper hull
of an x-sorted point set.

4. The upper hull algorithm

Our method for constructing the upper hull
UH(S) of an x-sorted planar point set S is the
following. We call the procedure MukeHuIlTree,
defined below, passing it the set S and the integer
[log n], where n = 1 S 1. This procedure constructs

a hull tree HT(S) for UH(S) with height at most
o(log n). We can then construct the array UH(S)
from the hull tree HT(S) by a parallel prefix

procedure which we describe at the end of this
section. The algorithm, which is given below, will
construct a hull tree HT(S) for UH(S) in O(d +
log n + log d log log n) time using 0(n/d)
processors, where d is any positive integer.

Algorithm MakeHuUTree(S, d)
Input: a set S of n points in the plane, sorted

by increasing x-coordinate, and an integer d.
Output: A hull tr?e HT(S) for UH(S).
Method: Our algorithm is based on the lemmas

of Section 2, and uses the &-divide-and-conquer
technique [1,2]. The divide-and-conquer method
we use differs from that of [1,2], however, in that
we divide based on the value of the integer param-
eter d. In addition, we stop the recursion when the
problem size is less than d and solve the remain-
ing subproblems sequentially. This allows us to
get by with only 0(n/d) processors. The details
are given below.

Step 1. If the number of points in S is at most
d, then find the upper hull UH(S) of each S and
construct a hull tree IIT(S) for UH(S) sequen-
tially. Constructing UH(S) in this case can be
done in O(d) time [lo], after which we can clearly
construct a hulI tree for UH(S) of height]log d]
in O(d) additional time. This completes the com-
putation for this case, so for the remainder of this
algorithm we assume that S contains more than d
points.

Step 2. For simplicity of notation we let N =
[n/d]. Partition S into an x-sorted collection of
]@] subsets R,, R 2, . . . , R,@,, each of which has
size O(m). RecursivQ z;ill procedure Muke-
HullTree(Ri, d) for e O, in parallel. After this
parallel recursive ca!. $urned, we have a hull
tree representing eat,. dH(Ri).

Step 3. Construct a hull tree representing
WI(S) from the hull trees HT(R,), . . . ,

HT(R N).

F

This is done using Lemma 3.4 with
m = n/d, and takes O(h + log n) time using
0(n/d) processors, where

h = max (height(HT(Ri))) -
1 <igN

en

177

Volume 26, Number 4 INFORMATION PROCESSING LETTERS 4 December 1987

We analyze Algorithm MukeHdlTree in the
following lemma.

4.1. Lemma. Given a set S of n points in the plane
sorted by increasing x-coordinate, Algorithm
M&eHdTree constructs a hull tree representing
U&~(S) in O(d+ log n + log d log log n) time
using O(i n/d]) processors in the CREW PRAM
model. The hull tree it produces has maximum
height of 2 log n.

Proof. The maximum height of the produced hull
tree, h(n), the running time, T(n), of the al-
gorithm, and the number of processors, P(n), can
be expressed in the following recurrence relations:

i

Ilog nl
h(n) = h(m) + [log,,/-]

if n < d,

otherwise,

i

b,d if n <d,

T(n)= T(m) + b,(log n + h(m))

otherwise,

1 ifn<d,

P(n) = max([n/dl, @dP(m))

(otherwise,

where b, and b, are constants. These equations
imply that h(n) < 2 log n, they imply that T(n) is
@(d + log n + log d log log n), and that P(n) is
O(]n/d]) 191. This completes the proof. EI

Thus, by assigning d = [log n] we have that we
can construct a hull tree for UH(S) with height
O(log n) in O(log n) time using O(n/log n)
processors in the CREW PRAM model. Now we
only have to show how to construct the array
UH(S) from HT(S) in O(log n) additional time
using O(n/log n) processors.

After the hull tree for UH(S) is constructed we
can build UH(S) by the following method. For
each processor i E (0, 1,. . . ,]m/ log n 1) we locate
the leaf of H which has rank ijlog n], using the d
label stored at each node in the tree to direct the
search This takes O(log n) time. Now, for each
processor i, we can follow succ pointers from this
point to find the next Clog nl entries in the hemi-
spherical chain (in parallel for each processor i).

178

Thus, we can compute for each leaf of H how
many vertices precede it. Thus, we can convert the
HQ-tree representation to an array representation
by writing each vertex to its position in the array.
This can all clearly be done in O(log n) time using
0(m/log n) processors.

4.2. Theorem. The convex hull of an x-sorted point
set can be constructed in O(log n) time using
O(n/log n) processors in the CREW PRAM com-
putational model.

5. Conclusion

We have shown how to solve the planar convex
hull problem in O(Jog n) time using O(n/log n)
processors for the case when the input points are
given in sorted order, which is optimal. This, of
course, immediately implies that the convex hull
of a monotone polygon can be found in these
same bounds. Recall that a polygon P is monotone
with respect to a line L if every perpendicular to
L intersects the boundary of P in at most two
points. Another corollary of our result is that the
common intersection of n half-planes sorted by
their slopes can be constructed in O(log n) time
using O(n/log n) processors, by using the duality
transformation of [4,‘9j. We achieved these opti-
mal bounds by using a parallel data structure
which we call the hull tree. Constructing the con-
vex hull of a point set has many applications, and
we suspect that hull trees can be used to find
efficient parallel algorithms for many other prob-
lems involving sorted point sets.

References

111

(21

I31

A. Aggarwal, B. Chazelle, L. Guibas, C. G’DGnlang and
C. Yap, Parallel computational geometry, Proc. 25th IEEE
Symp. on Foundations of Computer Science (1985)
468-477.
M.J. Atallah and MT. Goodrich, Efficient pamllel solu-
tions to some geometric problems, J. Parallel & Distrib-
uted Comput. 3 (1986) 492-507.
M.J. Atallah and M.T. Goodrich, Parallel algorithms for
some functions of two convex polygons, Proc. 24th Al-
lerton Conf. on Communication, Control and Computing
(1966) 758-767.

Volume 26, Number 4 INFORMATION PROCESSING LETTERS 4 December 1987

VI

PI

VI

m

VI

PI

WI

WI

K.Q. Brown, Geometric Transformations for Fast Geo-
metric Algorithms, Ph.D. Thesis, Dept. of Computer Sci-
ence, Carnegie-Mellon Univ., Pittsburgh, PA, December
1979 (cited in [14]).
B. Chazelle, Computational geometry on a systolic chip,
IEEE Trans. Comput. C-33 (9) (1984) 774-785.
A. Chow, Parallel Algorithms for Geometric Problems,
Ph.D. Thesis, Univ. of Illinois at Urbana-Champain, De-
cember 1980.
R. Cole and U. Vi&kin, Deterministic coin tosb’-0 ~3
accelerating cascades: Micro and macro techniques for
designing parallel algorithms, Proc. 18th ACM Symp. on
Theory of Computation (1986) 206-2I9.
H. El Gindy, A parallel algorithm for triangulating simpli-
cal point sets in space with optimal speed-up, Proc. 24th
Allerton Conf. on Communication, Control, and Comput-
ing, 1986.
M.T. Goodrich, Efficient Parallel Techniques for Compu-
tational Geometry, Ph.D. Thesis, Dept. of Computer Sci-
ence, Purdue Univ., 1987.
R.L. Graham, An efficient algorithm for determining the
convex hull of a finite planar set, Inform. Process. Lett. 1
(1972) 132-133.
D.G. Kirkpatrick and R. Seidel, The ultimate planar
convex hull algorithm?, SIAM J. Comput. 15 (1) (1986)
287-299.

VI

[I31

VI

WI

WI

VI

WI

WI

VOI

C.P. Kruskal, L. Rudolph and M. Snir, The power of
parallel prefix, Proc. 1985 Intemat. Conf. on Parallel
Processing, St. Charles, IL (1985) 180-185.
R.E. Ladner and M.J. Fischer, Parallel prefix computa-
tion, J. ACM 24 (4) (1980) 831-838.
D.T. Lee and F.P. Preparata, Computational geometry-A
survey, IEEE Trans. Comput. C-33 (12) (1984) 1072-1101.
R. Miller and Q.F. Stout, Computational geometry on a
mesh-connected computer, Proc. 1984 IEEE Intemat.
Conf. on Parallel Processing (1984) 66-73.
M.H. Overmars and J. Van Leeuwen, Maintenance of
configurations in the plane, J. Comput. System Sci. 23
(1981) 166-204.
F.P. Preparata, An optimal real-time algorithm for planar
convex hulls, Comm. ACM 22 (7) (1979) 402405.
F.P. Preparata and S.J. Hong, Convex hulls of finite sets
of points in two and three dimensions, Comm. ACM 20
(2) (1977) 87-93.
F.P. Preparata and D.E. Muller, Finding the intersection
of n half-spaces in time 0(n log n), Theoret. Comput.
Sci. 8 (1979) 45-55.
A.C. Yao, A lower bound to finding convex hulis, J. ACM
28 (1981) 780-787.

179

