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PAIU.LLEL * 

We present a parallel algorithm for finding the convex hull of a sorted planar point set. Our algorithm runs in O(log ra) time 
using O(n/log n) processors in the CREW PRAM computational model, which IS optimal. Onz of the techniques we use to 
achieve these optimal bounds is the use of a parallel data structure which we call the hull tree. 
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1. InQroductisn 

Given M points in the plane, the convex hull 
problem is that of finding which of these points 
belong to the perimeter of the smallest convex 
region (a p’olygon) containing all n points. We are 
interested in solving this problem efficiently in 
parallel in the CREW PRAM computational 
model (i.e., the synchronous parallel model where 
processors share a common memory in which 
concurrent reads are allowed, but no two 
processors can simultaneously write to the same 
memory location!). More for..qz!!y, we are inter- 
ested in finding the fastest algorithm which mini- 
mizes the product tp, where t is the time complex- 
ity of the algorithm and p is the number of 
processors used by it. 

The convex hull problem is well known in 
co,nputational geometry, and has been well studied 
in sequential computational models (see [14]). Yao 
[20] has shown that this problem has an &!(n log n) 
sequential lower bound (in the quadratic deci- 
sion-tree model) if the points are input in arbi- 
trary order, and there are a number of algorithms 
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which achieve this lower bound [10,11,17,18]. If 
we are given the points Iii sorted order (e.g., by 
increasing x-coordinate), however, it is well known 
that we can solve the convex hull problem sequen- 
tially in O(n) time only [lo]. 

Also, a considerable amount of work has been 
done on finding convex hulls in parallel. For 
example, Chazelle [5] shows how to solve the 
problem systolically on an n-node linear array of 
processors m O(n) time, and Miller and Stout [ 151 
present an O(\/;;) time solution on an n-node 
square-mesh of processors. Although both of these 
algorithms are optimal for their respective compu- 
tational models, they are sub-optimal if imple- 
mented on a CREW PRAM. The first convex hull 
algorithm for the CREW PRAM model is due to 
Chow ]6], and runs in O(log*n) time using O(n) 
processors. Since then, Aggarwal et al. [l] and 
Atallah and Goodrich [2,3] have been able to 
improve this to O(lcg n) time still using only C(n) 
processors. By a simple simulation argument it is 
easy to see that these latter algorithms are opti- 
mal, since they have a fp product which is O(n 
log n). Of course, this assumes that the input 
points are given m arbitrary order. As it turns out, 
each of these optimal CREW PRAM algorithms 
[I,23 sk r A c a co,mmon structure in that they 
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divide-and-conquer step, both of which require 
O(log n) time using O(n) processors. Thus, these 
algorithms ai SF: not optimal if the input points are 
given in sorted order, for even though we can skip 
the sorting step in this case, the previous al- 
go+hms’ second phase will still have a tp product 
of O(n log n). 

In this paper we give a CREW PRAM al- 
gorithm which finds the convex hull in O(log n) 
time using only 0( n/log n ) processors if we are 

_ given the points in sorted order (e.g., by increasing 
x-coordinates). This algorithm is clearly optimal, 
since it has a tp product which is O(n). One 
technique which is often utilized to reduce 
processor bounds is the method of ‘cutting-off’ a 
parallel recursion early and finishing the remain- 
ing subproblems sequentially [7,8]. It is not clear 
how to apply this technique here, however, to 
reduce the processor bound to O(n/log n), be- 
cause this would not provide enough processors to 
quickly perform the merge procedures for higher 
levels of the recursion. Instead, the method we use 
involves introducing a parameter d into the recur- 
sion to govern how the subproblems are divided, 
and using a parallel data structure, which we call 
the Ml tree, to aid in quickly merging subproblem 
solutions. In the next section we make some pre- 
liminary definitions and observations. In Section 3 
we describe the hull tree data structure, studying 
solme of its properties, and in Section 4 we give 
our algorithm for constructing the convex hull of a 
point set in which input points are given in sorted 
order. 

2. Preliminaries 

We first present some definitions and observa- 
tions. For any point 11 in the plane we let x(p) 
and v(p) respectively denote the x- and y-coordi- 
nate of p. We say a list S = (pi, p2,. . . , p,) of 

points in the plane is x-sorted if the points of s 
are listed by increasing x-coordinate (i.e., X( pi) < 

x( pi+ ])). We generalize this to a collection of 
point sets II = (S,, S,, . . . , S,,,); saying that n is 
x-sorted if each Si is x-sorted and all the points in 
each Si are no greater than any point in S,, 1. 

Let an x-sorted point set S be given. We 
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denote a clockwise listing of the points which 
belong to the convex hull of S by CH(S). Let p1 
and p, be the points of ,? with the smallest and 
largest x-coordinate, respcctvely. Clearly, p1 and 
p, are both in CH(S). ‘Zey divide CH( S) into 
two sets: an upper hull, UH(S), consisting of 
points from p1 to pn, inclusive, in the clockwise 
listing of CH(S), and a lower hull, LH( S), con- 
sisting of points in CH( S) from p,, to pl, inclu- 
sive. Without loss of generality, for the remainder 
of this paper we shall co,.centrate on the problem 
of computing UH(S), as the method for comput- 
ing LH(S) is symmetric. Given two disjoint upper 
hulls UH( R) and UH(S), we refer to the common 
tangent T such that both UH( R) and h/H(S) ara 
below T as the upper common tangent between 
UH( R) and UH(S). Also, when we say that a 
point p is ‘to the left’ of another point 4, we 
mean that x(p) -C x(q). For simplicity of expres- 
sion, we also assume that the input points have 
distinct x-coordinates and no three points are 
collinear (our results can easily be ,modified for 
the general case). 

We make use of the fact that the parallel prefix 
of a sequence of n integers can be computed in 
O(log n) time using 0( n/log n) processors [12,13]. 
Recall that, in the parallel prefix CrQblem, we are 
given an array of integers (a,, az, . . . , a,) and 
wish to compute all the partial sums sk = Cfs,ai. 

As mentioned above, our method for construct- 
ing upper hulls involves the use of a data structure 
which we call the hull tree. Since the skeleton of 
this data structure is a binary tree, we need the 
following definitions. Let B be a binary tree. We 
define the height of B, denoted height(B), to be 
the length of the longest leaf-to-root path. Let 7r 
be a leaf-to-root path. We say that a node v 
belongs to the left fringe (respectively right fringe) 
of v if v is not on ?T and is the left child 
(respectively right child) of a node on Q. We 
describe the hull tree data structure in the next 
section. 

3. The hull tree data structure 

Let R be an x-sorted set of n points in the 
plane. We define the hull tree data structure as 
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Fig. 1. An example hull tree HT( S) for IJH( S). The d and M 
labels are given for each internal node, and the WCC and preu 

pointers are denoted by arrows at the lcaves. 

follows. It is a binary search tree HT( R) which 
stores the points of UH( R) in its leaf nodes, 
sorted from left to right by increasing x-coor- 
dinates. For simplicity of expression. for each leaf 
node u we also let u denote the point in UH( R) 
associated with this node. With each leaf 11 we 
store two labels preu(u) and succ( u) which are, 
respectively, the predecessor and successor points 
of u in UH( R). For each internal node u E T we 
let Desc(u) denote the set of descendent leaves of 
u. With each internal node u E T we store two 
labels d(u) and m( u j which are, respectively, the 
number of points in Desc(u) and the point in 
Desc(u) with m!nimum x-coordinate (see Fig. 1). 
In the followmg lemmas we study some of the 
properties of hull trees. 

3.1. Lemma. Let ( R, , R 2 ) be an x-sorted collection 
of two planar point sets. Given hull trees HT( R,) 
and HT( R, ), we can find the common upper tan- 
gen: of UH( R,) and UH( R 2) in n(h) time using a 
single processor where 

h = height( HT( R,)) + height( HT( Rz)). 

Proof. The method is based on the binary search 

procedure of Overmars and ‘Van Leeuwen 1161 for 
finding the common upper tang:r:it between two 
convex PO~Y~OIU. The proof follows from the fact 
that the hoary tree structure and the labels pred, 
succ, d, anu m can be used to mimic the binary 
search method (see [9) for details). q 

Thus, we can quickly find the common tangent 
of the hulls repA-esenaed in two different hull trees. 
In the next lemma we show how to perform a split 
operation quickly on a hull tree. 

3.2. Lemma. Let R be an x-sorted planar point set, 
and let HT( XI) be a hull tree *for UH( R )* Giuen any 
x-coordinate .x,, we can split HT( R ) into two hull 
trees HT( R, 1 and jW “T( R 2 ) such that each point in 
R, has x-coordinate at most x0 and each point in 
R 2 has x-coordinate greater than x0, and this con- 
struction can be done in O(h) time using a single 
processor, where 

h = height( HT( R )). 

Proof. The method is to trace a root-to-leaf path 
searching for x,, between the m label values, copy- 
ing the nodes on this path as we go. In the original 
path we delete any children on the right fringe and 
in the copied path we delete children on the left 
fringe. Once we have reached the location in the 
leaf level where x0 belongs, we update the label 
pred(succ( u)) to nil, and then update succ(u) to 
nil, where u is the leaf node with greatest x-coor- 
dinate less than or equal to x0. We then retrace 
our steps in each path, updating the d an 
labels as we go so their new values are correct. It 
is clear that this method takes at most 
0( height( HT( R))) time using a single processor 
D 

Note that the previous two lemmas both in- 
volve the use of a single processor. In the follow- 
ing two lemmas we explore some of the ways hull 
trees can be utilized in parallel. Both of these 
lemmas involve doing various computations on a 

collection of hull trees. 

3.3. Lemma. tit 27 = (R,, R,, . . . , R,) be an x- 

sorted collection of planar point sets, and let S = RI 
u R, u . - - uR,. If we have a h~AN tree HT( R,) 

constructed for each UH( Ri ), then for any i = 
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Fig. 2. An illustration of the case when none of UH( Ri)*s points are in UH( S), because V, and q form an angle which is less than 
180°. 

1, 2 , . . . , m we can construct a hull tree for UH( R i) 
n UH( S) in O( h + log m) time using O(m) proc- 
essors in the CREW I’RA M model, where 

h = max (height( HT( Ri))>. 
1 Gibm 

Proof. Let i E (1, 2 ,..., m ) be given. Our method 
for constructing a hull tree Hi’ containing the 
points in UH( Ri) n UH( S) is as follows. Assign a 
single processor to each pair (i, j), j = 1, 2,. . . , 
i - 1, i + 1,. . . , m, and, using the method of 
Lemma 3.1, find the common upper tangent ~,j 
between UH(Ri) and UH(Rj). This will take at 
most O(h + log m) time (it takes O(log m) time to 
compute the value of h). Let 5 be the tangent 
with smallest slope in (q ,,,..., r17_,i_1} (i.e., 5 is 
the smallest-slope tangent which ‘comes from the 
left’ of UH( Ri)), and let I#$ be the tangent with 
largest slope in (q.i+i, . . . . q,m} (i.e., F is the 
largest-slope tangent which ‘comes from the right’ 
of UH( Ri)). Both V;: and Wi can clearly be found 

in O(log m) time by the m processors assigned to 
Ri. Let Ui be the point of contact of y with 
UH( R,j, and let W i be the point of contact of W; 
with UH( RJ. Since neither y nor Wi can be 
vertical, they intersect and form an angle (with 
interior pointing upward). If this angle is less than 
180 O (as in Fig. 2), then none of the points of 
UH( Ri) belong to UH( S). This is because in this 
case the straight-line segment joining the other 
endpoints of & and K (which are contained in 
CH( S)) is entirely above UH( Ri); hence, no vertex 
of UH( Ri) can belong to UH(S j. In this case, the 
hull tree H,’ is empty. Otherwise (as in Fig. 3), if 
this angle is greater than 180’) then all the points 
from Vi to Wi, inclusive, belong to UH(S). For if 
the angle between 5 and II$ is greater than 180 O, 
then the points from all the other UH( RJs must 
be below 5 and I+$. In this case, we can construct 
H,’ by performing two sprit operations on HT( Ri ), 
one to remove points with x-coordinates less than 
x( Oi) and one to remove points with x-coordinate 

Fig. 3. The points between u, and w,, inclusive. are in UH( S), because V, and w form an angle which is at least 180 O. 

176 



Volume 26. Number 4 INFORMATION PROCESSING LETTERS 4 December 1987 

greater than x(wJ. These split operations can be 
done in O(h) time using a single processor by 
Lemma 3.2. Thus, the entire computation requires 
0( h + log m) time using O(m) processors. q 

In the next lemma we show that we can use the 
method of the previous lemma to construct a hull 
tree for the upper hull of the union of the sets in 
17 from hull trees for each set in n. 

3.4. Lemma. Let KI=(R,, R, ,..., R,) be an x- 
sorted collection of planar point sets, and let S = R, 
u R, u 0.. uR,. If we have a hull tree HT( Ri) 
constructed for each UH( R i ), then we can construct 
a hull tree HT(S) for UH(S) in O(h + log m) 
time using O(m2 ) processors, where 

h= max {height(HT(Ri))). 
Igi,cm 

Also, the resulting tree will have height at most 
h + [log ml. 

Proof. By Lemma 3.3 we can assign O(m) 
processors to each Ri and construct a hull tree Hi’ 
for UH( Ri) n UH(S) in O(h f log m) time. We 
can then perform a parallel prefix computation to 
remove any empty trees from the list H,‘, Hi,. . . , 

H,:. This takes O(log m) time using O(m/log m) 
processors. Let Hi:, Hi:, . . . , Hip be the resulting 
list of nonempty hull trees. We then construct a 
hull tree HT(S) by building a complete binary 
tree ‘on top’ of the Hi: ‘s (that is, each leaf of this 
tree is the root of an H/ ). This new hull tree 
clearly has maximum height at most [log ml + h. 
The total time is clearly O(h + log m) and the 
number of processors is 0( m2). 0 

In the next section we show htiw the hull tree 
data structure can be used it t drid the upper hull 
of an x-sorted point set. 

4. The upper hull algorithm 

Our method for constructing the upper hull 
UH(S) of an x-sorted planar point set S is the 
following. We call the procedure MukeHuIlTree, 
defined below, passing it the set S and the integer 
[log n], where n = 1 S 1. This procedure constructs 

a hull tree HT(S) for UH(S) with height at most 
o(log n). We can then construct the array UH(S) 
from the hull tree HT(S) by a parallel prefix 

procedure which we describe at the end of this 
section. The algorithm, which is given below, will 
construct a hull tree HT(S) for UH( S) in O( d + 
log n + log d log log n) time using 0( n/d) 
processors, where d is any positive integer. 

Algorithm MakeHuUTree( S, d ) 
Input: a set S of n points in the plane, sorted 

by increasing x-coordinate, and an integer d. 
Output: A hull tr?e HT(S) for UH(S). 
Method: Our algorithm is based on the lemmas 

of Section 2, and uses the &-divide-and-conquer 
technique [ 1,2]. The divide-and-conquer method 
we use differs from that of [1,2], however, in that 
we divide based on the value of the integer param- 
eter d. In addition, we stop the recursion when the 
problem size is less than d and solve the remain- 
ing subproblems sequentially. This allows us to 
get by with only 0( n/d) processors. The details 
are given below. 

Step 1. If the number of points in S is at most 
d, then find the upper hull UH(S) of each S and 
construct a hull tree IIT( S) for UH(S) sequen- 
tially. Constructing UH(S) in this case can be 
done in O(d) time [lo], after which we can clearly 
construct a hulI tree for UH(S) of height ]log d] 
in O(d) additional time. This completes the com- 
putation for this case, so for the remainder of this 
algorithm we assume that S contains more than d 
points. 

Step 2. For simplicity of notation we let N = 
[n/d]. Partition S into an x-sorted collection of 
]@] subsets R,, R 2, . . . , R,@,, each of which has 
size O(m). RecursivQ z;ill procedure Muke- 
HullTree( Ri, d ) for e O, in parallel. After this 
parallel recursive ca!. $urned, we have a hull 
tree representing eat,. dH( Ri). 

Step 3. Construct a hull tree representing 
WI(S) from the hull trees HT( R,), . . . , 

HT(R N ). 

F 

This is done using Lemma 3.4 with 
m = n/d, and takes O(h + log n) time using 
0( n/d ) processors, where 

h = max (height( HT( Ri))) - 
1 <igN 

en 
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We analyze Algorithm MukeHdlTree in the 
following lemma. 

4.1. Lemma. Given a set S of n points in the plane 
sorted by increasing x-coordinate, Algorithm 
M&eHdTree constructs a hull tree representing 
U&~(S) in O(d+ log n + log d log log n) time 
using O(i n/d ]) processors in the CREW PRAM 
model. The hull tree it produces has maximum 
height of 2 log n. 

Proof. The maximum height of the produced hull 
tree, h(n), the running time, T(n), of the al- 
gorithm, and the number of processors, P(n), can 
be expressed in the following recurrence relations: 

i 

Ilog nl 
h(n) = h(m) + [log,,/-] 

if n < d, 

otherwise, 

i 

b,d if n <d, 

T(n)= T(m) + b,(log n + h(m)) 

otherwise, 

1 ifn<d, 

P(n) = max([n/dl, @dP(m)) 

( otherwise, 

where b, and b, are constants. These equations 
imply that h(n) < 2 log n, they imply that T(n) is 
@(d + log n + log d log log n), and that P(n) is 
O(]n/d]) 191. This completes the proof. EI 

Thus, by assigning d = [log n] we have that we 
can construct a hull tree for UH(S) with height 
O(log n) in O(log n) time using O(n/log n) 
processors in the CREW PRAM model. Now we 
only have to show how to construct the array 
UH( S) from HT(S) in O(log n) additional time 
using O(n/log n) processors. 

After the hull tree for UH(S) is constructed we 
can build UH(S) by the following method. For 
each processor i E (0, 1,. . . , ]m/ log n 1) we locate 
the leaf of H which has rank ijlog n], using the d 
label stored at each node in the tree to direct the 
search This takes O(log n) time. Now, for each 
processor i, we can follow succ pointers from this 
point to find the next Clog nl entries in the hemi- 
spherical chain (in parallel for each processor i). 

178 

Thus, we can compute for each leaf of H how 
many vertices precede it. Thus, we can convert the 
HQ-tree representation to an array representation 
by writing each vertex to its position in the array. 
This can all clearly be done in O(log n) time using 
0( m/log n ) processors. 

4.2. Theorem. The convex hull of an x-sorted point 
set can be constructed in O(log n) time using 
O(n/log n) processors in the CREW PRAM com- 
putational model. 

5. Conclusion 

We have shown how to solve the planar convex 
hull problem in O(Jog n) time using O(n/log n) 
processors for the case when the input points are 
given in sorted order, which is optimal. This, of 
course, immediately implies that the convex hull 
of a monotone polygon can be found in these 
same bounds. Recall that a polygon P is monotone 
with respect to a line L if every perpendicular to 
L intersects the boundary of P in at most two 
points. Another corollary of our result is that the 
common intersection of n half-planes sorted by 
their slopes can be constructed in O(log n) time 
using O(n/log n) processors, by using the duality 
transformation of [4,‘9j. We achieved these opti- 
mal bounds by using a parallel data structure 
which we call the hull tree. Constructing the con- 
vex hull of a point set has many applications, and 
we suspect that hull trees can be used to find 
efficient parallel algorithms for many other prob- 
lems involving sorted point sets. 
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