
Discrete Comput Geom 14:445-462 (1995) 
Discrete & ComputatJonsl Geometry 

�9 1995 Springer-Verlag New York Inc. 

Efficient Piecewise-Linear Function Approximation 
Using the Uniform Metric* 

M. T. Goodrich 

Department of Computer Science, Johns Hopkins University, 
Baltimore, MD 21218, USA 
goodrich@cs.jhu.edu 

Abstract. We give an O(n log n)-time method for finding a best k-link piecewise- 
linear function approximating an n-point planar point set using the well-known 
uniform metric to measure the error, e > 0, of the approximation. Our method is 
based upon new characterizations of such functions, which we exploit to design an 
efficient algorithm using a plane sweep in "e space" followed by several applica- 
tions of the parametric-searching technique. The previous best running time for 
this problem was O(n2). 

I. Introduction 

Given a set S = {(x 1, Yl), (X2,  Y2 ) . . . . .  (Xn, y,)}, the problem of approximating S by a 
function is classic in applied mathematics, and it finds applications in a number of 
computational problems. The general goals in this area of research are to find a 
function F beloiaging to a class of functions .9 r such that each F ~ .9 r is simple to 
describe, represent, and compute and such that the chosen F approximates S well. 
For example, it may be desired that 5 r be the class of linear or piecewise-linear 
functions, and, for any particular F E J ,  that the measure of the error be the 
well-known uniform metric 

IlS - Fllo~ = max lyi - F(xi) l ,  
i~{1 ,2 , . . . , n}  

which is also known as the 1o~ or Chebychev measure of error [16], [18], [30]. The 

* This research was announced in preliminary form at the 10th ACM Symposium on Computa- 
tional Geometry. The author was partially supported by the NSF and DARPA under Grant 
CCR-8908092, and by the NSF under Grants IRI-9116843 and CCR-9300079. 
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goal, then, is to determine the value of 

6* = min IIS - Film, 
F~.9 r 

and find an F ~ 5 r achieving this error bound. 
The version of this problem we address in this paper is to find a function F ~ J 

that minimizes the uniform error term with respect to S where 3-  is the class of 
k-link piecewise-linear functions, for some given k ~ {1, 2 . . . . .  n - 1}. Using termi- 
nology from the approximation theory literature (e.g., see [9], [16], [18], and [19]), this 
is equivalent to the problem of finding a best (k + 1)-knot degree-1 spline approxi- 
mating S under the 1= norm. Of  course, the case k = n - 1 is trivial, and there is a 
simple reduction of the case k =  1 to three-dimrnsional linear programming, which 
can be solved in O(n) time [12], [20], [40], [42], [43], [53]. Thus, the interesting cases 
are for 1 < k < n - 1. We show how to solve this problem for any such k in 
O(n logn) time. 

The motivation for this problem is that one may have limited resources with 
which to describe the set S, but one wishes the best approximation possible within 
the given resource bounds. This can also be viewed as a data compression problem. 

1.1. Previous Work 

The problem we address is a special case of a whole class of problems in approxima- 
tion theory where it is wished to fit a set of  data using a spline function under some 
metric. Thus, the interested reader is referred to texts discussing approximation 
theory, such as those by Bellman and Roth  [9], Conte and de Boor [16], Davis [18], 
and Dierckx [19], for a general treatment of  such problems. Research in this 
literature is primarily interested in minimizing the number of knots in a spline under 
the least-squares metric, e.g., Jupp [36] gives a numerical approach to this problem. 
For the specific problem we address here, Bellman and Roth [8] describe a dynamic- 
programming approach based upon using a uniform grid to determine possible 
placements of link endpoints (which they call knots). Their method is not guaranteed 
to find a best k-kink approximation, however. 

Hakimi and Schmeichel [30] show that  such a best approximation can be found in 
O(n 2 log n) time, and this is the first method we know of that is guaranteed to find a 
best approximation. Their algorithm is based upon a clever lemma that shows that 
one can limit the number of "critical" 6 values that are candidates for e* to be 
O(n2). They also show that one can test if any such 6 value is equal to 6" in O(n) 
time, which implies that, once enumerated and sorted, one can perform a "binary 
search" among these critical values to find 6*. Of  course, enumerating these critical 
e ' s  requires f~(n 2) time. Indeed, a straightforward application of the lemma by 
Hakimi and Schmeichel would require O ( n  3) time to enumerate them. They reduce 
the time to O(n 2 log n) using the powerful plane-sweeping technique (e.g., see [51]), 
which involves "sweeping" the plane with a line L while maintaining appropriate 
data structures for the points L encounters along the way. More recently, Wang 
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et al. [58] show how to use an even more clever plane-sweep procedure to find a best 
k-link approximation under the uniform metric in O(n 2) time. 

1.2. Related Work 

With the exception of the papers by Hakimi and Schmeichei [30] and Wang et al. 

[58], related work in the computational geometry literature has been directed at 
what can be viewed as the "inverse problem," which is also addressed in the paper  
by Hakimi and Schmeichel [30]. In this problem one is given an error measure e > 0 
and asked to find a minimum-link polygonal path (which may or may not be required 
to be a function) that has distance at most e from all the objects in S (which need 
not just be points), under some reasonable distance metric. As mentioned earlier, for 
the case when S is a set of points and the error measure is the uniform metric, then 
Hakimi and Schmeichel show that this problem can be solved in O(n)  time. Their 
method can be viewed as an extension of the linear-time method of Suri [54], which 
computes a minimum-link path inside a simple polygon, to the problem of finding a 
minimum-link monotone polygonal chain that "stabs" a given set of  line segments. 
Hershberger and Snoeyink [32] show how to generalize this method further to find in 
O(n) time a minimum-link path of a particular homotopy type in a nonsimple 
polygon, and Guibas et al. [29] show how to generalize this method even further to 
find in O(n) time a minimum-link stabber for any given set of disjoint convex objects 
that must be stabbed in some given order (not necessarily just by increasing 
x-coordinates). Robert  and Toussaint [52] study the problem of finding a line L that 
minimizes a weighted minmax error measure to a set of convex polygons in 
O(n 2 log n) time. 

There has also been a considerable amount of work on finding a minimum-link 
approximation to a polygonal curve, subject to some error tolerance. The problem of 
fitting a minimum-link convex polygon nested between two given polygons was 
studied by Aggarwal et al. [5], who give an O(n log n)-time solution to this problem. 
In addition, Imai and Iri [34], [35] give an O(n)-time method for finding the 
minimum-link function approximating a given monotone chain. Their method is very 
similar to an O(n)-time method independently discovered by Suri [54], [55] for 
solving the more-general  problem of finding a minimum link path joining two points 
inside a simple polygon. There has also been some work on approximations that are 
required to use a subset of the endpoints of the given polygonal chain. For example, 
using an approach of Imai and Iri [33], [35], Toussaint [57] and Melkman and 
O'Rourke  [44] give several O(n  2 log n)-time methods under various metrics. 

There has not been much work on a three-dimensional version of these approxi- 
mation problems with guaranteed performance bounds, however, although the 
recent work by Mitchell and Suri [49] on a special case of the three-dimensional 
function approximation problem is a notable exception. 

There is also a rich literature that studies minimum-link distance as a metric in 
its own fight (e.g., see [6], [23], [24], [37], [39], [47], [48], [54], and [55]). 
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1.3. Our Results 

As mentioned above, we give an O(n log n)-time algorithm for finding a best k-link 
piecewise-linear function approximating a set S of n points in the plane under the 
uniform metric. Our method is based upon new geometric insights that aUow us to 
apply a novel plane sweep in "6 space" to enumerate a set of O(n)  critical 6 values, 
which we then search in a binary-search fashion. This allows us to restrict the range 
of  e values containing 6* to be an interval [ 6 1 ,  6 2 ]  , but it does not necessarily give 
us 61 = 62 = 6*. To achieve this latter result we give additional geometric charac- 
terizations of a best k-link approximation that allow us to follow this preprocessing 
step by several applications of  pipelined versions of  the well-known parametric- 
searching technique (e.g., see [2]-[4], [11], [13]-[15], and [41]). 

Admittedly, the use of  this technique typically makes an algorithm rather imprac- 
tical to implement. However, we show that this is not true in our case, for we can 
design a relatively simple version of  our algorithm that uses only the most simple 
versions of parametric searching (which can be made even more practically efficient 
via randomization). 

In the section that follows we give some properties of a best k-link approximation 
and in Section 3 we show how to exploit these properties to restrict the range of 
candidate 6 values. We then show how to complete the construction in Section 4 by 
relying on additional geometric properties of a best k-link approximation, which we 
show can be exploited in a series of applications of parametric searching. Finally, we 
show how to simplify our implementation in Section 5. 

2. Some Properties of a Best k-Link Approximation 

Let S = (Pl,  P2 . . . . .  Pn) be a left-to-right ordered listing of the points in S and let 
8 >_ 0 be given. So as to define our approximation problem formally and to articulate 
some of  its important properties, we introduce some additional notation. For each 
point Pl = (xi ,  Yi) in S define u i = (xi ,  Yi + 6) and gi = (xi ,  Yi - 6), and let S(6) 
denote the ordered set of  vertical segments ~1gl ,  u2g2 . . . . .  Ung-~n. Thus, if we view 
points as degenerate segments, then S = S(0). For any ordered set of disjoint 
geometric objects A,  a polygonal chain C is aR ordered stabber if a traversal of C 
intersects the objects of  A in the given order [29]. Finally, define F(6)  to be a 
minimum-link ordered stabber of S(6). 

The formal problem we address in this paper, then, is to find 6*, the smallest 
6 _>. 0 such that F ( 6 )  has at most k links. Formulating the problem in this way 
allows us to deal with "degenerate" inputs, such as the one illustrated in Fig. 1, 
where S(6")  may allow an ordered stabber with k '  < k links, but a minimum-link 
stabber of  S(~) may require fr > k links for any k < 6*. Thus, a best k-link 
approximation F -- F(E*) may, in fact, have fewer than k links because of degen- 
eracies. Of course, "dummy" vertices along F can always be introduced to force its 
link-count to be exactly k in such a case. 
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Fig. 1. An example set S such that S(e*) has a one-link ordered stabber, but any ordered stabber 
of S(k) requires 10 links if k < e*. 

2.1. A Canonical Form for Best k-Link Approximations 

We connect consecutive gi's and ui's so as to form two "parallel" monotone chains 
U(e)  and G(8),  with U(e) being the upper chain, i.e., we create edges gigi+! 
defining G(e) and uiui+-------~a defining U(e) for i ~ {1,2 . . . . .  n -  1}. One might be 
tempted to think that a best k-link function F approximating S can be constrained 
to lie between U(e*) and G(e*), but this is not the case 1 (as shown in Fig. 2). This is 
actually a good thing, for otherwise we would run into some robustness difficulties, 
for we would have to use a method for finding a minimum-link path in a simple 
polygon as a subroutine, and, as Snoeyink observers, 2 the bit complexity for finding 
such a path can be significantly larger than the bit complexity for representing the 
vertices of the input polygon. This is not a problem for our method, however, for we 

Fig. 2. 
G(~). 
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An instance where a minimum-link stabber of S(e) is not confined to lie between U(e) and 

l We are indebted to Jack Snoeyink (personal communication) for pointing this example out 
to  US. 

2 Again, by a personal communication. 
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Fig. 3. An example hourglass. The inflection edges are shaded. 

use methods for finding minimum-link stabbers as subroutines in our algorithm, and 
these methods do not suffer from this bit complexity blow-up difficulty. 

To describe why we can use minimum-link stabber methods as subroutines, we 
must show how to restrict F to a certain canonical form. For a given e, let 7r,(e) be 
the shortest path from u 1 to u ,  that does not go above U(e) and does not cross 
G(8). Similarly, let ~rg(e) be the shortest path from gl to gn that does not go below 
G(e )  and does not cross U(e). Such paths were introduced by Lee and Preparata 
[38] and are often referred to as geodesic paths [1], [7], [10], [25], [28], [45], [46], [56]. 
The union of  two such paths is often called an hourglass [22], [26]. We therefore use 
H ( 6 )  to denote this hourglass 7r=(e) U ~'g(e). We say that an edge of H(~)  is an 
inflection edge if one of  its endpoints lies on U(8) while its other endpoint lies on 
G(6). Let I ( e )  denote the set of  all such inflection edges. (See Fig. 3.) 

We say that two consecutive links p-q and ~ in F have a zig turn type if r is 
above the ray p--q (i.e., p-q and q-r form a "left turn"). S imilarlyL..~o consecutive links 
p'-q and qr in F have a zag turn type if r is below the ray pq.  This allows us to 
characterize each link in F, other than the first and last links, by the turn types they 
form with their predecessor and successor links. For  example, a zig-zag link forms a 
left turn with its predecessor and a right turn with its successor. The next lemma 
establishes an important relationship between such links and inflection edges in 
I (e) .  

Lemma 2.1. There is a best k-link function F approximating S such that: 

1. Each e ~ I( e * ) is contained by the first or last link o f F  or by a zig-zag or zag-zig 
link o f F .  

2. The first and last link o f  F, as well as each zig-zag and zag-zig link o f  F, contains 
an e ~ 1(8"). 

Proof. 1. Suppose e ~ I(8") ,  i.e., e is an inflection edge of H(~*). Also suppose, 
for the sake of contradiction, that e is contained in no link of the appropriate type in 
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any best k-link approximation F.  We follow a proof  technique of  Ghosh [23], which 
involves performing local perturbations of a candidate stabber, to derive a contradic- 
tion. Since e is an inflection edge, it connects a u i to a gfi hence, F must intersect e 
along some link A, for F cannot go above any u i nor below any gj. We assume for 
the time being that h is neither the first nor last link of F,  and we let h -  denote h's 
predecessor and h + denote h's successor. Also, let L(e) denote the line containing 
e and let B denote the set of all points on some segment from a point p on h - ,  A, 
or h + to p ' s  nearest  neighbor on L(e),  i.e., the points "between" L(e) and A-, A, 
and h +. B can contain no points of U(e*) nor G(e*), for if this were not the case, 
then e would not be an inflection edge (e.g., see Fig. 4(a)). Thus, we can "move" the 
common endpoint  of A- and h to be on L(e),  and the common endpoint  of h and 
A + to be on L(e), keeping the rest of F fixed, and we keep F as a k-link 
approximation to S. To establish that A must be a zig-zag or zag-zig link, note that 
the first place where the ray uig 7 crosses G(6*)  cannot be before the first place it 
crosses U(e*), and, likewise, the first place where the ray ~ crosses U(e*)  cannot 
be before the first place it crosses G(e*)  (e.g., see Fig. 4(a)). If this were not so, uig j 
would not be an inflection edge of H(e*). Thus, either h is the first or last link of F 
(which occurs if one of the rays ~ or g - ~  crosses neither U(8*) nor G(e*)) or h 
is a zig-zag or zag-zig link (since F is a minimum-link approximation to S(e*)). 
Similar (actually simpler) arguments hold for the cases when A- or h + do not exist, 
and are left to the reader. Therefore, there is a best k-link approximation to S that 
contains each edge in S, and each such edge is contained in the first or last link of F 
or in a zig-zag or zag-zig link. 

2. For  the second part  of the lemma, let m be the minimum number of zig-zag, 
zag-zig, first, and last links that do not contain any edge in I (e*) ,  taken over all best 
k-link approximations to S satisfying part  one of the lemma (which we have just 
shown to be true). In addition, let h = p-q be one of these m links. Assume for the 
time being that h is zig-zag link in F. Let  h - =  ~ denote the predecessor of h in F 
and let h += qs denote the successor of h in F. Since F is a minimum-link path, the 
line ~ must intersect both U(e*)  and G(6*)  (e.g., see Fig. 4(b)). However, this 
implies that F crosses an inflection edge, which is a contradiction; hence, we 
establish the second part  of the lemma for this case. The proofs for the other  cases 
are similar; hence, this establishes the lemma. []  

Having established an important  property of some of the links in a best k-link 
function approximation to S, we now turn to the problem of enumerating these 
edges, and in the process we also restrict the range of e ' s  that allow a k-link 
approximation. 

3. Finding the Inflection Edges 

We say that an e is geodesic-critical if H ( e )  has l edges, but H ( ~ )  has fewer than 
l edges for ~ > e. Our  method for finding all the inflection edges is to determine an 
interval [81, 62] that contains 6" and is such that H ( e  1) is combinatorially equiva- 
lent to H(~2). This allows us to determine all inflection edges that F must contain. 
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Fig. 4. Example zig-zag edges. In (a) we illustrate why an inflection edge is contained in a zig-zag 
link, and in (b) we illustrate why a zig-zag link contains an inflection edge. 
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Our procedure is conceptually quite simple. First we enumerate all O(n) geodesic- 
critical 6 values, and then we perform a binary search among these values to 
determine the interval [61, 62] containing 6". 

3.1. Enumerating all Geodesic-Critical e Values 

Our method for enumerating all geodesic-critical 6 values is based upon a sweep 
through "6 space." We maintain the hourglass H ( 6 )  = Try(e) U 7rg(e) while taking 
e from 0 to +0% stopping at each geodesic-critical e value along the way. To 
simplify the discussion, however, we concentrate on the problem of maintaining 
zr=(6), so that we restrict our notion of geodesic-critical e 's  to those that change 
~-,(8); the method for maintaining zrg(e) is similar. Initially, for e = 0, 7r,(e) is the 
chain U(6) = G(6); hence, it consists of n - 1 edges. If we then increase 6 by an 
"infinitesimal" amount we find that some of the vertices of ~-,(6) lie on U(6) while 
others lie on G(e).  For any vertex p on 7r=(e), if one of p ' s  adjacent vertices on 
7r~(~) lies on the chain opposite from the chain that p lies on, then we say that p is 
a pinch vertex. For each pinch vertex p on Try(e), let q and r denote p ' s  adjacent 
vertices on ~r~(e), and compute the k > 6 value at which p would cease to be a 
pinch vertex if we were to restrict U(k) and G(k)  to that portion of the plane 
bounded by the lines x = x(q) and x = x(r) inclusive, where x(t) denotes the 
x-coordinate of a point t. Call this k value locally critical for p,  and let E be the set 
of all k 's that are locally critical for pinch vertices on 7r,(6). 

Lemma 3.1. The smallest ~ in E is the smallest geodesicaUy critical value bigger 
than e. 

Proof. Let 6 '  be the smallest geodesically critical value bigger than e. If  we were 
to increase 6 '  "infinitesimally," then, by definition, ~ru(6')would have at least one 
fewer edge. For this to occur, two consecutive edges of 7ru(e') would have to be 
replaced by a single edge. Thus, the vertex incident upon the two removed edges is a 
pinch vertex; hence e '  is in E. NoW, let e" be the smallest value in E. Since there is 
no value in E smaller than e" in E, zr~(k) does not change for k ~ (6, 6"]. Thus, 
there is a global change to 7r=(k) for k > 6", which implies that e" is geodesically 
critical. Therefore, 6 '  = 8", which completes the proof. []  

Our method for maintaining 7r,(6), then, is as follows. We store the values 
belonging to E in a priority queue that supports the operations of insert, delete, and 
extract-min in O(log n) time (e.g., see [17]). While E is not empty, we extract the 
smallest k in E, perform the modification of 7r,(k) implied by this geodesically 
critical value, and then update E to reflect the new geodesic path. This update 
involves examining the two vertices of 7ru(~) that now become adjacent and updating 
E accordingly. If either of them were previously pinch vertices, then we remove its 
corresponding locally critical value from E. Likewise, if either of them becomes a 
pinch vertex after performing the update for ~, then we insert its new locally critical 
value into E. Since we reduce by one the number of edges of the geodesic path with 
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each event in E, the total number of  events must be O(n); hence, the total time to 
enumerate all the geodesically critical values is O(n log n). 

Given these geodesically critical values it is then a simple manner to determine 
the consecutive pair tha~t ,contains 8* by using the method of Hershberger and 
Snoeyink [32], Guibas et al. [29], or Hakimi and Schmeichel [30] to drive a binary 
search among the set of  geodesically critical values. Using one of  these simple 
algorithms, all of  which are based upon the "greedy method," to test if a given 8 is 
smaller than 8* takes O(n)  time. This implies that we can determine, in O(n log n) 
time, the combinatorial structure of 7ru(8*), and, as mentioned above, a similar 
procedure gives us the combinatorial structure of 7rg(8*). Therefore, we can identify 
all the inflection edges in H(8*),  each of  which F must contain, by Lemma 2.1. 

All that is left, then, is for us to determine all the links of F that do not contain 
inflection edges. 

4. Completing the Construction 

Whereas we used geodesic paths to find the zig-zag and zag-zig links, to complete 
the construction we use a related s t ructure-- the  visibility graph. In particular, recall 
that the visibility graph of a set of line segments R has a vertex for each endpoint of 
a segment in R and an edge for each pair (p,  q) such that the line segment pq does 
cross any segment in R, although we allow pq to intersect segment endpoints and 
even contain the segment pq if it is in R. It is well known, for example, that geodesic 
paths always follow visibility graph edges. 3 In our case we are interested in the 
visibility graph defined on the segments in U(8) t.) G(8). We say that a line seg- 
ment s is U-anchored (resp. G-anchored) if s contains an edge e in the visibility 
graph of  U(8*) O G(8*) such that both of e's vertices lie on U(8*) (resp. G(e*)). 
The following lemma establishes an important relationship between a best k-link 
function approximation to S and these anchored links. 

Lemma 4.1. Any canonical best k-link approximation to S has a U-anchored link 
containing a vertex o f  G( 8 * ) or a G-anchored link-containing a vertex o f  U( 8 * ). 

Proof. The proof follows immediately from the characterization lemma of Hakimi 
and Schmeichel [30]. [ ]  

o u r  method for enumerating all such edges is I~ased upon several applications of 
the parametric-searching technique, as optimized by Cole [13], [14]. One such 
optimization applies to any situation that involves a set Z = {z 1, z 2 . . . . .  Zm} of m 
independent binary searches among an ordered set A = (al, a 2 . . . . .  a n) of n items, 
where each comparison c(ai, Zj) is parametrized by 8. The outcome of c(ai, Zj) 
depends upon which of a constant number of intervals, determined by a i and zj, 

3 For more information about visibility graphs and their properties see the excellent book by 
O'Rourke [50]. 
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contain 6*. If  it takes T steps to determine if 6* < 6, for a particular 6, then this 
parametric-searching technique allows us to perform all rn binary searches in 
O((T + m)(log n + log m)) time (see [13] for details). It also gives us an interval 
[61, 62] containing z*, which is the intersection of all the intervals determined to 
contain 6* during the m searches. 

The second optimization applies when one wishes to sort a set A = 
{al, a2, . . . ,an},  where, as in the previous case, each comparison c(ai, a j) is 
parametrized by 6 so that the outcome of c(ai, a j) depends upon which of a constant 
number of intervals, determined by a i and aj, contain e*. If it takes T steps to 
determine if 6* < e, for a particular 6, then this parametric-searching technique 
allows us to sort the elements of A in O((T + n)log n) time (see [13] and [14] for 
details). Also, this method gives an interval [el, 62] containing 6*, which is the 
intersection of all the intervals determined to contain 6" during the sort. 

The challenge, of course, in applying these techniques is to design the param- 
etrized sorting and searching procedures so that the results are meaningful. We 
therefore turn to our application of these techniques. 

4.1. Finding 6" 

Our method for completing the construction is to perform a parametric search for a 
U-anchored or G-anchored link satisfying Lemma 4.1. Observe that finding such a 
link effectively "clamps" U(e) and G(e)  at e = e*. Also note that we can use the 
linear-time method of Hershberger and Snoeyink [32], Guibas et al. [29], or Hakimi 
and Schmeichel [30] to resolve comparisons and to give us the final approximation F 
once we have narrowed the interval of candidate e values to [e*, e*]. 

To simplify the discussion we concentrate on the problem of determining a 
U-anchored link that contains a vertex of G(6*); the method is similar for visibility 
edges anchored on G(e).  Our algorithm actually "dovetails" the search for a 
U-anchored link containing a vertex of G(6*)with the search for a G-anchored link 
containing a vertex of U(6*). 

Call a vertex p of U(6) a left inflection (resp. right inflection) vertex if p is the left 
(resp. right) endpoint of an inflection edge of H(6*). Following an approach similar 
to that used by Ghosh [23], consider a portion of U(6) between a left inflection 
vertex p and the leftmost right inflection vertex q to the right of  p. Denote this 
portion of U(6) a s  U[p,q](6). Note that the portion of ~ru(6*) between p and q is a 
convex chain of  edges such that each consecutive pair forms a "right turn." Denote 
this portion of  7ru(6*) as ~r[p, q] (but note that we have yet to determine 6 * - - a t  
this point we only know the combinatorial structure of zru(6*)). Finally, observe that 
if Utp. q](6) contains the endpoints v and z of the U-anchored link that we seek, 

then v'z must be equal to the common tangent of v and 7r[p, q] as well as z and 
zr[p, q]. (See Fig. 5.) Moreover, if the link satisfying Lemma 4.1 is a U-anchored 
link, then it must contain such a tangent edge for some U[p.q](6). 

Our  first parametric search therefore is to determine for each vertex v on 
U[p,q](6) its vertex of tangency, t(v), with the convex chain zr[p, q] at 6 = 6" (see 
Fig. 5). In this case we can use binary-search-based parametric searching [13] applied 
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Fig. 5. A U-anchored edge determining e*. 

to a well-known "binary-search" tangent-finding method (e.g., see [21] and [51]) to 
find all such tangents in O(n log n) time. This may still not restrict our interval of 
e values to [8", e*], however, for a vertex v will have the same vertex of tangency, 
t(v), over a range of  6 values. 

For each vertex w on rr[p,q], we collect each vertex v on U~p.q](e) such that 
w = t(v) into two sets--l(w),  containing the vertices to the left of w, and r(w), 
containing the vertices to the right of  w. If w is the vertex of tangency for the 
U-anchored edge we seek, then that edge is determined by a v ~ l(w) and a 
z ~ r(w). In order for these two vertices to be able to "search for each other," 
however, we must first order the vertices in l(w) and r(w) radially around w. To 
accomplish this we make a second application of parametric searching, this time 
using the second version, based upon a parallel-sorting algorithm [13], [14], together 
with the linear-time method of Hershberger and Snoeyink [32], Guibas et al. [29], or 
Hakimi and Schmeichel [30] for resolving comparisons, to sort all l(w) and r(w) lists 
in O(n log n) time. This may still not restrict the range of e values to [e*, e*], 
however, for the vertices in an l(w) and r(w) may have the same ordering with 
respect to w over a range of  6 values. 

Therefore, to complete the process we must perform one more application of 
parametric searching where we perform a binary search in l(w) for each z ~ r(w) to 
locate the vertex in l(w) hit by the ray z t ( z ) ,  if it exists. Given that each l(w) is now 
sorted, we can perform all of these binary-search parametric searches in O(n log n) 
time. Since one of  these searches (or a corresponding search for G-anchored edges) 
must succeed, we finally are guaranteed to have restricted the range of candidate 6 
values to the interval [6", 6*]. Moreover, seeing how the last comparison in this 
parametric search was resolved using a minimum-link ordered stabber algorithm, 
this completes the construction, giving us the following theorem. 
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Theorem 4.2. Given a set S of  n points in the plane, and an integer parameter 
1 < k < n - 1, a best k-link approximation to S can be constructed under the uniform 
metric in O(n log n) time. 

5. Simplifying the Implementation 

Although our method for finding a best k-link approximation to S is conceptually 
simple at a high level, implementing it in practice would probably not be so easy. 
The chief difficulty arises from the (up to) three calls to parametric searching that 
are made at the end of the algorithm; all the other steps would be relatively 
straightforward to implement. However, those calls to parametric searching, espe- 
cially the version based upon a parametric sorting, would be a challenge to 
implement, and the constant factors they would imply in the running time would not 
be very small. Fortunately, as we show in this section, we can considerably simplify 
these calls to parametric searching. In particular, we show how to eliminate the 
(second) call based upon sorting all together, and we observe how all our calls to 
parametric searching can be simplified through a simple randomization technique. 
The resulting algorithm will still be guaranteed to find a best k-link approximation 
to S, however, for the randomization will only impact the running time of our 
method, not its correctness. Nevertheless, it will result in a method that runs in 
O(n log n) time with very high probability. Moreover, the (expected) constant factors 
will be reasonably small. 

We begin by describing how we can eliminate the call to sorting-based parametric 
searching, which comprises the second call to parametric searching in our algorithm. 
Recall that after we have made our first call to (binary-search-based) parametric 
searching, we have determined for every vertex v o n  U[p,q](6) its tangent, t (v)  on 
I t[p,  q]. Previously, we then collected, for each w on 1rip, q], all the vertices on 
Utp, ql( , )  whose tangent is w to the "left set" l(w) and the "right set" r(w), and we 
sorted the vertices of l(w) radially around w (using sorting-based parametric 
searching) so that we can then do a binary search in l(w) for each vertex in r(w) 
(using binary-search-based parametric searching). Observe, however, that we do not 
need all the vertices of l(w) to perform this search; we need only those vertices that 
are visible from w o n  U[p,ql(r  ThUS, we use /vis(W) to denote the set of  vertices in 
l(w) that are visible from w on Utp ' ql(e*). If we can determine these visible vertices, 
then, as the following lemma shows, we can sort them without resorting to paramet- 
ric searching. 

Lemma 5.1. Sorting the vertices of  l~s(w) radial~ around w as they appear on 
Utp, qj(e*) gives the same order as a listing of  the vertices of/vis(W) by increasing 
x-coordinates. 

Proof. Suppose, for the sake of a contradiction, that there are two vertices u and z 
in l,~(w) such that u is before z in a radial listing around w as they appear on 
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Fig. 6. An illustration of why/vis(W) is already sorted. 

Uip, ql(e*) , but x(z)  < x(u). (See Fig. 6.) Since w is below the c u r v e  U[p,q](6*), this 
implies that Utp ' q1(6") intersects the segment ~ .  However, this contradicts the fact 
that z is visible from w; hence, this establishes the lemma. []  

Thus, it is sufficient for us to determine the members of  lvis(W), for each w on 
7rip, q], since they are already given by increasing x-coordinates (for that is how the 
vertices are ordered in S). 

So, we turn to the problem of determining the members of/vis(W) for some given 
w on ~r[p, q]. Let w'  denote the vertex on U[p,q](6) directly above w (i.e., if w = gi, 
then w'  = ui). A simple consequence of the proof of Lemma 5.1 is that a vertex v in 
l(w) is in lvis(W) if and only if the geodesic path from v to w' is above the line 
segment v--ft. Indeed, it is sufficient that the first edge e(v) in this path be above the 
segment b--ft. Since each such geodesic path remains unchanged for e ~ [61, 62] 
(because it is a sequence of  left turns that occur at vertices of U[p, qj(6)), we can 
determine e(v) for each such v without knowing the value of 6*. Specifically, we can 
use the data structure of Guibas and Hershberger [27], as simplified by Hershberger 
[31], to determine each e(v) in O(log n) time. This data structure is relatively simple 
to construct and query, especially since each U[p, ql(6) is a single monotone chain. 

Note that each e(v) determines a critical k v value such that v is visible if 6 > ~, 
and v is not visible otherwise. Thus, once we have determined all the e(v)'s, we can 
then determine which v's are visible from their respective w = t(v) vertices simply 
by resolving all of  the ~'s against 6* using the method of Hershberger and Snoeyink 
[32], Guibas et al. [29], or Hakimi and Schmeichel [30] to drive a binary search. Since 
there are O(n) such parametrized comparisons, and each resolution requires O(n) 
time, the total time needed to resolve all of these comparisons is O(n log n). This 
implies that we can substitute the most simple form of parametric searching for the 
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more-complicated sorting-based method [13], [14]. The resulting algorithm would 
still run in O(n log n) time. The only slightly impractical steps in this algorithm are 
repeated computations of medians (e.g., of the remaining unresolved ~'s in each 
iteration of the above binary search), for which the best deterministic algorithm has 
a relatively large constant (e.g., see [17]). 

However, the computation of a median or weighted median (which is the 
least-efficient step in the binary-search-based parametric-searching method of Cole 
[13]) can be significantly improved in practice through the use of randomization (e.g., 
see [17]). The effect in our case is that the resulting algorithm will still be guaranteed 
to find a best k-link approximation, but it will not be guaranteed to run in 
O(n log n) time. Nevertheless, it will run in O(n log n) time with Very high probabil- 
ity, and the (expected) constants factors in the running time will be very reasonable. 
Thus, we suggest such a use of randomization in any implementation of our method. 

6. Concluson and Directions for Future Work 

We have given an O(n log n)-time method for finding a best k-link approximation to 
a set of n points in the plane under the uniform metric, and we have even given a 
method for efficiently implementing it in practice. This suggests a number of 
interesting directions for future work. Some possibilities include examining metrics 
other than the uniform metric, approximating with higher-degree spline functions, 
and approximating more general types of geometric objects (such as segments joined 
in a polygonal path). As with our results, the general goal should be to find a best 
k-piece approximation, since this is the version of the problem driven by bounds 
placed upon the computational resources needed to represent the approximation. 

Acknowledgments 

I would like tO thank Jack Snoeyink for some stimulating discussions regarding 
minimum-link function approximations, for several helpful comments regarding 
earlier versions of this paper, and, in particular, for pointing out the counterexample 
illustrated in Figure 2. Finally, I would like to thank Esther Arkin, Mikhail Atallah, 
Paul Chew, Simon Kasif, S. Rao Kosaraju, Joe Mitchell, and David Mount for 
several helpful discussions concerning this and related problems. 

References 

1. P. K. Agarwal, A. Aggarwal, B. Aronov, S. R. Kosaraju, B. Schieber, and S. Suri, Computing 
external farthest neighbors for a simple polygon, Discrete Appl. Math., 31(2), 97-111, 1991. 

2. P. K. Agarwal, B. Aronov, M. Sharir, and S. Suri, Selecting distances in the plane, Proc. 6th Ann. 
ACM Symp. on Computational Geometry, pp. 321-331, 1990. 



460 M.T. Goodrich 

3. P. K. Agarwal and J. Matou~ek, Ray shooting and parametric search, Proc. 24th Ann. ACM 
Syrup. on Theory of Computing, pp. 517-526, 1992. 

4. P. K. Agarwal, M. Sharir, and S. Toledo, Applications of parametric searching in geometric 
optimization, Proc. 3rd ACM-SlAM Symp. on Discrete Algorithms, pp. 72-82, 1992. 

5. A. Aggarwal, H. Booth, J. O'Rourke, S. Suri, and C. K. Yap, Finding minimal convex nested 
polygons, Proc. lst Ann. ACM Syrup. on Computational Geometry, pp. 296-304, 1985. 

6. E. M. Arkin, J. S. B. Mitchell, and S. Suri, Optimal link path queries in a simple polygon, Proc. 
3rd ACM-SIAM Symp. on Discrete Algorithms, pp. 269-279, 1992. 

7. B. Aronov, On the geodesic Voronoi diagram of point sites in a simple polygon, Algorithmica, 4, 
109-140, 1989. 

8. R. E. Bellman and R. S. Roth, Curve fitting by segmented straight lines, Amer. Statist. Assoc. J., 
64, 1079-1084, 1969. 

9. R. E. Bellman and R. S. Roth, Methods in Approximation: Techniques for Mathematical Modelling, 
Reidel, Boston, MA, 1986. 

10. B. Chazelle, H. Edelsbrunner, M. Grigni, L. Guibas, J. Hershberger, M. Sharir, and J. Snoeyink, 
Ray shooting in polygons using geodesic triangulations, Proc. 18th Internat. Colloq. on Automata 
Language Programming. Lecture Notes in Computer Science, vol. 510, Springer-Verlag, Berlin, 
pp. 661-673, 1991. 

11. B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir, Diameter, width, closest line pair, and 
parametric searching, Proc. 8th Ann. ACM Syrup. on Computational Geometry, pp. 120-129, 1992. 

12. K. L. Clarkson, Linear programming in O(n3 d2) time, Inform. Process. Lett., 22, 21-24, 1986. 
13. R. Cole, Slowing down sorting networks to obtain faster sorting algorithms, J. Assoc. Comput. 

Mach., 34, 200-208, 1987. 
14. R. Cole, Parallel merge sort, S/AM J. Comput., 17(4), 770-785, 1988. 
15. R. Cole, J. Salowe, W. Steiger, and E. Szemerrdi, An optimal-time algorithm for slope selection, 

SIAMJ. Comput., 18, 792-810, 1989. 
16. S. D. Conte and C. de Boor, Elementary NumericalAnalysis: An Algorithmic Approach, 3rd edn., 

McGraw-Hill, New York, 1980. 
17. T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, MIT Press, 

Cambridge, MA, 1990. 
18. P. J. Davis, Interpolation and Approximation, Blaisdell, New York, 1963. 
19. P. Dierckx, Curve and Surface Fitting with Splines, Clarendon Press, New York, 1993. 
20. M. E. Dyer, Linear time algorithms for two- and three-variable linear programs, SlAM J. 

Comput., 13, 31-45, 1984. 
21. H. Edelsbrunner, Agorithms in Combinatorial Geometry, EATCS Monographs on Theoretical 

Computer Science, vol. 10, Springer-Verlag, Heidelberg, 1987. 
22. H. E1Gindy and M. T. Goodrich, Parallel algorithms for shortest path problems in polygons, 

Visual Comput., 3, 371-378, 1988. 
23. S. Ghosh, Computing visibility polygon from a convex set and related problems, J. Algorithms, 

12, 75-95, 1991. 
24. S. K. Ghosh and A. Maheshwari, Parallel algorithms for all minimum link paths and link center 

problems, Proc. 3rd Scand. Workshop on Algorithm Theory, Lecture Notes in Computer Science, 
vol. 621, Springer-Verlag, Berlin, pp. 106-117, 1992. 

25. M. T. Goodrich and R. Tamassia, Dynamic ray shooting and shortest paths via balanced 
geodesic triangulations, Proc. 9th Ann. ACM Syrup. on Computational Geometry, pp. 318-327, 
1993. 

26. L. J. Guibas and J. Hershberger, Optimal shortest path queries in a simple polygon, Proc. 3rd 
Ann. ACM Syrup. on Computational Geometry, pp. 50-63, 1987. 

27. L. J. Guibas and J. Hershberger, Optimal shortest path queries in a simple polygon, Z Comput. 
System Sci., 39, 126-152, 1989. 

28. L. J. Gnibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan, Linear-time algorithms for 
visibility and shortest path problems inside triangulated simple polygons, Algorithmica, 2, 
209-233, 1987. 



Efficient Piecewise-Linear Function Approximation Using the Uniform Metric 461 

29. L. J. Guibas, J. E. Hershberger, J. S. B. Mitchell, and J. S. Snoeyink, Approximating polygons 
and subdivisions with minimum link paths, Proc. 2nd Ann. SIGAL lnternat. Syrup. on Algorithms, 
Lecture Notes in Computer Science, vol. 557, Springer-Verlag, Berlin, pp. 151-162, 1991. 

30. S. L. Hakimi and E. F. Schmeichel, Fitting polygonal functions to a set of points in the plane, 
CVGIP: Graph. Mod. Image Proc., 53(2), 132-136, 1991. 

31. J. Hershberger, A new data structure for shortest path queries in a simple polygon, Inform. 
Process. Lett., 38, 231-235, 1991. 

32. J. Hershberger and J. Snoeyink, Computing minimum length paths of a given homotopy class, 
Proc. 2nd Workshop on Algorithms and Data Structures, Lecture Notes in Computer Science, 
vol. 519, Springer-Verlag, Berlin, pp. 331-342, 1991. 

33. H. Imai and M. Iri, Computational-geometric methods for polygonal approximations of a curve, 
Comput. Vision Graph. Image Process., 36, 31-41, 1986. 

34. H. Imai and M. Iri, An optimal algorithm for approximating a piecewise linear function, 
J. Inform. Process., 9(3), 159-162, 1986. 

35. H. Imai and M. Iri, Polygonal approximations of a curve-formulations and algorithms, in 
ComputationalMorphology, G. T. Toussaint, ed., North-Holland, Amsterdam, pp. 71-86, 1988. 

36. D. L. B. Jupp, Approximation to data by splines with free knots, SlAM J. Numer. AnaL, 15(2), 
328-343, 1978. 

37. Y. Ke, An efficient algorithm for link-distance problems, Proc. 5th Ann. ACM Syrup. on 
Computational Geometry, pp. 69-78, 1989. 

38. D. T. Lee and F. P. Preparata, Euclidean shortest paths in the presence of rectilinear barriers, 
Networks, 14, 393-410, 1984. 

39. W. Lenhart, R. Pollack, J.-R. Sack, R. Seidel, M. Sharir, S. Suri, G. T. Toussaint, S. Whitesides, 
and C. K. Yap, Computing the link center of a simple polygon, Discrete Comput. Geom., 3, 
281-293, 1988. 

40. J. Matougek, M. Sharir, and E. Welzl, A subexponential bound for linear programming, Proc. 8th 
Ann. ACM Syrup. on Computational Geometry, pp. 1-8, 1992. 

41. N. Megiddo, Applying parallel computation algorithms in the design of serial algorithms, 
J. Assoc. Comput. Mach., 30, 852-865, 1983. 

42. N. Megiddo, Linear-time algorithms for linear programming in R 3 and related problems, SIAM 
J. Comput., 12, 759-776, 1983. 

43. N. Megiddo, Linear programming in linear time when the dimension is fixed, J. Assoc. Cornput. 
Mach., 31, 114-127, 1984. 

44. A. Melkman and J. O'Rourke, On polygonal chain approximation, in ComputationalMorphology, 
G. T. Toussaint, ed., North-Holland, Amsterdam, pp. 87-95, 1988. 

45. J. S. B. Mitchell, An algorithmic approach to some problems in terrain navigation, Artificial 
Intelligence, 37, 171-201, 1988. 

46. J. S. B. Mitchell, D. M. Mount, and C. H. Papadimitriou, The discrete geodesic problem, SlAM 
J. Comput., 16, 647-668, 1987. 

47. J. S. B. Mitchell, C. Piatko, and E. M. Arkin, Computing a shortest k-link path in a polygon, 
Proc. 33rd Ann. IEEE Symp. on Foundations of Computer Science, pp. 573-582, 1992. 

48. J. S. B, Mitchell, G. Rote, and G. Woeginger, Minimum-link paths among obstacles in the plane, 
Proc. 6th Ann. ACM Syrup. on Computational Geometry, pp. 63-72, 1990. 

49. J. S. B. Mitchell and S. Suri, Separation and approximation of polyhedral surfaces, Proc. 3rd 
ACM-SIAM Symp. on Discrete AIgorithms, pp. 296-306, 1992. 

50. J. O'Rourke, Art Gallery Theorems and Algorithms, Oxford University Press, New York, 1987. 
51. F. P. Preparata and M. I. Shamos, Computational Geometry: an Introduction, Springer-Verlag, 

New York, 1985. 
52. J.-M. Robert and G. Toussaint, Linear approximation of simple objects, Proc. 9th Symp. on 

Theoretical Aspects of Computing Science, Lecture Notes in Computer Science, vol. 577, 
Springer-Verlag, Berlin, pp. 233-244, 1992. 

53. R. Seidel, Small-dimensional linear programming and convex hulls made easy, Discrete Comput. 
Geom., 6, 423-434, 1991. 



462 M.T. Goodrich 

54. S. Suri, A linear time algorithm for minimum link paths inside a simple polygon, Comput. lPtsion 
Graph. Image Process., 35, 99-110, 1986. 

55. S. Suri, Minimum link paths in polygons and related problems, Ph.D. thesis, Department of 
Computer Science, Johns Hopkins University, Baltimore, MD, 1987. 

56. S. Suri, Computing geodesic furthest neighbors in simple polygons, J. Comput. System Sci., 39, 
220-235, 1989. 

57. G. T. Toussaint, On the complexity of approximating polygonal curves in the plane, Proc. 
lASTED, Intemat. Syrup. on Robotics and Automation, Lugano, 1985. 

58. D. P. Wang, N. F. Huang, H. S. Chao, and R. C. T. Lee, Plane sweep algorithms for polygonal 
approximation problems with applications, Proc. 4th Ann. Imemat. Symp. on Algorithms and 
Computing (ISAAC 93), Lecture Notes in Computer Science, vol. 762, Springer-Verlag, Berlin, 
pp. 515-522, 1993. 

Received March 1994, and in revised form January 1995. 


