1

One of the primary models of parallel computation is the Parallel Random-Access
Machine (or PRAM) model (e.g., see JaJ4 [15], Karp and Ramachandran [16], and

Sorting on a Parallel Pointer Machine with
Applications to Set Expression Evaluation

MIcCHAEL T. GOODRICH AND S. Rao KosArRAJU

Johns Hopkins University, Baltimore, Maryland

Abstract

We present optimal algorithms for sorting on parallel CREW and
EREW versions of the pointer machine model. Intuitively, one can view
our methods as being based on a parallel mergesort using linked lists
rather than arrays (the usual parallel data structure). We also show how
to exploit the “locality” of our approach to solve the set expression eval-
uation problem, a problem with applications to database querying and
logic-programming, in O(logn) time using O(n) processors. Interestingly,
this is an asymptotic improvement over what seems possible using previ-

ous techniques.

Categories and Subject Descriptors: E.1 [Data Structures|: arrays, lists;
F.2.2. [Analysis of Algorithms and Problem Complexity]: Nonnu-

merical Algorithms and Problems—sorting and searching
General Terms: Algorithms, Theory, Verification

Additional Key Words and Phrases: parallel algorithms, PRAM, pointer
machine, linking automaton, expression evaluation, mergesort, cascade

merging

Introduction

of Computer Science, 1989, 190-195. Professor Goodrich’s research was supported by the National
Science Foundation under Grants CCR-8810568, CCR-8908092, CCR-9003299, TRI-9116843, and
CCR-9300079. Professor Kosaraju’s research was supported by the National Science Foundation
under Grants CCR-8804284, CCR-8908092, CCR-9107293, and CCR-9508545. Authors’ address:

Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218; e-mail:

A preliminary announcement of this research appeared in Proc. 30th IEEE Symp. on Foundations

goodrich@cs.jhu.edu, kosaraju@cs.jhu.edu.

Reif [14]), where one has a collection of synchronized processors that access a com-
mon memory. Each processors may use any of the addressing schemes allowed by
the sequential RAM model (see Cormen et al. [11]), such as indexed and indirect
addressing, to access the memory cells, so long as such an access does not violate
any concurrent-access constraints that may have been placed on the common mem-
ory. The three principal examples of such constraints include the EREW constraint,
where one only allows exclusive reads and exclusive writes in any step; the CREW
constraint, where one allows many processors to concurrently read from the same
memory cell, but writes must be exclusive; and the CRCW constraint, where one al-
lows concurrent reads and concurrent writes (assuming a suitable conflict resolution
mechanism for the writes).

Just as the PRAM model is a generalization of the sequential RAM model, the
Parallel Pointer Machine (or PPM) model is a generalization of the sequential Pointer
Machine model described by Chazelle [8], which is similar to the Linking Automaton
model of Knuth [17] and Tarjan [26]. In the PPM, one has a collection of synchronized
processors that may access a common memory, just as in the PRAM model. In
this model, however, the types of memory accesses are limited to those allowed by
the Pointer Machine. In particular, the common storage is modeled as a directed
graph, whose vertices correspond to memory cells, where each cell has O(1) value
fields. The edges of this graph correspond to pointers, and each cell has O(1) pointer
fields. A processor accesses this storage via O(1) pointers that are stored in registers
inside the processor itself (there are no addresses). All the information exchange
between processors happens exclusively through reading and writing into the cells of
the common storage. The operations each processor can perform on (non-pointer)
values include the “standard” arithmetic and comparison operations. The allowed
pointer operations include copying a pointer to an internal pointer register, copying
a pointer register to an external pointer field, or reading the contents of a cell to
which a pointer refers (i.e., indirect access). If a pointer 7 refers to another pointer
p, then an indirect access of 7 is allowed, i.e., one may copy p to an internal pointer
register, and is commonly referred to as a “pointer hop”. A processor may compare
two pointer registers for equality (to see if they point to the same cell), but pointer
arithmetic (e.g., indexed addressing) is not allowed. In addition, a processor may
create a new memory cell in a single time step.

Just as with the PRAM model, one may place constraints on the types of con-

current accesses that processors are allowed to make. Specifically, an EREW PPM

prohibits more than one processor reading or writing the same cell of the storage at
any instant, a CREW PPM allows common reads of a cell by many processors, but
prohibits common writes to any cell in any step, and a CRCW PPM allows both
concurrent reads and concurrent writes (assuming some type of conflict resolution).
Note that each of these models is no stronger than its PRAM counterpart, since a
PRAM can easily simulate each step of a PPM in O(1) time and linear work, but a
PPM does not support indexed addressing.

We are interested in the complexity of sorting on a PPM. Let us, then, briefly
review a small sample of the voluminous work previously done on parallel sorting. In
1968 Batcher [4] gave what is considered to be the first parallel sorting scheme. Specif-
ically, his was a sorting network that sorted in O(log®n) time using O(n) processors.
Since then there has been a considerable amount of work done for this important
problem (e.g., see Bitton et al. [7], JAJ4 [15], Karp and Ramachandran [16], and
Reif [14]). Nevertheless, it was not until 1983 that it was shown, by Ajtai, Komlés,
and Szemerédi [2], that one can sort in O(logn) time with an O(nlogn) sized sorting
network (see also Paterson [23]). In 1985 Leighton [20] extended this result to show
that one can produce an O(n)-node bounded-degree network capable of sorting n
numbers in O(logn) steps. One drawback of these algorithms, however, is that they
are strongly dependent on expander graphs. This dependence on expander graphs
is not required for an optimal PRAM solution, however, for in 1988 Cole [10] gave
simple methods for optimal sorting in the CREW and EREW PRAM models that
do not use expander graphs, but instead are based on an elegant “cascade merging”
paradigm using arrays. Interestingly, although Cole’s procedure did not improve the
asymptotic complexity of sorting on the PRAM model, it did lead to improvements
in the asymptotic complexity of a number of computational geometry problems, as
it was the key ingredient of the cascading divide-and-conquer technique of Atallah,
Cole, and Goodrich [3].

Our interest in sorting on the PPM is motivated by a desire for a parallel mergesort
procedure that is more closely akin to the linked-list implementation of the sequential
mergesort procedure (e.g., see Knuth [18] and Sedgewick [24]). We show that one
can achieve this goal, for we give optimal O(logn)-time sorting algorithms for both
the CREW PPM and EREW PPM models. Our methods are loosely based on the
cascade merging paradigm introduced by Cole [10], but the details of our methods
differ considerably from those of Cole’s methods. His methods crucially depend on

sorted sets being represented in arrays, and it seems impossible to implement his

methods in a parallel pointer machine model and still maintain optimal performance.

Moreover, in addition to giving optimal PPM sorting algorithms, we also show
that our linked-list parallel implementation of mergesort does, in fact, lead to asymp-
totic improvements to the parallel complexity of other problems. In particular, we
generalize our linked-list based approach to optimally solve the set-expression evalu-
ation problem in parallel. In this problem one is given a tree T such that each leaf of
T stores a singleton set and each internal node is labeled with an operation from the
set {U,N}, and one wishes to construct a sorted representation of the set defined by
the root of T', assuming a bottom-up evaluation. This problem has applications in
database querying and logic programming. We do not know of any previous parallel
algorithms for this problem, but it appears that the array-based merging methods
of Bilardi and Nicolau [6], Shiloach and Vishkin [25], or Hagerup and Riib [12] and
the tree-contraction techniques of Abrahamson et al. [1], Miller and Reif [21, 22],
or Kosaraju and Delcher [19] will lead to an O(log®n) time solution with a time-
processor product of O(nlogn). We achieve O(logn) time while still maintaining the
optimal time-processor product of O(nlogn). This method extends our linked-list
based technique in that it is performed on a directed acyclic graph (dag) rather than
a binary tree.

In the next section we give some preliminary definitions and lemmas, and in
Section 3 we give our optimal sorting algorithm for the CREW PPM model. In
Section 4 we extend our approach to do cascade merging in dags with a constant-
width tree partition, and we show how to use this to solve the set-expression evaluation
problem optimally in parallel. In Section 5 we show how to modify our sorting
algorithm to run in the EREW PPM model, and we conclude in Section 6.

2 Some Definitions and Merge Lemmas

Before we describe our sorting methods, we make the following definitions.

Definitions. Let A = (ay,as,...,a,) and B = (b, by, ...,b,) be two sorted lists,
represented as doubly-linked lists. We consider A to contain “virtual” elements ag
and a,.1 that are respectively smaller and larger than all the elements in A and B

(and similarly for B).

1. If every element a; in A has a pointer 3(a;) to an element of B, then A is linked
into B. A is predecessor-linked into B (denoted AﬂB} if f(a;) points to the

predecessor of a; in B, i.e., the greatest element in B less than or equal to a;.
rank

A is rank-linked into B (denoted A—B) if n = m and, for each i, §(a;) points

to b;, which we call the twin of a;.

2. A is a sample of B if its elements form a subsequence of B. A is a (¢, d)-sample
of B if it is a sample of B and for any 0 < i < n the number of elements of B

in the interval (a;, a;11) is at least ¢ and at most d.

3. An element a is in the c-neighborhood of an element b; in B if a € [bj—., b; 1|, for
i € {1,2,...,m}, where we make the convention that by =b_; = --- =b_. <
min{a, b;} and by = -+ = byy. > max{a,b,}. A c-conforms to B if n =m

and a; is in the c-neighborhood of b; for all i =1, ..., n.

4. A is a c-cover of B if, for any two consecutive elements e and f in A, there are

at most ¢ elements of B in the interval [e, f). (This definition is also used by

Cole [10]).

Note that the first definition deals with pointer relationships between A and B, and
the last three definitions deal with value relationships. Let us make two observations

about these relationships before going on.
Observation 2.1: If A is a (c1, ¢2)-sample of B, then A is a (¢ + 1)-cover of B.
Observation 2.2: If A c-conforms to B, then A is a 2c-cover of B.

There are essentially two types of merging procedures we use in our sorting algo-

rithm, both of which are built upon the following simple lemma:

Lemma 2.3: Suppose one is given three lists A, B, and C, such that B C A and B
is a d-cover of C, for some constant d. If one has AP4B and B&ed)C, then one can

compute AP in O(1) time with a processor assigned to each element in A in the

CREW PPM model.

Proof: Let a be an element in A. Follow the pointer from a to its predecessor, b, in
B, and follow the pointer from b to its predecessor, ¢, in C. Since B is a d-cover of
C, the predecessor of a in C can be at most d positions away from ¢ (if not, then b
would not be the predecessor of a). Thus, given ¢’s position in C, one can locate a’s
predecessor in O(d) = O(1) additional steps. O

I_
*

L O O

. O m O

o Pprec-linked 8 cover o - erge J
O O (pred-linked) © O
O o O ~ 0
O O O
O O O
O O O - 8
o O c-cover O /////// 5
O O (pred-linked) © O
O O O

A M © A

M*

Figure 1: The c-Cover Merge.

Note that we placed no restrictions on the number of elements in A that can have
the same predecessor in B; hence, there may be a number of concurrent reads in any
single application of Lemma 2.3. The following lemma makes two applications of this

lemma, and is illustrated in Figure 1.

Lemma 2.4: (The c-Cover Merge Lemma) Suppose one is given lists A, L, M,
L*, and M*, such that A= LU M, L is a c-cover of L*, and M is a c-cover of M*,
where c is a constant. In addition, suppose one is given AE}L, AEM, LEL*,
and MESM*. Then one can compute A* = L* U M* (with A PSS T and A*BM*)
in O(1) time with a processor assigned to each element in A in the CREW PPM

model.

Proof: By two applications of Lemma 2.3, one can compute AP T* and AR v
in O(1) time. Let a and b be two consecutive elements in A, and let L*(a,b) and
M*(a,b) be the sublists of L* and M?*, respectively, that fall in the interval [a,b).
In parallel for each such pair a,b one can construct the portion of A* that falls in
the interval [a,b) by merging L*(a,b) and M*(a,b) as in the sequential mergesort
procedure. Since L C A and M C A, and the fact that L is a c-cover of L* and

6

N
L L
o Pred-linked © conforms © . Mer%€ o
O O .
- / O (rank-llnked) O \\\\ O
O O O =0
O O
o O
O O O . ©
5 o conforms o g
O O (rank-linked) ©
A O O A’
M N
M

Figure 2: The Conforming Merge.

M is a c-cover of M*, we have that |L*(a,b)| < ¢ and |M*(a,b)| < ¢. Thus, all the
computations for this construction can be performed in O(c) = O(1) time given a
processor assigned to each element in A. O

Note that the c-Cover Merge Lemma deals with lists that are predecessor-linked

into other lists. The Conforming-Merge Lemma, which we describe next, deals with

rank-linked lists.

Lemma 2.5: (The Conforming-Merge Lemma) Suppose one is given lists A, L,
M, L, and M, such that A= LU M, L d-conforms to L, and M d-conforms to M,

where d is a constant. Suppose further that one is given AﬂL, AEM, Lﬂf/,

and M5 NI. Then one can compute A' = L U M (with AP], and A’&M} and
A= A in O(1) time with a processor assigned to each element in A in the CREW

PPM model.

Proof: First, note that |[A| = |4’], since L d-conforms to L and M d-conforms to
M (so A A7 s well-defined). Also, by Observation 2.2, note that L is a 2d-cover
of L and M is a 2d-cover of M. Thus, we can apply the c-Cover Merge Lemma to
compute A’, with AP T and A’@ﬂ\[in O(1) time.

We have yet to show how to compute A2 A’ That is, for each element a in A
we need to find a’s twin, o', in A’. Let ¢ denote the rank of a in A. (Note: we may
not actually know the value of 7 during an implementation of our algorithm, but this
will not matter for the proof.) Since A = L U M, there is a copy of a in L or M;
without loss of generality, suppose a € L. Let a be the twin of a in L (with respect
to the copy of a in L). Note that to determine the i-th element of A’ it is sufficient
to determine the rank of @ in A’, described in terms of i (e.g., by saying “a@ has rank
i—2in A"™). Let b be the predecessor of a in M, and let b be the twin of b in M.
Suppose a has rank j in L and b has rank k£ in M, so 2 = j + k. Note that a has rank
j in L, by definition. So we need only determine the rank of @ in M (in terms of k).
Since M d-conforms to M , the predecessor of @ in M can be at most d + 1 positions
away from b; hence, we can determine the (signed) difference between the rank of a
in M and the rank of b in M just by counting the number of elements between a’s
predecessor in M and b. Let —d —1 <1 < d+ 1 denote this difference, so that the
rank of @ in M is k + 1. Then the rank of 4 in A’ is j+k+1 =141 This completes
the proof, for to determine the i-th element of A" we need only march |I| positions
(left, if [< 0, right, if { > 0) in A’ from a&’s position in A’. O

Note that this proof depended on a rank-based argument, but we did not need
to explicitly maintain ranks. All that was needed was the relative ranks of various
elements.

Having given the main lemmas for our method, we now discuss how to sort n

elements in a CREW PPM in O(logn) time using O(n) processors.

3 Sorting on a CREW PPM

Let S = {a1,as,...,a,} be a collection of elements taken from some total order, and
stored one element per memory cell in a CREW PPM, such that the cell for a; has
a pointer to the cell for a;y; (for i € {1,2,...,n — 1}). In addition, we assume that
there are n processors, such that processor ¢ has a pointer to a;. We also assume that
the elements in S are distinct. This introduces no loss of generality, for one can use
the convention that if a; = a;, then take a; < q; if and only if ¢ < j. Since ours is a
comparison-based sorting method, this will produce a stable sorting.

We begin our algorithm by building a complete (balanced) binary tree T with
n leaves such that the elements of S are stored in T one element per leaf. T can

easily be built in O(logn) time using the n processors, by, say, a recursive doubling

8

procedure (see JaJa [15], Karp and Ramachandran [16], or Reif [14]). As in parallel
mergesort procedure of Cole [10], we view T as the schematic for a parallel mergesort
procedure. We define a list A(v) for each v in T to be the sorted list of all elements
stored in descendents of v. A high-level description of our algorithm is similar to
the parallel mergesort procedure of Cole [10], in that we construct the A(v)’s in a
pipelined fashion in a series of O(logn) stages (the details of our method are quite
different than those for Cole’s method, however).

Throughout, we make the notational convention that v is an arbitrary node, x
and y are its children, and w is its parent. We also make the following definition:
Definition: Let L = (a;,, a;y,...,a;,) be a sample of A and let M be a sample of
B. L and M are parallel samples if M = (b;,, b;,, ..., b;,), i.e., the same indices are

chosen.

3.1 CREW Stage Invariants and Computations

Let A;(v) denote the list stored at node v in T" at the end of stage ¢. Each A;(v)
list is represented in sorted order as a doubly-linked list, and consists of the elements
that have been “passed” to node v from x and y. We also store a sample, L;(v), of
Ay(v), where the elements in L;(v) are to be passed up to u in the next stage (¢ + 1).
As in the algorithms of Atallah et al. [3] and Cole [10], we say that a node v is full
after stage ¢ if A;(v) contains all the elements stored in the descendents of v, and v
is active if A;(v) # (0 and wu is not full. Besides L;(v) and A;(v), we also store L;_1(v)
and another list f/t_l(v), at v, which facilitate the proper assimilation of the elements
of Li(x) and L;(y) into A;11(v). Our method maintains the following invariants at

the end of each stage ¢, as illustrated in Figure 3.

CREW List Invariants at the end of stage t: Fach active node v stores four
sorted lists, Ay(v), Le_1(v), Ly_1(v), and Ly(v), as doubly-linked lists that satisfy the

following properties:

1. If v was not full after stage t — 1, then A;(v) = Ly 1(z) U L, 1(y) and we have
At(v)ﬂLt,l(x) and At(v)ﬁljt,l(y). If v was full after stage t — 1, then
At(U) = At_l(U).

2. L;_1(v) 1-conforms to L,_(v), and is rank-linked into L,_1 (v).

3. L;_1(v) is a (0,1)-sample of Ly(v), and is predecessor-linked into L;(v).

contains L, ()

t
O
(0,1)-sample (c,c)-sample 8
conforms 5 L2 5 o
o—— O ©
O Q
o
O———= 0 O O
O O
@, O
O O O s 5
L L, (v =0
L) e ()) A TTE
Inv. 2 Inv. 3 Inv. 4 Inv. 1

Figure 3: The stage invariants.

4. If v is not full, then L;(v) is a (c;,cq)-sample of Ai(v), where ¢; and cy are
constants (fixed for the entire procedure, and set in the analysis). If v is full,
then L(v) is a (|c1/2"], |ca/2'])-sample, where i is the number of stages since

v first became full. In any case, Li(v) is predecessor-linked into A;(v).

Stage t+1 Computation: In Step 1, for each active node v, we construct temporary
lists A} (v) and Lj(v) and additional linkages to aid us in Step 2. In Step 2 we construct
A1 (v), in Step 3 we construct Ly(v), and in Step 4 we construct Ly, (v).

Step 1: If v is not full, then we construct a temporary list A}(v) = L,_(z) U
Li_1(y), with A;(v)ﬂf/t_l(x) and A;(v)mf/t_l(y). If v is full, then we simply take
Al(v) = Ay(v).

Implementation: This can all be done in O(1) time with a processor assigned to each
element of A;(v), by the Conforming-Merge Lemma. We can apply this lemma by List
Invariant 1 at v and List Invariant 2 at « and at y. Recall that the Conforming-Merge
Lemma also gives us A,(v)™5A!(v). We use this ranking to construct the sample
Li(v) of Aj(v) that is parallel to L;(v) in A;(v).

Comment: Since Lj(v) and L;(v) are parallel samples, L}(v) is a (ci, c2)-sample of
Al(v), for Ly(v) is a (cq, co)-sample of A;(v) (by List Invariant 4). (See Figure 4.)

Step 2: If v is not full, then we construct A;1(v) = Ly(x) U Ly(y). If v is full,
then we simply take A, 1(v) = A}(v).

10

- L (y)
pred-linked L () * (¢ ¢)-sample
merge
. O conforms o
((?I.’%) Sample /8 - - 8 \\\ 8 O
O =8 O O el O
O ——— 8 S ST o
o) , © O
O ———0O e O
O O O e 8 O
o 8 O conforms o .~ A (V) Lt 1(\/)
- O e +
L (v) AN =0 O rt
t L, . (%) ' A
\ t-1 L, (%))
\\\ parallel sample ,/’/

Figure 4: Illustrating Step 1, the construction of temporary lists
Al(v) and Li(v).

Implementation: We can perform this step in O(1) time with a processor assigned to
each element of A}(v), by the c-Cover Merge Lemma. We can apply this lemma, since
A;(v)ﬂf/t_l(x) and A;(v)ﬂﬁt_l(y) (by the result of applying the Conforming-
Merge Lemma in Step 1), and we have List Invariant 3 satisfied at x and at y. (See
Figure 5.)

Comment: This gives us List Invariant 1 at v for after stage ¢ + 1. In addition, from
List Invariant 2 at v’s children, it is easy to see that L}(v) is a (c1, 2¢o + 2)-sample of
Ay1(v) (if v is full, then it is a (¢, c2)-sample). However, this is not a “good enough”
sample of A;,(v) for our purposes.

Step 3: If v is not full, then we locally shift Lj(v) in A;;(v) to construct a
(¢c1,2¢5 4 1)-sample, L;(v), of Ayq(v). We also rank-link Lj(v) into L,(v), which
implicitly ranks L,(v) into L;(v). If v is full, then we take L;(v) = Li(v).

Comment: Intuitively, our method is to “take” an element from each large interval of
A;11(v) between two consecutive elements of L}(v), and “pass” it down the list, from
interval to interval, until we find a small interval to “give” it to.

Implementation: Let b € A;1(v) be an element in L}(v). Since b is in L}(v), it is also
in Al(v). Thus, since A'(v) = Ly_1(x) U L,_1(y) and A}(v) is predecessor-linked into
L, 1(z) and L,_(y), we can easily determine b’s predecessor in L, ;(z) and L, 1(y),

respectively, one of which must be b itself. Without loss of generality, assume that

11

(0,1)-samples

. ' L
pred-linked |—Ot_1(Y) !) (c,.2¢,+2)-sample
merge
- O O -
(¢.¢)-sample /8 3 . o O
O — 8 o) O N 3 O
o —=9 o T
O 7 3 ©
O —=0 S
o O o . S 2
O 8\8 : 8] A, (V) LHl(V)
t+1 t+1 L,
(x) !
\ t1 !
| L, () ;]
. same set e

Figure 5: Illustrating Step 2, the construction of A, ;(v).

be Li_1(y). Let e and g be the two consecutive elements of L;_;(z) such that b is in
the interval (e, g). Since L,_;(z) is a (0, 1)-sample of L(x) and is predecessor-linked
into Ly(x) (by List Invariant 3 at z), we can easily determine the element, f (if it
exists) in L;(x) such that f is in the interval (e, g). This is the value that determines
how we perform our local shift relative to b. In particular, if f < b, then we make the
immediate predecessor, a, of bin A;,(v) take b’s place in f/t(v), i.e., we put a in f/t(v)
instead of b—so that a is b’s twin in L;(v). On the other hand, if f > b, then we let
the copy of b in A1 (v) also be in L;(v)—so that b is its own twin in L,(v). We show
below, in Lemma 3.1, that this simple rule forces L(v) to be a (c1, 2¢; + 1)-sample of
Api1(v).

Step 4: We refine L(v) into Ly (v). We place each element of L;(v) in Ly (v),
and, for each sublist B,(e) of A;y;(v) consisting of all elements that are strictly
between two consecutive elements e and f of L;(v), we make the median of B,(e)
also be a member of L;;;(v), provided v is full or |B,(e)| > c,. This completes the
computation for Stage t + 1.

Comment: After completing Step 4 for stage t + 1, List Invariant 3 holds, since at
most one element of Ly, (v) exists in between any two elements of L¢(v). Moreover,
if v was previously not full, then this forces L;.;(v) to be a (¢, ¢3)-sample of A;41(v)
(assuming L,(v) is a (c1,2¢, + 1)-sample and ¢; > [(¢, +1)/2]), which satisfies List

12

Invariant 4. If, on the other hand, v was previously full, then this forces L;y1(v) to
be a (|c1/2'], [c2/2"])-sample of A;y1(v), where 7 is the number of stages since v first
became full.

End of Stage ¢ + 1.

Having completed the description of our method, we next prove its correctness.

3.2 Analysis of Our Method for CREW PPM sorting

As observed above, when Step 4 completes, we will have satisfied List Invariants 1 and
3. The next lemmas show that our sample-refining method of Step 4 will correctly

give us List Invariants 2 and 4, as well.
Lemma 3.1: L,(v) is a (c1, 2¢5 + 1)-sample of Ay1(v).

Proof: Recall that L.(v) is a (¢1, ¢z)-sample of A}(v), that A\ (v) = L,_i(2)UL,_1 (y),
and that L, 1(x) (resp., Ly_1(y)) is a (0,1)-sample of L;(z) (resp., L(y)). Thus,
Li(v) is a (¢1,2¢y + 2)-sample of A;11(v). Let I = (a,b) be an interval defined by two
consecutive elements, a and b, in L}(v). So the number of elements of A;y;(v) in I,
which we denote by ¢, is at most 2¢; + 2. Let I denote the interval (,b) defined by
the twins, @ and b, of @ and b, respectively, in [A/t(v). Then, if we let ¢ denote the
number of elements of A;,;(v) in I, then we wish to show that é < 2¢y + 1.

Since both a and b are in L)(v), they both are also in A}(v) = Ly_1(x) U Ly_1 (y).
Let o denote the child of v (i.e., one of & or) such that a is not in L,_; (). Also let e
and g be the two consecutive elements of L;_;(«) such that a is in the interval (e, g),
and let f denote the element (if it exists) of L;(«) in this same interval. Similarly,
let 3 denote the child of v such that b is not in ﬁt_l(ﬁ), and let p and r be the two
consecutive elements of L, 1(f) such that b is in the interval (p,r), and let ¢ denote
the element (if it exists) of L;(3) in this same interval. We distinguish three cases for
the magnitude of c:

Case 1. ¢ = 2co + 2. Note that for this to be the case, f and ¢ must both be in
I. But if ¢ is in I, then ¢ is less than b; hence, the predecessor of b in Ay (v) is the
twin of b in f/t+1(v). Moreover, if f is in I, then f is greater than a; hence, a is its
own twin in f/t+1(v). Thus, ¢ = 2¢y + 1.

Case 2. ¢ = 2c¢y+ 1. Note that for this to be the case, f or ¢ must be in I, but not
both. If f € I and g & I, then a (resp., b) is its own twin in I:t(v); hence, ¢ = 2¢5 + 1

13

in this case. If, on the other hand, f ¢ I and ¢ € I, then the predecessor of a (resp.,
b) is a’s twin (resp., b’s twin) in L,(v); hence, & = 2¢, + 1 in this case, as well.

Case 3. ¢ < 2co + 1. If both f and g are in I, then, by a previous argument,
¢ = ¢ — 1, and we’re done. If exactly one of f or ¢ is in I, then we are also done,
since, by another previous argument, ¢ = c in this case. If, on the other hand, neither
f nor ¢ is in I, then the predecessor of a is a’s twin in [A/t(v) while b is its own twin
in [A/t(v). In this case, ¢ = ¢+ 1; but this still gives us ¢ < 2¢y + 1. This completes
the proof. O

Lemma 3.2: A;(v) 2-conforms to Ay(v).

Proof: If v is full, then A,(v) = A}(v); hence, the lemma is trivially true in this
case. So consider the case when v is not full. Then A;(v) = L; 1(z) U L;_1(y)
and A!(v) = Ly_y(z) U Ly_1(y). Let a; denote the i-th element of A,(v) and let d!
denote the i-th element of A}(v) (i.e., a;’s twin), for i € {1, 2, ...,|A:(v)|}. Also, let a;
denote the twin in [A/t_l(oz) of the copy of a; in L;_1(a), where « is z if a; came from
L; 1(x), and « is y otherwise. Suppose, for the sake of contradiction, that there is
an i € {3,4,...,|A:(v)|} such that a; < ai_,. Without loss of generality, a; came from
L;_1(x). Note that each a is an G for some k, i.e., the j-th element of A}(v) must
be the twin (in some L; ;(«)) of some element in A;(v) (i.e., the k-th).

Claim: There must be at least two elements a, and ap, in Ay(v), with a, < ap < a;,
such that a; < a4 and a; < ay,.

Proof of clawm: This claim follows by a simple pigeonhole argument. First, note that
a o is the (i — 2)-nd element in A}(v) and a; is smaller than a. ,; hence, there are at
most i — 3 elements of A}(v) less than a;. But there are i — 1 elements less than a;
in A;(v), and each a’ is an a; for some k. Therefore, there must be two a;’s (i.e., a4
and ay,) that meet the conditions of the claim. O (for proof of claim)

This claim immediately implies that both a, and aj came from L, (y). If this
were not so, then it would contradict the List Invariant 2 at = (for stage t — 1), i.e.,
that L,_, (z) 1-conforms to L,_; (z) (for, otherwise, the copy of a; in L,_1 (x) would not
be in the 1-neighborhood of @; in ﬁt_l(x)). But this claim also implies that a; < @,
(since ap, < a;), which contradicts List Invariant 2 at y (for it implies that the copy
of ap in L;_1(y) cannot be in the 1-neighborhood of a; in ﬁt_l(y)). Thus, a}_, < a;.
By a similar argument we also have that a; < a} ,, for i € {1,2,...,|A:(v)| — 2}.
Therefore, A;(v) 2-conforms to Aj(v). O

14

As a simple corollary to this lemma, we have that List Invariant 2 is satisfied,

provided ¢, is sufficiently large:
Corollary 3.3: If ¢; > 2, then Li(v) 1-conforms to f/t(v).

Proof: Ifvis full, then L,(v) = Ly(v), and we’re done. So suppose v is not full. As an
immediate consequence of Lemma 3.2, we have that a5 < a; < aj, 5, where a; (resp.,
/

a;

) denotes the i-th element of A;(v) (resp., A}(v)). Suppose q; is in L;(v), and let
a;+; be the next element of A;(v) in Li(v) (i.e., the smallest element of L,(v) greater
than a;). Then a} and a;, ; are consecutive elements in L,(v). By List Invariant 4, if
¢1 > 2, then j > 3. Thus, L;(v) 1-conforms to ﬁt(v). O

So, after Step 4 completes, we are ready to begin the next stage, as all the invari-
ants have been satisfied. Also we have placed some restrictions on the values of ¢;
and ¢y, namely that ¢; > max{2, [(co + 1)/2|} and ¢3 > 2¢;. So, for example, we
could take ¢; = 2 and ¢ = 4, which would guarantee that if the nodes on a particular
level of T" become full in stage ¢, then the nodes on the parent level will become full
in stage t + 4. In particular, (c1,c2) = (2,4) after the 1st iteration, (c1,c2) = (0,2)
after the 2nd iteration, (c;,co) = (0,1) after the 3rd iteration, and (¢, c2) = (0,0)
after the 4th iteration. Thus, after 4[logn] stages the root becomes full.

From the description of each step in our stage computation, it should be clear that
each step can be implemented using only pointer machine operations. Moreover, each
step requires only O(1) time given a processor and an O(1)-sized block of memory
assigned to each element in A;(v). Therefore, our sorting algorithm runs in O(logn)

time, so long as we can efficiently solve the space- and processor-allocation problems.

3.3 Space and Processor Allocation

Our method for allocating space and processors is based on a token-passing scheme,
which can be viewed as “de-amortization” of the total computational effort. Specif-
ically, we let a token represent a processor assignment, as well as an O(1)-size block

of memory cells, and maintain the following invariant for tokens:

CREW Token Invariant (for after stage t): Each element e of A,(v) has a token

associated with it, unless e is also in Ly_1(v).

Initially, the element in each leaf node has a token associated with it. The token

assigned to an element e in A;(v) is passed to e’s twin in A}(v) (if e has a token to

15

pass) in Step 1. Thus, an e in A}(v) will have a token unless e is also in L}(v). In Step
2, when v receives new elements from x and y, we pass a token with each element
v receives. Finally, in Step 3, we shift tokens so as to satisfy the token invariant for
stage t + 1. Thus, we can maintain the token invariant throughout the computation.
Note that this token passing scheme is sufficient for solving the processor assignment
problem, because, for any v that is not full, each element without a token is adjacent
to an element with a token (by List Invariant 4). In other words, if we let each token
represent an O(1) block of storage, and a processor assignment, we need only make
sure that for each element e that has no token we store the record for e in the block
for one of e’s neighbors f (since f must have a token), and let the processor for f
perform the computation for e. Since we start with n tokens, this implies that we can
implement our algorithm in O(n) space using O(n) processors. Another interesting
aspect of our token-passing scheme is that the space and processors associated with
inactive nodes are automatically re-allocated to active nodes by a completely local
strategy, i.e., by using only pointer machine operations. Thus, we have the following

theorem.

Theorem 3.4: Given a set S of n elements, one can sort S in O(logn) time and
O(n) space using O(n) processors in the CREW PPM model. O

In the next section we apply our approach to a problem with applications to
database querying and logic programming so as to achieve an algorithm that is asymp-
totically more efficient than what seems possible using previously known (array-based)

strategies.

4 Cascade Merging in a DAG

In this section we generalize our linked-list based approach to cascade merging prob-
lems defined on certain directed acyclic graphs (dags), dags with a bounded-width
tree partition, and give an application to the set-expression evaluation problem.

We begin with some definitions. Let G = (V, E) be a connected dag. If there
is an edge from u to v in G, then w is an n-node of v and v is an out-node of u.
The in-degree (resp., out-degree) of a node v in G is the number of in-nodes (resp.,
out-nodes) v has. We let degree(G) denote the maximum, over all v € G, of the sum
of the in-degree of v and the out-degree of v. A node without any in-nodes is a source,

and a node without any out-nodes is a sink. A tree partition Il of G is a partitioning

16

of V into Vi, Vs, ..., Vi, such that if the nodes in each V; are compressed to a single
node, and induced parallel edges are removed, then the resulting graph is a tree T'(IT),
called the underlying tree for G with respect to 11, or simply the underlying tree if the
context is understood. There is an arc from V; to V; if there is an edge in G from a
node in V; to a node in V; (and there is no edge from a node in V; to a node in V;).
By a slight abuse of notation we use V; to denote both a set of vertices in G and the
single node in the underlying tree for G. We call each V; a super node in T(IT). The
width of a tree partition IT = {V;,V5,...,V,,} is defined as

width(IT) = max |V;|,
V;ell

where |V;| denotes the number of nodes in V;. T'(II) is rooted if it has only one sink
node, called the root of T. The height of a node v in T'(II) is the length of the longest
leaf-to-v path in T'(II). If T'(II) is rooted, then the height of T'(II) is the height of the
root node; we let height(T(IT)) denote this quantity.

Suppose one is given a dag G. As a straightforward generalization of the sorting
framework of the previous sections, one can define a cascade merging structure on G.
In particular, one can associate a singleton set A(v;) = {a;} with each source node
v; in G, and define a set A(v) for each non-source node v to be the sorted union of
A(wq), A(ws), ..., A(Wp,), where wy, wo, ..., Wy, are the in-nodes for v. The cascade
merging problem for G, then, is to construct A(v) for each v in G. In this section we

prove the following theorem:

Theorem 4.1: Suppose one is given an n-node dag G with a bounded-width tree
partition II. If the underlying tree T(II) is a rooted binary tree, then one can solve
any cascade merging problem for G in O(height(T(II))) time using O(n) processors
in the CREW PPM model.

4.1 Some Simplifying Assumptions

Before we give our method for cascading in a dag, we first make some simplifying
assumptions. Note that if G has a tree partition II of width k, then the out-degree of
each node in G must be at most k. Hence, if II has constant width, then there must
be at most kn = O(n) edges in G. Moreover, if T'(IT) is binary, then the in-degree
of each node in G must be at most 2k. We make the following two assumptions

regarding G"

17

e Fach V; 1s an independent set.
e The in-degree and out-degree of each node in G is at most 2.

These two assumptions are made without loss of generality. Our justification for
this is based on the fact that one can easily embed any dag G into a “functionally
equivalent” dag H that has these properties. Formally, an embedding of G in a graph
H is a one-to-one mapping f of the nodes of G to the nodes in H, and edges in G to
paths in H. Such a mapping is functionality preserving if A(v) = A(f(v)) for each
v € G (assuming we define A(w) for each w € H as above). Two important measures
of the goodness of such an embedding are its dilation cost which is the length of the
longest path in H to which an edge in GG is mapped, and its expansion cost, which is
the ratio of the number of nodes in H to the number of nodes in G (e.g., see Hong,
Mehlhorn, and Rosenberg [13]). The following lemmas use these measures to analyze

how the above independence assumption can be made without loss of generality.

Lemma 4.2: Suppose one is given a dag G = (V, E') with tree partition T'(IT). Then
there is a functionality-preserving embedding f of G into a dag H, with tree partition
T(T'), such that

e cach set W; € I is an independent set,
o width(l') = width(I1)?, and
e f has dilation cost width(I1) and expansion-cost width(IT).

Proof: Our proof is constructive, in that we describe how to build f, H, and I’
from G and TI. Let V; be a member of II that is not an independent set (if there
are no such V;’s, then we are done). We refine V; into a collection of independent
sets Vi1, Via, ..., Viy, where [< k, such that for each edge (v, w), with v,w € V;, we
have v € V; ;, and w € V; j,, with j; < j,. This essentially amounts to a topological
ordering of the nodes in V;. We add “dummy nodes” uy, us, ..., u,, for each edge (v, w),
with v € V; ;, and w € V, j,, to change (v, w) into a path (v, uy,us, ..., Um, w), where
ur € Vijit1, u2 € Vijiq2, ooy Um € Vi j,—1. The addition of these dummy nodes clearly
preserves functionality and results in a dilation cost of width(II) for the associated
embedding f. Moreover, it adds at most width(I1)* dummy nodes to each V; j,; hence,
implying that width(T') = width(I1)? and that f has an expansion cost of width(II)?.
O

18

It is straightforward, given the above proof, to show that the construction of f,
H, and T can be done in O(width(IT)?) time using O(|G|) processors; we leave this to
the reader. The next lemma shows that our degree restriction is also made without

loss of generality.

Lemma 4.3: Suppose one is given a dag G = (V, E') with tree partition T'(Il). Then
there is a functionality-preserving embedding f of G into a dag H, with tree partition
T(T'), such that

e the in-degree and out-degree of each node in H are both at most 2,
e width(T") = width(I), and

e f has dilation cost at most 2[logdegree(G)| and expansion-cost at most
2degree(Q).

Proof: The proof is based on the idea, for each node v € G, of combining
the in-coming (resp., out-going) edges for v into a binary tree of height at most
[log degree(G)]. The interested reader is referred to the work of Atallah et al. [3] and
Chazelle and Guibas [9] for examples of this type of transformation. O

The construction of such an f and H can easily be done in O(log degree(G)) time
given a processor assigned to each edge in G using a method of Atallah et al. [3].

Taken together, the above two lemmas, immediately imply the following corollary:

Corollary 4.4: Suppose one is given a dag G = (V, E) with tree partition T (II).
Then there is a functionality-preserving embedding f of G into a dag H, with tree
partition T'(T"), such that

e cach set W; € I' is an independent set,
e the in-degree and out-degree of each node in H is at most 2,
o width(l') = width(I1)?, and

e f has dilation cost at most 2width(II)[log degree(G)| and expansion-cost at
most 2width(IT)2degree(Q).

In our primary application, set-expression evaluation, we have that degree(G) and
width(IT) are both O(1). Thus, the above corollary gives a functionality-preserving

embedding with constant dilation and expansion costs in this case.

19

4.2 Our Method for Cascading in a DAG

Having made some simplifying assumptions, we are now ready to describe our cascade
merging method. For notational consistency with the other sections in this paper, in
the remainder of this section whenever we use v for a node in G we let x and y be
the in-nodes of v and let u and w be the out-nodes of v (note that y and/or w may
not actually exist for every v in G, however). In addition, to simplify our notation,
we use k as a shorthand for width(II).

As in our approach for cascade merging in trees, the computation proceeds in
stages. For each node v in G we store a list A;(v) for v after stage t. As before, we
will maintain a sample, L;(v) of each A;(v). Our stage invariant is the same as in the

sorting algorithm, as is our computation for stage ¢ + 1.

Computation for Stage ¢t + 1: In Step 1, for each active node v, we construct
temporary lists A}(v) and L;(v) and additional linkages to aid us in Step 2. In Step
2 we construct Ay1(v), in Step 3 we construct L,(v), and in Step 4 we construct
L;1(v). The details are as in Section 3.

There are three significant differences between this algorithm and our sorting
algorithm, however. The first difference deals with the fact that the nodes in a super
node V; may be at different heights in G. Because of this, we modify Step 4 of our
method for a node v € V; (where we refine L;(v) into Ly (v)) so that if v is full, then
we only mark additional members of A;;1(v) to be in Ly 1(v) if all the nodes in V;
are full. This provides a mechanism to synchronize our computation so that the first
stage, t, such that L;(v) = Ay(v) is the same for all v in V;.

The second difference is that we must have some way of avoiding an explosion in
the number of multiple copies of a single element in any A(v) list. This is crucial,
for if our method does not eliminate multiple copies (in an on-line fashion), then it is
easy to construct dags that give rise to exponential-sized A(v) lists. (This is in fact
the main reason why it seems impossible to optimally apply the array-based cascade
merging methods of Cole [10] to solve this problem.) Our method for dealing with
this difficulty is actually quite simple. When a node v becomes full, we adjust A;(v)
by contracting any multiple copies of an element e into a single copy. This simple

strategy gives us the following lemma:

Lemma 4.5: For any node v in G and any element e in A;(v), there can be at most

two copies of e in Ay(v).

20

Proof: The proof is by induction on . If v becomes full after stage ¢ — 1, then by
our adjusting procedure, there can be only one copy of e in A;(v). If v is not full,
but x and y were full after stage ¢t — 1, then by our adjustment procedure at x and vy,
there can be at most one copy of e in each of A; ;(x) and A; ;(y); hence, there can
be at most two copies of e in A;(v). If, on the other hand, v and its in-nodes are not
full, then by induction, there can be at most two copies of e in each of A, ;(z) and
A;_1(y). Thus, if ¢; > 1, there can be at most one copy of e in each of L, ;(z) and
L;_1(y); hence, there can be at most two copies of e in A;(v). O

This lemma immediately implies that our adjustment procedure can be imple-
mented in O(1) time, since we contract at most two copies of any element e. Also,
since we only perform this adjustment after a node v becomes full, our adjustment
procedure cannot affect any of our stage invariants (for we can still maintain that
L; 1(v) C Ly(v)).

Finally, the third difference between our method for cascade merging in a dag and
our sorting algorithm is in our token-passing method. Our strategy for token passing
is necessarily different, for some nodes in G may have two out-nodes. Moreover, an
element e may be present in several (i.e., k) different lists in the same super-node of
T. We still pass exactly one token with each element that we send from a node v to
one of its parents. Thus, we may need to send two tokens for the elements in some
L;(v) lists. We deal with these difficulties by basing our token-passing strategy on
a “token stealing” paradigm. For each such element, e in L;(v), we “steal” a token
from one of e’s neighbors in A;(v). And, so long as v is not full, we maintain that the
neighbor of €’s twin is deficient one token (by passing a token “down the line” any
time a new element becomes the neighbor of €’s twin). Of course, once v becomes full
we must “give back” the token that we stole for e. To accommodate this restitution,
for each super node V;, we select one copy of each element e in an A;(v) list, with
v € V;, to be the representative copy of e at V;. Thus, even though there may be &
copies of an element e in the lists for V;, we have one that is distinguished. Initially
(i.e., at t = 0), of course, there is only one copy of any element e, and this copy is
stored in a unique source node for e. Thus, at ¢ = 0 each element is a representative
copy of itself and there are no other copies. We assign 2k tokens to this copy.

We modify our merging procedure so as to maintain L;(v)U Ly(w) for each pair of
nodes v and w in a super node V;. We can use the procedures of the standard sorting
methods to maintain these lists. The elements in these unions are not sent anywhere,

so we do not need to worry about assigning any tokens (i.e., processors) to them—we

21

simply use the token for e in L;(v) to maintain e’s copy in each union L;(v) U Li(w).
This adds an overhead of O(k) = O(1) time per stage, and implies that each cell for e
must have O(k) = O(1) additional pointers. The purpose of these extra unions is to
allow the processor assigned to the representative of an element e to quickly locate all
the other copies of e in lists at V;. In particular, once all the nodes at V; become full,
this processor can locate all the other copies of e in lists at V; in O(k) = O(1) time.
Let C;(e) denote the set of copies of e in lists at V;. Once we have determined C;(e),
we then make two passes through C;(e). In this first pass we collect a token from
each copy of e that was formed by contracting two copies of e. Since at most one of
any two contracted copies of e can be in an L;(v), this first pass will collect a single
token for each contracted copy of e. In the second pass we distribute an extra token
to each copy of e that is at a node v with two parents. If this copy of e is already in
L.(v), then e can use this extra token to “pay back” its neighbor. If e is not in L;(v),
then e can use this extra token to avoid stealing a token when e is eventually placed
into Ly (v) (for some ¢* > t). We then let the representative copy store any unneeded
tokens. In the stage that the nodes at the parent, V;, of V; are to become full we
pass these extra tokens from the representative for e at V; to a copy of e in some list
at V;, and make that copy the new representative of e (at V;). The following lemma
establishes that this scheme will allow us to always pass a token any time we copy an

element e to a new list. In short, we can maintain our token-passing strategy.

Lemma 4.6: When a super-node V; becomes full, for each element e in a list at V,
the representative for e has 2k — m. extra tokens, where m, is the number of copies

of e at lists at V; before compression.

Proof: The proof is by induction on the levels of 7". The base case is for V; being
a leaf in 7. In this case there is only one copy of any element e in a list at Vj}, and
the (unique) copy of e has 2k tokens assigned. Thus, we have 1 copy of e and 2k — 1
extra tokens. For the inductive step, suppose the claim is true for the children of
V;, and consider the stage t when V; becomes full. Note that in stage ¢ — [logcs|
the children of V; became full. Let V; be the child of V; that stores copies of e. By
induction, the representative of e at V; had 2k — m/ extra tokens when V; became
full, where m, was the number of copies of e in lists at V; before contracting. Thus,
Vi had to redistribute m, — m/ tokens from the representative in order to send all m,

copies of e to V;. After this redistribution, the representative for e at V; would have

22

2k —m! — (m, — m.) tokens, and these would be transferred to the representative of
e at V;. Noting that 2k — m/ — (m, — m.) = 2k — m. completes the proof. O
Noting that m, < 2k (by Lemma 4.5), the above lemma implies that the number
of extra tokens at the representative will always be non-negative. Thus, there will
always be a sufficient number of tokens to pass a token with each element sent from a
child list to a parent list. This implies that we can implement the entire computation
with O(kn) = O(n) processors. In addition, once two nodes x and y with the same
out-node, v, become full, v will become full O(1) stages later. Thus, since we have
already seen that each stage can be implemented in O(1) time, this implies that the
total time for the entire computation is O(k height(T)) = O(height(T)) time. This
gives us Theorem 4.1. In the next subsection we give an important application of this

theorem.

4.3 Application: Set-Expression Evaluation

Suppose one is given an expression tree T such that all the operands (stored at its
leaves) are singleton sets and the allowable operations at internal nodes are union (U)
and intersection (N). Recall that the set-expression evaluation problem is to produce
the set determined by 7', listed in sorted order. For example, T" could be the tree
illustrated in Figure 6.

Note that the set-expression evaluation problem contains the sorting problem as
a special case, but also includes problem instances where expression tree T' can have
O(n) height and can have many paths with alternating intersection and union opera-
tions. Thus, this problem has an Q(nlogn) sequential lower bound in the comparison
model. In fact, even if we do not insist on the output being sorted, this problem still
has an Q(nlogn) lower bound (in the ACT model), by a simple reduction from the
set equality problem, which was shown to have and Q(nlogn) lower bound in this
model by Ben-Or [5].

We can solve the set-expression evaluation problem by cascade merging in a dag
with a bounded-width tree partition. Specifically, we convert the tree 7" into such
an expression dag G using the rake-and-compress paradigm of Abrahamson et al. [1],
Miller and Reif [21, 22|, and Kosaraju and Delcher [19]. This dag will have a tree
partition with O(logn) height and have width equal to 3, with each node being labeled
by an intersection or union operation.

We use these properties to perform a cascaded merge procedure in G, as if each

23

N

/ \U

U
n/ \{4} {2}/ \U
T

\ {5} {1}

U U\
/Ny
{1 {2 {3 / g

{1} {3}

Figure 6: An example expression tree. In this case the evaluation of T'
gives the list (1,2).

internal-node operation were U. We maintain a flag alive(e) for each element e in the
list at a full node v, where alive(e) is true if and only if e belongs in the set defined
by the sub-dag “rooted” at v (when intersections are also taken into consideration).
Thus, we implicitly remove elements during the cascading, but do not actually remove

them until the cascade merging has completed.

4.3.1 Using a rake-and-compress scheme to build a tree partition for G

For completeness, we give the details for converting 7" into G using the rake-and-
compress paradigm. This paradigm provides a procedure that iteratively “shrinks” T'
in a series of “rounds” to reduce T eventually to a single node. In each round there
are two types of operations, a rake operation and a compress operation, that are
applied to the nodes of T'. A rake operation applied at a node v amounts to removing
any children of v that are leaves. A compress operation applied at a node v amounts
to contracting v with its child, provided v has only one child. We refer the reader to
Abrahamson et al. [1], Miller and Reif [21, 22|, and Kosaraju and Delcher [19] for the
details on how to use these two operations to reduce a constant fraction of the nodes
in T in each round. The only fact we need from these papers is that we can shrink T’

to a single node in O(logn) rounds and O(n) work, where each round is implemented

24

using rake and compress operations.

Such a scheme can alternatively be viewed as a method for converting 7" into an
equivalent dag G, where the sources of G are the leaves of T" and each non-source
node v of G is labeled with an operation in {U, N}, so that the value of v is defined
by applying this operation to the sets at v’s in-nodes. The sink node in GG represents
the same set as the root of 7". In each application of a rake or compress operation we
“shrink” 7T'. In each intermediate “snap shot” of T', for each node v we will store a
dag G(v). If v has two children, then G(v) is empty. If v has one child, then the dag
G(v) has two sink nodes a and b that represent two sets A and B, respectively, such
that if the set for v’s child is X, then the set for v is AN X U B. If the set is X U B,
then the a node of the dag will be specially marked as the identity. Finally, if v is
a leaf, then the dag G(v) has a single sink node that represents the set for v. Thus,
initially, G(v) is empty for each internal node v in T, and G(v) is a single node that
represents the singleton set at v for each leaf v of T'. Let us consider how the G(v)’s

change for each type of shrinking operation:

1. Raking a leaf w into a node v with two children (w is a child of v): Let u be
v’s other child. In this case we create G(v) depending on the operation to be

performed at v:

(a) If op(v) = U, then if Y is the set for w and X is the set for u, then the set
for v is X U B, where B =Y. Thus, we construct G(v) so that its b node

corresponds to the root of G(w) and G(v)’s a node is an “identity” node.

(b) If op(v) = N, then if Y is the set for w and X is the set for u, then the
set for v is AN X, where A =Y. Thus, we construct G(v) so that its a
node corresponds to the root of G(w) and G(v)’s b node is an “empty set”

node.

2. Raking a leaf w into a node v with one child (w is the child of v): Let x be the
root of G(w) and let X denote the set that x represents. In a previous raking
step we must have raked the other child of v. Thus, G(v) has two sink nodes a
and b that correspond to sets A and B, respectively, so that AN X U B is the set
at v. So to update G(v) we create two new nodes ¢ and u with op(i) = N and

op(u) = U, and let a and x be the in-nodes of i and let i and b be the in-nodes
of b.

25

3. Compressing a node w with one child into a node v with one child (w is the
child of v): Let u be w’s child, let X denote the set for u, and let Y denote the
set for w. Thus, G(w) has two nodes a,, and b,, representing sets A,, and B,, so
that Y = A, N X U B,,. Similarly, G(v) has two nodes a, and b, representing
sets A, and B, so that the set for v is A, N Y U B,. Therefore, the new set
for v should be (4, N A,)NX U (A, N B, UB,). So to update G(v) we create
three new nodes a, 7, and b/, with op(al) = N, op(i) = N, and op(¥)) = U
In addition, a! has in-nodes a, and a,, ¢ has in-nodes a, and b, and b/ has

in-nodes ¢ and b,,.

When we complete the rake-and-compress computation the tree 7" will be reduced
to a single node r (the root of T'), and the graph G = G(r) will have a single sink
node that represents the set for r. Thus, to construct this set we must perform a
cascade merge procedure in G. The following lemma shows that we can use our

cascade merging method for dags:

Lemma 4.7: G has a tree partition I1 with width equal to 3, T(I) is a rooted binary

tree, and the in-degree or out-degree of any node in G is at most 2.

Proof: The proof is by induction on the number of rake-and-compress steps. Initially,
each G(v) is a single node; hence, the three properties trivially hold. Otherwise, note
that any rake or compress operation applied to a single node adds at most three nodes
to create a new dag G(v) from some G(w) dag(s). The only in-nodes for these three
are the former sink nodes for the G(w) dag(s), and these former sink nodes are not
used as in-nodes for any nodes in G. Moreover, the underlying super-node for each
collection of newly created nodes has at most two children, and the in-degree and

out-degree of the newly created nodes are all at most 2. O

4.3.2 Cascade merging in the tree partition produced by the rake-and-

compress procedure

We have yet, then, only to show how to use a cascade merging procedure in GG to solve
the set-expression evaluation problem. Our method is to perform the cascade merging
in a dag, as described above, imagining that each node in G is simply labeled with
a union operation. Since some nodes in G' may actually be labeled with intersection
operations, however, we perform one extra computation each time a node v, with two

in-nodes = and y, becomes full. The computation we perform for v depends on the

26

actual operation, op(v), that labels v:

Case 1: op(v) = U. In this case, for each e € A;(v), we mark e “alive” if and only if
there is an “alive” copy of e in L;(z)(= Ai(x)) or Li(y)(= A:(y)).

Case 2: op(v) = N. In this case, for each e € A;(v), we mark e “alive” if and only if
there is an “alive” copy of e in Li(x) and an “alive” copy of e in Li(y).

Note that this extra computation clearly adds only O(1) extra steps to each stage
in the cascade merging procedure for G.

By a simple inductive argument and the semantics of our labeling computation,
it follows that an element will be marked “alive” if and only if it belongs in the
list for v in G (when intersections are taken into consideration). Moreover, each
copy of an element e in an A;(v) list will have the same label (this also follows by
induction). Thus, by Theorem 4.1, after O(logn) stages the sink of G will be full, and
the “alive” elements in A;(r) are exactly the elements that belong to the solution to
the set-expression evaluation problem for T (where r is the root). Also, the total time
needed to do this is O(logn) using O(n) processors. We form the answer then, by
compressing out the “dead” elements of A;(r) in O(logn) time using O(n) processors,

by a simple list-ranking procedure. This gives us the following theorem:

Theorem 4.8: Given an expression tree T’ whose operands are singletons and whose
operations come from the set {U, N}, one can evaluate T in O(logn) time and O(n)
space using O(n) processors in the CREW PPM model.

5 Sorting on an EREW PPM

In this section we outline a simple EREW PPM sorting method, based on generaliza-
tions of the methods of the previous sections. As in our CREW PPM sorting method,
we let 7" be a complete binary tree such that each of its leaves is associated with one
of the elements in the input set S. Our algorithm again proceeds in stages, with each
node v in T storing lists A;(v), L;_1(v), Li(v), and L;(v) at the end of stage t. The
difference here is that the list A;(v) is the sorted merge of samples sent from all the
nodes adjacent to v in 7', including v’s parent, u. Thus, we allow some elements to be
cascading down the tree 7" while others are cascading up. This approach is similar in
spirit to the EREW PRAM sorting method of Cole [10], but is considerably different

otherwise.

27

Specifically, we define A;(v), for each non-full node v, as
At<1}) = Lt,1<U) U Ltfl(l') U Ltfl(y).

Changing the definition of A;(v) in this way has some significant impacts on our
procedure. Before we make this more precise, we give some generalizations to the

merge lemmas we needed for our CREW PPM sorting procedure.

5.1 Generalizing the Merge Lemmas

We must generalize the merge lemmas of Section 2 in order to be used in our EREW

PPM sorting algorithm.

Lemma 5.1: Suppose one is given three lists A, B, and C, such that B C A, B is
a ci-cover of A and a co-cover of C', for constants c; and co. If one has AﬂB and
B¢ , then one can compute AP in O(1) time with a processor assigned to each
element in A in the EREW PPM model.

Proof: Let a be an element in A. The method is to simulate the proof of Lemma 2.3
so as to avoid concurrent reads. Recall that the method of that proof was to follow the
pointer from a to its predecessor, b, in B, follow the pointer from b to its predecessor,
¢, in C, and, from there, march at most ¢y positions to the predecessor of a in C'.
We can simulate each step of this process in O(logec;) = O(1) time by using fan-out
broadcasting to implement what would otherwise be concurrent reads. Thus, we can
still perform the entire computation in O(cy) = O(1) time. O

The following lemma, generalizes the c-Cover Merge Lemma to the EREW PPM

model, and makes three applications of Lemma 5.1.

Lemma 5.2: (The EREW c¢-Cover Merge Lemma) Suppose one is given lists
A, L, Ly, Ly, L7, L, and L3, such that A = LyULyULs, and L; is a c-cover of L} and
a d-cover of A, fori =1, 2,3, where ¢ and d are constants. In addition, suppose one is
given AﬂLi and Li@)L;‘, fori =1,2,3. Then one can compute A* = LTU L5 U L}

(with A*ELE* fori=1,2,3) in O(1) time with a processor assigned to each element
in A in the EREW PPM model.

Proof: By three applications of Lemma 2.3, one can compute AmLf, fori=1,2,3,
in O(1) time. Let a and b be two consecutive elements in A, and let L3 (a,b), L}(a,b),

and L3(a, b) be the respective L sublists that fall in the interval [a, b). In parallel for

28

each such pair a,b one can construct the portion of A* that falls in the interval [a, b)
by merging the three L¥(a,b) lists by a simple three-way sequential merge. The total
time is O(c + d) = O(1), given a processor assigned to each element in A. O

We next generalize the Conforming-Merge Lemma.

Lemma 5.3: (The EREW Conforming-Merge Lemma) Suppose one is given
lists A, Ly, Lo, Ls, f/l, IA/27 and ﬁg, such that A = Ly U Ly U L3, L; is a c-cover
for A, L; d-conforms to I:i, for 1 = 1,2,3, where ¢ and d are constants. Suppose
further that one is given AmLi and Liﬂ)fji, for i = 1,2,3. Then one can compute
A'= L, UL, U Ly (with A" predecessor-linked into each L;) and A=K A7 iy O(1) time

with a processor assigned to each element in A in the EREW PPM model.

Proof: First, note that one can apply the EREW c-Cover Merge Lemma to compute
A’ with A’ predecessor-linked into each ﬁi, in O(1) time. Thus, we have yet to show
how to compute A Ay , by determining, for each element a in A, the twin, a’ of a
in A’. Let i denote the rank of @ in A. Since A = L U L, U L3, there is a copy of a
in one of the L; lists; without loss of generality, suppose a € L3. Let a be the twin
of ain Ly (with respect to the copy of a in L3). To determine the i-th element of A’
it is sufficient to determine the rank of @ in A’, described in terms of i. Let a; be
the predecessor of a in L1, and let a; be the twin of a; in [:1. Similarly define as and
as with respect to Ly and iz. Suppose a has rank j in L, a; has rank k; in L; and
as has rank ko in Ly, so ¢ = j + ki + ko. Note that a has rank j in f/, by definition.
So we need only determine the rank of @ in L; (in terms of k;) and the rank of @ in
IAIQ (in terms of ks). Let us restrict our attention to f/l. Since L; d-conforms to [:1,
the predecessor of @ in Ly can be at most d + 1 positions away from a;; hence, we
can determine the (signed) difference between the rank of a in Ly and the rank of
ar in Ly just by counting the number of elements between a’s predecessor in L, and
a1. Let —d —1 < l; < d + 1 denote this difference, so that the rank of a in IA/l is
ki + l1. By a similar method we can determine the rank of a in ﬁz as ko + Iy, with
—d—1<1Ily<d+1. Then therank of ain A"is j+ ki + ko + 11 +1lo =01+ + s
Therefore, to determine the i-th element of A’ we need only march |l; + 5] = O(d)
positions in A’ from a’s position in A’. As in the proof for the EREW ¢-Cover Lemma,
we can avoid concurrent reads by broadcasting values to all the processors that need
them. Since each L; is a c-cover of A, each step in this method can be implemented in
the EREW PPM model in O(logc) = O(1) time. Thus, the entire procedure requires

only O(d) = O(1) time, given a processor assigned to each element in A. O

29

Having generalized the important lemmas in our method, we are now ready to
present our procedure for sorting in the EREW PPM model in O(logn) time using

O(n) processors.

5.2 EREW Stage Invariants and Computations

As mentioned earlier, we changed the definition of A;(v) to be the merge of the
samples at nodes adjacent to v (not just from v’s children). One of the most important
implications of this new definition is that, as we will show (in Lemma 5.7), it forces
A;(v) to be a c-cover of L;(u) and L;(u) to be a c-cover of A;(v), for some constant c.
This allows us to use the EREW merge lemmas of the previous subsection to perform
all the merges needed without using concurrent reads. Another significant impact
of our Ay(v) definition is that it requires us to modify the token assignment method
so that tokens can be passed from parent to child, as well as from child to parent.
This complication seriously affects our token-passing strategy, as we must take care
to maintain an O(n) number of tokens, in spite of there being many cycles in the
definitions of the A;(v)’s. Before we describe the modifications to our token-passing
strategy, however, let us give the steps of our procedure. We begin with our list of

invariants.

EREW List Invariants at the end of stage t: FEach active node v stores four
sorted lists, Ay(v), Li_1(v), Li_1(v), and Ly(v), as doubly-linked lists that satisfy the

following properties:

1. Ifv was not full after stage t — 1, then Ay(v) = L;_1(u)U L;_1(x) U L;_1(y), and
Ay(v) is predecessor-linked into each of Ly 1(u), Ly_1(x), and L;_1(y). Other-
wise, if v was full after stage t — 1, then A;(v) = A;_1(v).

2. L,_1(v) 1-conforms to L,_1(v), and is rank-linked into L,_, (v).
3. L,_1(v) is a (0,1)-sample of L(v), and is predecessor-linked into L(v).

4. If v is not full, then L;(v) is a (ci1,cz)-sample of A;(v), where ¢; and co
are constants (fixed for the entire procedure). If v is full, then L;(v) is a
(Le1/2t], |c2/2t|)-sample, where i is the number of stages since v first became

full. In any case L;(v) is predecessor-linked into A.(v).

Note that List Invariants 2, 3, and 4 are the same as in the CREW algorithm, and

List Invariant 1 is similar to the corresponding CREW invariant. Nevertheless, these

30

simple modifications will allow us to implement the entire procedure in the EREW
PPM model. Before we give the details of our implementation, then, let us show that
these invariants give us the pre-conditions necessary for the EREW merge lemmas.

We begin by making two additional observations regarding c-covers.
Observation 5.4: If B C A, then A is a 1-cover of B.

Observation 5.5: If A is a c¢i-cover of B and B is a cy-cover of C, then A is a

ci1co-cover of C.

Having made these observations, we show, in the next two lemmas, that the sample

at a child is a c-cover of the list at the parent, and vice versa.
Lemma 5.6: For any node v, L; 1(v) is a 4-cover of L(v).

Proof: Note that, by List Invariant 2, L,_;(v) 1-conforms to L,_(v); hence, by
Observation 2.2, Ly_1(v) is a 2-cover of L,_1(v). Also note that, by List Invariant 3,
Li—1(v) is a (0,1)-sample of L(v); hence, by Observation 2.1, L;_(v) is a 2-cover of
Li(v). Our lemma, then, follows immediately, by Observation 5.5. O

Lemma 5.7: A;(v) is a c-cover of Li(u) and Ly(u) is a c-cover of A;(v), where c is a

constant.

Proof: By Observation 5.4 and the previous lemma, if v is not full, then A;(v) is a
4-cover of Li(u), for L;_y(u) C Ay(v) by List Invariant 1 at v. If, on the other hand,
v became full in stage t*, then Ly _;(u) C Ap(v) = Ai(v), by List Invariant 1 at v for
stages t*,t*+1, ...,t*+d = t, where d is at most [logcs| = O(1) (by List Invariant 4 at
v). By a repeated application of the previous lemma, and Observation 5.5, Ly 1 (u)
is a 4%-cover of L,(u). Therefore, A;(v) is at worst a c-cover of L;(u), if v is full,
where ¢ is the constant 4/°8¢2l. The proof that L;(u) is a c-cover of A,(v) follows,
by a repeated application of Observation 5.5, from the following observations. L;(u)
is a (cg + 1)-cover of A;(u), by List Invariant 4 at u. A;(u) is a 1-cover of L; 1(v),
since Ly 1(v) C Ai(u), by List Invariant 1 at u. Ly 1(v) is a 4-cover of L;(v), by the
previous lemma. Finally, L;(v) is a (¢ + 1)-cover of A;(v), by List Invariant 4 at v.
O

The steps of our method are also quite similar to the steps in our CREW proce-
dure. Nevertheless, there are a number of important differences, which we highlight

in the discussion below.

31

Stage t+1 Computation: In Step 1, for each active node v, we construct temporary
lists A}(v) and L, (v) and additional linkages to aid us in Step 2. In Step 2 we construct
A1 (v), in Step 3 we construct L,(v), and in Step 4 we construct Ly 1 (v).

Step 1: If v is not full, then we construct a temporary list A}(v) = L, (u) U
L1 (z) U Ly_ (y) and predecessor-link A}(v) into Ly (u), Li_1(z), and L, 1 (y). If v
is full, then we simply take A}(v) = A;(v). In either case, we let L}(v) be the sample
of Aj(v) parallel to Li(v) in Ai(v) (note that |A}(v)| = |Ai(v)]), and we compute
Ly(v)™5 L} (v). We can implement this step in O(1) time by the EREW Conforming-
Merge Lemma.

Comment: Since Lj(v) and Li(v) are parallel samples, Lj(v) is a (¢, c2)-sample of
Al(v), for Ly(v) is a (1, co)-sample of A;(v) (by List Invariant 4).

Step 2: If v is not full, then we construct A;1(v) = L;(u)U Ly(z) U Ly(y), by the
EREW c-Cover Merge Lemma. We satisfy the preconditions for applying this lemma
by the computations of the previous step and by List Invariant 3 at nodes u, x, and
y. If v is full, then we simply take A;1(v) = A}(v).

Comment: This gives us List Invariant 1 at v for after stage ¢ + 1. In addition, from
List Invariant 2 at v’s children, it is easy to see that L}(v) is a (¢1, 2¢o + 3)-sample of
Ag1(v) (if v is full, then it is a (cq, c2)-sample).

Step 3: If v is not full, then we locally shift Lj(v) in A;;;(v) to construct a
(c1,2¢5 + 1)-sample, L;(v), of A;yq(v). We also rank-link L!(v) into L,(v), which
implicitly ranks L;(v) into Ly(v). If v is full, then we take L,(v) = L}(v).
Implementation: Let b € Ai1(v) be an element in Lj(v). Since b is in L}(v), it is also
in Al(v). Thus, since AL(v) = Ly_(u) U Li_1(x) U L,_; (y) and Al(v) is predecessor-
linked into L,_1(u), L_1(z), and L,_1(y), we can easily determine b’s predecessor in
it,l(u), ﬁt,l(x), and it,l(y), respectively, one of which must be b itself. Without loss
of generality, assume that b € [Ajt,l(y). Let e and g be the two consecutive elements
of L,_1(z) such that b is in the interval (e,), and let h and k be the two consecutive
elements of L, 1(u) such that b is in the interval (h, k). By List Invariant 3 at u
and z, we can easily determine the elements, f and j, if they exist, in L;(z) and
L;(u), respectively such that f is in the interval (e, g) and j is in the interval (h, k).
These are the values that determine how we perform our local shift relative to b. In
particular, if f < band j < b, then we make the immediate predecessor of b in A;;(v)
take b’s place in Ly(v). If b < f and b < j, then we make the immediate successor
of bin Ay (v) take b's place in it(v). If either f or j do not exist, then we use the

convention that the missing element is less than b. If none of these conditions are

32

satisfied for b, then we let the copy of b in A1 (v) also be in Li(v)—so that b is its
own twin in L;(v). We show below, in Lemma 5.8, that this simple rule forces L;(v)
to be a (c1,2¢y + 1)-sample of A;1(v). Note that, as in the previous two steps, by
Lemma 5.7, we can avoid concurrent reads in this step by an O(1)-time broadcasting
procedure.

Step 4: We refine L,(v) into Ly, (v). We place each element of L;(v) in L1 (v),
and, for each sublist B,(e) of A;y1(v) consisting of all elements that are strictly
between two consecutive elements e and f of L;(v), we make the median of B,(e)
also be a member of L, (v), provided v is full or |B,(e)| > co. This completes the
computation for Stage t + 1.

Comment: After completing Step 4 for stage t + 1, List Invariant 3 holds, since at
most one element of L, (v) exists in between any two elements of L;(v). Moreover,
if v was previously not full, then this forces L;;1(v) to be a (c1, c3)-sample of A;;1(v)
(assuming L,(v) is a (c1,2¢, + 1)-sample and ¢; > [(c2 +1)/2]), which satisfies List
Invariant 4. If, on the other hand, v was previously full, then this forces L;y1(v) to
be a (|c1/2], | c2/2])-sample of Ay q(v).

End of Procedure.

Thus, when Step 4 completes, it should be apparent that we will have satisfied
List Invariants 1 and 3. In the next subsection we show that our sample-refining

method of Step 4 will correctly give us List Invariants 2 and 4.

5.3 Analysis of our EREW Sorting Algorithm

We begin our analysis by showing that List Invariant 2 is satisfied after Stage ¢t + 1

completes.
Lemma 5.8: L,(v) is a (c1,2cy 4 1)-sample of Ayyq(v).

Proof: Recall that L}(v) is a (c1, ¢;)-sample of A (v), that A}(v) = L;_; (u)UL,_ (z)U
Li_1(y), and that L, ;(u) (vesp., Ly_1(x), Li_1(y)) is a (0,1)-sample of L;(u) (resp.,
Li(z), Li(y)). Thus, Li(v) is a (¢, 2¢o + 3)-sample of A;;(v). Let I = (a,b) be an
interval defined by two consecutive elements, a and b, in L}(v). So the number of
elements of A;y1(v) in I, which we denote by ¢, is at most 2c3 + 3. Let I denote
the interval (a, 13) defined by the twins, @ and b, of a and b, respectively, in ﬁt(v).
Then, if we let ¢ denote the number of elements of A, (v) in I, we wish to show that
¢ < 2cy + 1.

33

Since both @ and b are in L}(v), they both are also in A}(v) = L;_y(u) U Ly_1(z) U
Li-1(y). Let a; and ay denote the two nodes adjacent to v (i.e., two of u, z, or y)
such that a is not in f,t_l(al) or ﬁt_l(ag). Also let e; and g; be the two consecutive
elements of L; 1(c;) such that a is in the interval (e;, ¢g;), i = 1,2, and let f; denote the
element (if it exists) of L;(c;) in this same interval. Similarly, let 3; and (3, denote
the nodes adjacent to v such that b is not in f/t_l(ﬁl) or f/t_l(ﬁg), and let p; and
r; be the two consecutive elements of L; 1(;) such that b is in the interval (p;,r;),
and let ¢; denote the element (if it exists) of L;(/;) in this same interval, i = 1, 2.
We distinguish a number of cases for the relationships between the elements fi, fo,
q1, and ¢» and the elements a and b. To simplify the discussion, we say “a moves
right” (resp., “a moves left”) to indicate that the successor (resp., predecessor) of a
in A1 (v) is the twin of @ in Ly, (v), and we say “a stays in place” to indicate that
a is its own twin in itﬂ(v). We also use similar expressions for b. Without loss of
generality, we assume that f1, fs, ¢1, and ¢ all exist, since we use the convention that

a missing element is less than a or b, respectively.

1. All of f1, fo, q1, and ¢, lie in I. Then ¢ < 2¢y 4+ 3. In this case a moves right
and b moves left. Thus, ¢ < 2¢y + 1.

2. Three of f1, fa, q1, or g lie in I and one lies outside I. Then ¢ < 2¢y 4+ 2. In
this case either a stays in place and b moves left or a moves right and b stays

in place. In either case, ¢ = 2¢y + 1.

3. Two of fi, fo, q1, or ¢ lie in I and two lie outside I. We distinguish several

subcases:

(a) f; and f, are outside. Then ¢ < 2¢y+1, and a and b both move left. Thus,
¢ S 202 + 1.

(b) fi and ¢; are outside, where 7 and j are either 1 or 2. Let us first address
the degenerate case where ¢ = j and f; = ¢;. In this degenerate case,
¢ < 2¢y9 + 2, but either a stays in place and b moves left or a moves right
and b stays in place; hence, ¢ < 2cp + 1. In the general case, when f; # gj,
then ¢ < 2¢, + 1 and both a and b stay in place. Thus, ¢ < 2¢y + 1.

(¢) ¢1 and ¢y are outside. Then ¢ < 2¢; + 1, and a and b both move right.
Thus, ¢ < 2¢y + 1.

34

4. Three of fi, f2, q1, or ¢o lie outside of I and one lies inside I. Then ¢ < 2¢,. In
this case either a stays in place and b moves right or a moves left and b stays

in place. In either case, ¢ = 2¢y + 1.

5. fi, fa, q1, or g all lie outside of I. Because of possible degeneracies, we distin-

guish several subcases:

(a) fi =q and fy = go. Then ¢ < 2c¢y + 1. If f; and f, are both greater than
b, then a and b both move right. If f; and f; are both less than a, then a
and b both move left. Otherwise, a and b both stay in place. In any case,
¢ <2cy+1.

(b) fi # ¢1 and fy = go. Then ¢ < 2¢y. If f5 is less than a, then a moves left
and b stays in place, and if f5 is greater than b, then a stays in place and

b moves right. In either case, ¢ < 2¢cy + 1.
(¢) fi =q and fs # go. Similar to previous case.

(d) fi # ¢1 and f; # ¢2. Then ¢ < 2¢y — 1. In this case a moves left and b
moves right. Thus, ¢ < 2¢y + 1.

This completes the proof. O
Thus, after Step 4 completes, List Invariant 4 is satisfied for each node in the tree.
So we have only to prove that List Invariant 2 is satisfied after stage ¢ + 1. The next

lemma is essential to proving this.
Lemma 5.9: A;(v) 3-conforms to Aj(v).

Proof: If v is full, then A,(v) = A}(v); hence, the lemma is trivially true in this
case. So suppose v is not full. Then A;(v) = L;_1(u)U L1 (x) U L;_1(y) and A}(v) =
Ly 1(u) ULy 1(x) UL (y). Let a; denote the i-th element of A,(v) and let o/ denote
the i-th element of Aj(v) (i.e., a;’s twin in A}(v)), for i € {1,2, ..., |A(v)|}. Also, let
a; denote the twin in f/t(a) of the copy of a; in L;—1 (), where « is z if a; came from
L, 1(x), ais y if a; came from L, ;(y), and « is u otherwise. Suppose, for the sake
of contradiction, there is an i € {4, 5, ..., |A(v)|} such that a; < a}_,. Without loss of
generality, suppose a; came from L, 1(z). Note that each a} is an ay, for some k. By
a pigeonhole argument similar to that used in the proof of Lemma 3.2, since a, 5 is
the (i — 3)-rd element in Aj}(v), there must be at least 3 elements a¢, a,4, and a; with

ay < ag < ap < a; such that

a; < &f, a; < &g, and a; < ay. (1)

35

Note that for any « € {u,z,y}, by List Invariant 2 at o (for stage t — 1), L;_1(«)
1-conforms to L;_;(a). This implies that none of ay, a,, and a, came from L,_;(z),
for, otherwise, this would contradict List Invariant 2 at x (for it would imply that
the copy of a; in L, 1(z) is not in the 1-neighborhood of &; in L, ;(z)). Without loss
of generality, suppose aj, came from L; ;(y). Note that (1) also implies that a, < a;
and a, < ag4, since ap < a;. Thus, ay and a, must both come from u, or we would
contradict List Invariant 2 at y (for, otherwise, the copy of ay, in L; 1(y) would not
be in the 1-neighborhood of d,, in L,_;(y)). Finally, note that (1) also implies that
ag < Gy, since ay, < a;. But this contradicts List Invariant 2 at u. Thus, a;_3 < a;,
for i € {4,5,...,|Ai(v)|}. By a similar argument we also have that a; < a;;3, for
ie€{l1,2,..,|Av)| — 3}. Therefore, A;(v) 3-conforms to Aj(v). O

As a simple corollary to this lemma, we have that List Invariant 2 is satisfied,

provided c; is sufficiently large:
Corollary 5.10: If ¢; > 3, then L,(v) 1-conforms to Ly(v).

Proof: As an immediate consequence of Lemma 5.9, we have that a;_, < a; < aj_,,
where a; (resp., a) denotes the i-th element of A;(v) (resp., A}(v)). Suppose a; is in
Li(v), and let a;4; be the next element of A;(v) in L,(v) (i.e., the smallest element of

Li(v) greater than a;). Then o} and a;, ; are consecutive elements in Li(v). By List

Invariant 4, if ¢; > 3, then j > 4. Thus,]Lt(v) 1-conforms to ﬁt(v). O

So, after Step 4 completes, we are ready to begin the next stage, as all the in-
variants have been satisfied. Also recall that we have placed some restrictions on
the values of ¢; and ¢y, namely ¢; > max{3, |(c2 +1)/2]} and c2 > 2¢;. These are
not the only constraints we place on these values, however. In the next section we
describe how we can generalize our token-passing strategy for implementing processor
and space allocation. As it turns out, our new strategy will place some additional
constraints on ¢;. Nevertheless, ¢; will still be a small constant and ¢y = 2¢;. Thus,
after O(logc; * logn) = O(logn) stages the root node becomes full, implying a total

running time of O(logn).

5.4 Space and Processor Allocation

As in our CREW algorithm, our method for allocating space and processors is based
on a token-passing scheme. This token-passing scheme is considerably more involved

than in the CREW case, however. One of the complicating factors is that in our

36

EREW algorithm elements are not only sent up the tree, but some are also sent down
the tree. To distinguish between these two situations we say that an element in A;(v)
is rising if it came from L, () or L;_1(y) and is falling if it came from L; ;(u) (and
we maintain similar labels in A}(v)). In fact, we further refine the rising elements
into two subsets. We say that a rising element e in A;(v) is genuine if the copy of e in
L; 1(a) is also a rising element, where « is a child of v. A rising element e in A;(v)

is fake, otherwise, i.e., if the copy of e in L; 1(«) is a falling element.

Notation: Given an element e in A;_1(v), we let r,(e) denote the copy in A;(v) of
the twin in A}, _|(v) of e in A;_1(v).

Intuitively, r.(e) is the “replacement” for e in A;(v). Our EREW token invariant
borrows ideas from the token passing strategies we used in our CREW sorting scheme
as well as in our method for cascade merging in a dag with a constant-width tree
partition. In particular, we pass a token with each element e, as in our CREW
sorting, and we deal with the deficits that this scheme creates by “stealing” tokens
from where they are not needed, as in our method for cascade merging in a dag. To

be precise, our token invariant is the following:

EREW Token Invariants (for after stage t): Let v be a node in T

1. If the children of v are not full, then each element e in A;(v) has a token
associated with it, provided e is not in L,_(v) and e is not adjacent (in A,(v))
to an element f such that f € Ly 1(v).

2. If the children of v are full, but v is not full, then each element e in A;(v) has
a token associated with it, provided e is not in [A/t,l(v) and e is not adjacent to
an element f such that f = ry(r_1(-- -7 (g))) for some g € Ly-_,(v), where t*

is the stage in which v’s children became full.

3. Ifwv is full, then each element e in A;(v) has a token associated with it, provided

e is not in Ly_1(v) and e is either a falling element a genuine rising element.

To avoid there being too few elements at the two ends of a list, we make the convention
that +00 and —oo are present in each list, and are always placed (implicitly) in each
sample.

Initially, the element in each leaf node has a token associated with it. The token
assigned with an element e in A;(v) is passed to e’s twin in Aj(v) (if e has a token

to pass) in Step 1. This slightly modifies the token invariant at v, of course. For

37

example, if v’s children are not full, then an e in A}(v) will have a token assigned to
it provided e is not the twin in L (v) of an element of L,(v) that is also in L, (v)
nor is e adjacent to any such element. In Step 2, when v receives new elements from
u, x, and y, we pass a token with each element v receives. That is, we send a token
with each element in L;(u) — Ly 1(u) (vesp., Ly(z) — Li_1(z), Li(y) — Li_1(y)). But,
in order to implement this, each node v with non-full children must send 3 tokens
for each element in L;(v) — Li_1(v) (not just 1 token as in our CREW algorithm).
To deal with this, we have the element e, which we wish to send to v’s neighbors,
“steal” the tokens from his predecessor and successor elements in A;,;(v)—these are
the tokens that we pass along with e to v’s children = and y (we send e’s token to u).
This accounts for the parts of the token invariant mentioning elements adjacent to
elements in L, 1(v). If new elements are inserted (in Step 2) between a tokenless e in
L, 1(v) and its tokenless neighbors, then we pass the tokens for these new elements
“down the row” so that the immediate neighbors of e are always tokenless. This
maintains Token Invariant 1, provided ¢; > 4 (so there are always elements from
which to steal tokens). If v’s children are full, then we do not send any elements to
them, so we need only send a copy of e to u. Thus, the token for e will only go to u in
this case. Given that Token Invariant 1 was satisfied at v before v’s children became
full, then this maintains Token Invariant 2.

The two immediate neighbors of an element f in A;(v), such that f =
re(re_1(- - -7+ (g))) for some g € Ly-_;(v), remain tokenless until v becomes full. Once
v becomes full, the only real computation we are performing is to take the middle
element, e, of each interval of A;(v) determined by two consecutive elements of L;(v)
and put e into L;;1(v). In order to facilitate the implementation of our token-passing
scheme, we modify our stage computation procedure so that right after v becomes full
(i.e., after Step 2) we remove each fake rising element e from A;(v), which originally
came from L; 5(v), and give its token to ry(r;_1(e)) in L;(v). We show below that
this gives us Token Invariant 3 at v. A property that is crucial to our being able
implement this is that there can be no fake rising elements in L;(v). For the token
for such a fake rising element e would no longer be associated with e—it would have
been sent along with copies of e sent to the nodes adjacent to v. Fortunately, as we
will now show, we can guarantee that no fake rising element is ever put into L;(v). In

the next lemma we show that, for each element e in A; ;(v), e “closely approximates”

r(e).

38

Lemma 5.11: Ife is an element in A;_1(v), then e is in the 9-neighborhood of r(e)
in Ay(v).

Proof: Let é denote the twin of e in A} _;(v). Since A;_;(v) 3-conforms to A;_,(v), by
Lemma 5.9, e is in the 3-neighborhood of é in A} _;(v). Note that by List Invariant 3
at u, x, and y for stage ¢t — 1, and because A;(v) = L;—1(u) U Ly (x) U L1 (y),
A, | (v) is a (0, 3)-sample of A;(v). Thus, e is in the 9-neighborhood of the copy of é
in A;_;(v), which is r(e). O

Thus, we immediately have the following corollary:

Corollary 5.12: If e is an element in A; 2(v), then e is in the 27-neighborhood of
ri(ri—1(e)) in Ay(v).

Proof: By the previous lemma, e is in the 9-neighborhood of r;_;(e) in A; 1(v).
Consider the 9th element, d, less than r,_i(e) in A;_;(v). Again by the previous
lemma, d is in the 9-neighborhood of r,(d) in A;(v). Similarly, the 9th element, f,
greater than r; 1(e) is in the 9-neighborhood of r;(f) in A;(v). Therefore, e is in the
27-neighborhood of 74(r;—1(e)). O

We use this corollary in the next lemma, which states that if ¢; is sufficiently

large, then we can guarantee that there is no fake rising element in L;(v).

Lemma 5.13: If ¢; > 27 and v was not full before stage t, then there can be no fake

rising elements in L;(v).

Proof: Suppose e is a fake rising element in A;(v). We must show that e is not in
Li(v). Since Ay(v) = Ly 1(u) UL, 1(x)U Ly 1(y), without loss of generality, there is a
falling copy of e in L; 1(x) C A; 1(x). Thus, there is a copy of e in L; 5(v) C A; 2(v)
(by the definition of a falling element in A; ;(z)). By the previous corollary, e is in
the 27-neighborhood of r(r;_1(e)) in A;(v). In addition, since e is in L;_o(v), r;_1(e)
isin L; 1(v) and ry(r;_1(e)) is in L;(v). By List Invariant 4, the next element of L;(v)
greater (resp., smaller) than r,(r; 1(e)) must be at least ¢; + 1 > 28 elements away
from ry(r;—1(e)) in A¢(v). Therefore, e cannot be in L;(v). O

So, by taking ¢; = 27 and ¢y = 54, we can guarantee that we will never send a fake
rising element from v to any of the nodes adjacent to v so long as v is not full. Thus,
our token invariant can be maintained by the modification mentioned above (namely,
by removing the fake rising elements from A;(v) once v becomes full). Moreover, we

conserve the n original tokens. This gives us the following theorem:

39

Theorem 5.14: Given a set S of n elements, one can sort S in O(logn) time and
O(n) space using O(n) processors in the EREW PPM model. O

6 Conclusion

We have designed general techniques for performing cascade merging in CREW and
EREW parallel versions of the pointer machine model. In particular, we have shown
that one can sort in O(logn) time using O(n) processors in the CREW and EREW
PPM models. Thus, we have established the existence of simple sorting algorithms for
parallel models weaker than those used by Cole [10]. Some of the interesting aspects
of our methods include the use of rank-linked and predecessor-linked samples, and
the use of simple token-passing schemes to implement space and processor allocation.
We also showed how to generalize our approach to cascade merging in dags with
bounded-width tree partitions, and we showed how to use this to achieve an asymp-
totic improvement over what seems possible making use of previous (array-based)
techniques for solving the set-expression evaluation problem. Our method for this
problem also runs in O(logn) time using an optimal O(n) number of processors.

We leave open the following questions:

e Can one solve the set-expression evaluation problem optimally as a circuit (say,

by extending the sorting network of Ajtai, Komlés, and Szemerédi [2])?

e What is the complexity of sorting on a CRCW PPM?

References

[1] ABRAHAMSON, K., DADOUN, N., KIRKPATRICK, D. G., AND PRZYTYCKA,
T. A simple parallel tree contraction algorithm. J. Algorithms 10 (1989), 287—
302.

[2] AsTal, M., KoMLOs, J., AND SZEMEREDI, E. Sorting in clogn parallel steps.
Combinatorica 3 (1983), 1-19.

[3] ATaLLAH, M. J., COLE, R., AND GOODRICH, M. T. Cascading divide-and-
conquer: A technique for designing parallel algorithms. SIAM J. Comput. 18
(1989), 499-532.

40

[4] BATCHER, K. E. Sorting networks and their applications. In Proc. 1968 Spring
Joint Computer Conf. (Reston, VA, 1968), AFIPS Press, pp. 307-314.

[5] BEN-OR, M. Lower bounds for algebraic computation trees. In Proc. 15th Annu.
ACM Sympos. Theory Comput. (1983), pp. 80-86.

[6] BILARDI, G., AND NICOLAU, A. Adaptive bitonic sorting: An optimal par-
allel algorithm for shared-memory machines. Information and Computation 18
(1989), 216-228.

[7] BirToN, D., DEWITT, D. J., Hsiao, D. K., AND MENON, J. A taxonomy
of parallel sorting. ACM Computing Surveys 16, 3 (1984), 287-318.

[8] CHAZELLE, B. A functional approach to data structures and its use in multidi-
mensional searching. STAM J. Comput. 17 (1988), 427-462.

[9] CHAZELLE, B., AND GUIBAS, L. J. Fractional cascading: 1. A data structuring
technique. Algorithmica 1 (1986), 133-162.

[10] CoLE, R. Parallel merge sort. SIAM J. Comput. 17, 4 (1988), 770-785.

[11] CorMEN, T. H., LEISERSON, C. E., AND RiVEsT, R. L. Introduction to
Algorithms. The MIT Press, Cambridge, Mass., 1990.

[12] HAGERUP, T., AND RUB, C. Optimal merging and sorting on the erew pram.
Information Processing Letters 33 (1989), 181-185.

[13] Hong, J. W., MEHLHORN, K., AND ROSENBERG, A. L. Cost trade-offs in
graph embedding with applications. J. ACM 30 (1983), 709-728.

[14] J. H. REIF, E. Synthesis of Parallel Algorithms. Morgan Kaufmann Publishers,
Inc., San Mateo, CA, 1993.

[15] JAJA, J. An Introduction to Parallel Algorithms. Addison-Wesley, Reading,
Mass., 1992.

[16] KarP, R. M., AND RAMACHANDRAN, V. Parallel algorithms for shared mem-

ory machines. In Handbook of Theoretical Computer Science, J. van Leeuwen,
Ed. Elsevier/The MIT Press, Amsterdam, 1990, pp. 869-941.

41

[17] KnuTH, D. E. Fundamental Algorithms, vol. 1 of The Art of Computer Pro-
gramming. Addison-Wesley, Reading, MA, 1968.

[18] KnuTH, D. E. Sorting and Searching, vol. 3 of The Art of Computer Program-
ming. Addison-Wesley, Reading, MA, 1973.

[19] KosarAJU, S. R., AND DELCHER, A. L. Optimal parallel evaluation of tree-
structured computations by raking. In Proc. AWOC 88, vol. 319 of Lecture Notes
wn Computer Science. Springer-Verlag, 1988, pp. 101-110.

[20] LEiGHTON, F. T. Tight bounds on the complexity of parallel sorting. IEEE
Transactions on Computers C-34, 4 (1985), 344-354.

[21] MILLER, G. L., AND REIF, J. H. Parallel tree contraction part 1: Fundamen-
tals. SIAM J. Comput. 5 (1989), 47-72.

[22] MILLER, G. L., aND REIF, J. H. Parallel tree contraction II: Further applica-
tions. SIAM J. Computing 20 (1991), 1128-1147.

(23] PATERSON, M. Improved sorting networks with o(logn) depth. Algorithmica 5,
1 (1990), 75-92.

[24] SEDGEWICK, R. Algorithms. Addison-Wesley, Reading, MA, 1983.

[25] SHILOACH, Y., AND VISHKIN, U. Finding the maximum, merging, and sorting
in a parallel computation model. Journal of Algorithms 2 (1981), 88-102.

[26] TARJAN, R. E. A class of algorithms which require nonlinear time to maintain
disjoint sets. J. Comput. System Sci. 18 (1979), 110-127.

42

